Lactate production without hypoxia in skeletal muscle during electrical cycling: Crossover study of femoral venous-arterial differences in healthy volunteers

. 2019 ; 14 (3) : e0200228. [epub] 20190301

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30822305

BACKGROUND: Aim of the study was to compare metabolic response of leg skeletal muscle during functional electrical stimulation-driven unloaded cycling (FES) to that seen during volitional supine cycling. METHODS: Fourteen healthy volunteers were exposed in random order to supine cycling, either volitional (10-25-50 W, 10 min) or FES assisted (unloaded, 10 min) in a crossover design. Whole body and leg muscle metabolism were assessed by indirect calorimetry with concomitant repeated measurements of femoral venous-arterial differences of blood gases, glucose, lactate and amino acids. RESULTS: Unloaded FES cycling, but not volitional exercise, led to a significant increase in across-leg lactate production (from -1.1±2.1 to 5.5±7.4 mmol/min, p<0.001) and mild elevation of arterial lactate (from 1.8±0.7 to 2.5±0.8 mM). This occurred without widening of across-leg veno-arterial (VA) O2 and CO2 gaps. Femoral SvO2 difference was directly proportional to VA difference of lactate (R2 = 0.60, p = 0.002). Across-leg glucose uptake did not change with either type of exercise. Systemic oxygen consumption increased with FES cycling to similarly to 25W volitional exercise (138±29% resp. 124±23% of baseline). There was a net uptake of branched-chain amino acids and net release of Alanine from skeletal muscle, which were unaltered by either type of exercise. CONCLUSIONS: Unloaded FES cycling, but not volitional exercise causes significant lactate production without hypoxia in skeletal muscle. This phenomenon can be significant in vulnerable patients' groups.

Zobrazit více v PubMed

Glaser RM. Physiologic aspects of spinal cord injury and functional neuromuscular stimulation. Cent Nerv Syst Trauma. 1986;3: 49–62. Available: http://www.ncbi.nlm.nih.gov/pubmed/3524868 PubMed

Hunt KJ, Fang J, Saengsuwan J, Grob M, Laubacher M. On the efficiency of FES cycling: a framework and systematic review. Technol Health Care. 2012;20: 395–422. 10.3233/THC-2012-0689 PubMed DOI

Szecsi J, Schiller M. FES-propelled cycling of SCI subjects with highly spastic leg musculature. NeuroRehabilitation. 2009;24: 243–53. 10.3233/NRE-2009-0475 PubMed DOI

Lo H-C, Hsu Y-C, Hsueh Y-H, Yeh C-Y. Cycling exercise with functional electrical stimulation improves postural control in stroke patients. Gait Posture. 2012;35: 506–10. 10.1016/j.gaitpost.2011.11.017 PubMed DOI

Peri E, Ambrosini E, Pedrocchi A, Ferrigno G, Nava C, Longoni V, et al. Can FES-Augmented Active Cycling Training Improve Locomotion in Post-Acute Elderly Stroke Patients? Eur J Transl Myol. PAGEPress; 2016;26: 6063 10.4081/ejtm.2016.6063 PubMed DOI PMC

Szecsi J, Schlick C, Schiller M, Pöllmann W, Koenig N, Straube A. Functional electrical stimulation-assisted cycling of patients with multiple sclerosis: Biomechanical and functional outcome–A pilot study. J Rehabil Med. 2009;41: 674–680. 10.2340/16501977-0397 PubMed DOI

Mohr T, Dela F, Handberg A, Biering-Sørensen F, Galbo H, Kjaer M. Insulin action and long-term electrically induced training in individuals with spinal cord injuries. Med Sci Sports Exerc. 2001;33: 1247–52. Available: http://www.ncbi.nlm.nih.gov/pubmed/11474322 PubMed

Young W. Electrical Stimulation and Motor Recovery. Cell Transplant. 2015;24: 429–446. 10.3727/096368915X686904 PubMed DOI

Morris PE, Herridge MS. Early intensive care unit mobility: future directions. Crit Care Clin. Elsevier; 2007;23: 97–110. 10.1016/j.ccc.2006.11.010 PubMed DOI

Schweickert WD, Kress JP. Implementing Early Mobilization Interventions in Mechanically Ventilated Patients in the ICU. Chest. 2011;140: 1612–1617. 10.1378/chest.10-2829 PubMed DOI

Choong K, Koo KKY, Clark H, Chu R, Thabane L, Burns KEA, et al. Early Mobilization in Critically Ill Children. Crit Care Med. 2013;41: 1745–1753. 10.1097/CCM.0b013e318287f592 PubMed DOI

TEAM Study Investigators, Hodgson C, Bellomo R, Berney S, Bailey M, Buhr H, et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Crit Care. 2015;19: 81 10.1186/s13054-015-0765-4 PubMed DOI PMC

Pawlik AJ. Early Mobilization in the Management of Critical Illness. Crit Care Nurs Clin North Am. 2012;24: 481–490. 10.1016/j.ccell.2012.05.003 PubMed DOI

Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, et al. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill. Physiol Rev. American Physiological Society; 2015;95: 1025–109. 10.1152/physrev.00028.2014 PubMed DOI PMC

Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional Disability 5 Years after Acute Respiratory Distress Syndrome. N Engl J Med. 2011;364: 1293–1304. 10.1056/NEJMoa1011802 PubMed DOI

Kress JP, Hall JB. ICU-Acquired Weakness and Recovery from Critical Illness. N Engl J Med. 2014;370: 1626–1635. 10.1056/NEJMra1209390 PubMed DOI

Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid Disuse Atrophy of Diaphragm Fibers in Mechanically Ventilated Humans. N Engl J Med. 2008;358: 1327–1335. 10.1056/NEJMoa070447 PubMed DOI

Parry SM, Puthucheary ZA. The impact of extended bed rest on the musculoskeletal system in the critical care environment. Extrem Physiol Med. BioMed Central; 2015;4: 16 10.1186/s13728-015-0036-7 PubMed DOI PMC

Parry SM, Berney S, Warrillow S, El-Ansary D, Bryant AL, Hart N, et al. Functional electrical stimulation with cycling in the critically ill: A pilot case-matched control study. J Crit Care. 2014;29: 695.e1–695.e7. 10.1016/j.jcrc.2014.03.017 PubMed DOI

Duffell LD, de N. Donaldson N, Newham DJ. Why is the Metabolic Efficiency of FES Cycling Low? IEEE Trans Neural Syst Rehabil Eng. 2009;17: 263–269. 10.1109/TNSRE.2009.2016199 PubMed DOI

Hunt KJ, Hosmann D, Grob M, Saengsuwan J. Metabolic efficiency of volitional and electrically stimulated cycling in able-bodied subjects. Med Eng Phys. 2013;35: 919–925. 10.1016/j.medengphy.2012.08.023 PubMed DOI

Hunt KJ, Ferrario C, Grant S, Stone B, McLean AN, Fraser MH, et al. Comparison of stimulation patterns for FES-cycling using measures of oxygen cost and stimulation cost. Med Eng Phys. Elsevier; 2006;28: 710–8. 10.1016/j.medengphy.2005.10.006 PubMed DOI

Downey RJ, Merad M, Gonzalez EJ, Dixon WE. The Time-Varying Nature of Electromechanical Delay and Muscle Control Effectiveness in Response to Stimulation-Induced Fatigue. IEEE Trans Neural Syst Rehabil Eng. 2017;25: 1397–1408. 10.1109/TNSRE.2016.2626471 PubMed DOI

Kjaer M, Perko G, Secher NH, Boushel R, Beyer N, Pollack S, et al. Cardiovascular and ventilatory responses to electrically induced cycling with complete epidural anaesthesia in humans. Acta Physiol Scand. Blackwell Publishing Ltd; 1994;151: 199–207. 10.1111/j.1748-1716.1994.tb09738.x PubMed DOI

Kim CK, Strange S, Bangsbo J, Saltin B. Skeletal muscle perfusion in electrically induced dynamic exercise in humans. Acta Physiol Scand. Blackwell Publishing Ltd; 1995;153: 279–287. 10.1111/j.1748-1716.1995.tb09864.x PubMed DOI

Scremin OU, Cuevas-Trisan RL, Scremin AM, Brown C V, Mandelkern MA. Functional electrical stimulation effect on skeletal muscle blood flow measured with H2(15)O positron emission tomography. Arch Phys Med Rehabil. 1998;79: 641–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/9630142 PubMed

Tepavac D, Schwirtlich L. Detection and prediction of FES-induced fatigue. J Electromyogr Kinesiol. 1997;7: 39–50. Available: http://www.ncbi.nlm.nih.gov/pubmed/20719690 PubMed

Kim CK, Bangsbo J, Strange S, Karpakka J, Saltin B. Metabolic response and muscle glycogen depletion pattern during prolonged electrically induced dynamic exercise in man. Scand J Rehabil Med. 1995;27: 51–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/7792551 PubMed

Glaser RM. Physiology of Functional Electrical Stimulation-Induced Exercise: Basic Science Perspective. Neurorehabil Neural Repair. Sage PublicationsSage CA: Thousand Oaks, CA; 1991;5: 49–61. 10.1177/136140969100500106 DOI

Gater DR, McDowell SM, Abbas JJ. Electrical Stimulation: A Societal Perspective. Assist Technol. Taylor & Francis Group; 2000;12: 85–91. 10.1080/10400435.2000.10132012 PubMed DOI

Tsutaki A, Ogasawara R, Kobayashi K, Lee K, Kouzaki K, Nakazato K. Effect of intermittent low-frequency electrical stimulation on the rat gastrocnemius muscle. Biomed Res Int. Hindawi; 2013;2013: 480620 10.1155/2013/480620 PubMed DOI PMC

Dreyer HC, Fujita S, Cadenas JG, Chinkes DL, Volpi E, Rasmussen BB. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol. Wiley-Blackwell; 2006;576: 613–24. 10.1113/jphysiol.2006.113175 PubMed DOI PMC

Hulston CJ, Wolsk E, Grondhal TS, Yfanti C, Van Hall G. Protein Intake Does Not Increase Vastus Lateralis Muscle Protein Synthesis during Cycling. Med Sci Sport Exerc. 2011;43: 1635–1642. 10.1249/MSS.0b013e31821661ab PubMed DOI

Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol Metab. 1995;268: E514–E520. 10.1152/ajpendo.1995.268.3.E514 PubMed DOI

Holm L, van Hall G, Rose AJ, Miller BF, Doessing S, Richter EA, et al. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. Am J Physiol Metab. 2010;298: E257–E269. 10.1152/ajpendo.00609.2009 PubMed DOI

Dideriksen K, Reitelseder S, Holm L. Influence of Amino Acids, Dietary Protein, and Physical Activity on Muscle Mass Development in Humans. Nutrients. 2013;5: 852–876. 10.3390/nu5030852 PubMed DOI PMC

van Hall G, González-Alonso J, Sacchetti M, Saltin B. Skeletal muscle substrate metabolism during exercise: methodological considerations. Proc Nutr Soc. 1999;58: 899–912. Available: http://www.ncbi.nlm.nih.gov/pubmed/10817157 PubMed

Tůma P. Rapid determination of globin chains in red blood cells by capillary electrophoresis using INSTCoated fused-silica capillary. J Sep Sci. 2014;37: 1026–1032. Available: 10.1002/jssc.201400044 PubMed DOI

Kjær M, Dela F, Sørensen FB, Secher NH, Bangsbo J, Mohr T, et al. Fatty acid kinetics and carbohydrate metabolism during electrical exercise in spinal cord-injured humans. Am J Physiol Integr Comp Physiol. American Physiological SocietyBethesda, MD; 2001;281: R1492–R1498. 10.1152/ajpregu.2001.281.5.R1492 PubMed DOI

Jones B, Kenward MG. Chapter 5: Analysis of continuous data. In: Design and analysis of cross-over trials [Internet]. Available: http://researchonline.lshtm.ac.uk/2537976/

Soulele K, Macheras P, Silvestro L, Rizea Savu S, Karalis V. Population pharmacokinetics of fluticasone propionate/salmeterol using two different dry powder inhalers. Eur J Pharm Sci. 2015;80: 33–42. 10.1016/j.ejps.2015.08.009 PubMed DOI

Vallet B, Teboul J-L, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89: 1317–1321. 10.1152/jappl.2000.89.4.1317 PubMed DOI

Sun Y, Ferguson BS, Rogatzki MJ, McDonald JR, Gladden LB. Muscle Near-Infrared Spectroscopy Signals versus Venous Blood Hemoglobin Oxygen Saturation in Skeletal Muscle. Med Sci Sport Exerc. 2016;48: 2013–2020. 10.1249/MSS.0000000000001001 PubMed DOI

Esaki K, Hamaoka T, Rådegran G, Boushel R, Hansen J, Katsumura T, et al. Association between regional quadriceps oxygenation and blood oxygen saturation during normoxic one-legged dynamic knee extension. Eur J Appl Physiol. 2005;95: 361–370. 10.1007/s00421-005-0008-5 PubMed DOI

Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. Wiley-Blackwell; 2004;558: 5–30. 10.1113/jphysiol.2003.058701 PubMed DOI PMC

Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. Wiley-Blackwell; 2004;558: 5–30. 10.1113/jphysiol.2003.058701 PubMed DOI PMC

Brooks GA. Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc. 2000;32: 790–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/10776898 PubMed

Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, Barrailler S, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care. Springer; 2016;6: 10 10.1186/s13613-016-0110-3 PubMed DOI PMC

Hettinga DM, Andrews BJ. Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: implications for fitness and health. Sports Med. 2008;38: 825–38. Available: http://www.ncbi.nlm.nih.gov/pubmed/18803435 PubMed

Wagenmakers AJ. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev. 1998;26: 287–314. Available: http://www.ncbi.nlm.nih.gov/pubmed/9696993 PubMed

Ashley Z, Sutherland H, Russold MF, Lanmüller H, Mayr W, Jarvis JC, et al. Therapeutic stimulation of denervated muscles: The influence of pattern. Muscle Nerve. 2008;38: 875–886. 10.1002/mus.21020 PubMed DOI

Hickmann CE, Roeseler J, Castanares-Zapatero D, Herrera EI, Mongodin A, Laterre P-F. Energy expenditure in the critically ill performing early physical therapy. Intensive Care Med. 2014;40: 548–555. 10.1007/s00134-014-3218-7 PubMed DOI

Mathewson KW, Haykowsky MJ, Thompson RB. Feasibility and reproducibility of measurement of whole muscle blood flow, oxygen extraction, and VO 2 with dynamic exercise using MRI. Magn Reson Med. 2015;74: 1640–1651. 10.1002/mrm.25564 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...