Gut Microbiota as the Link between Elevated BCAA Serum Levels and Insulin Resistance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34680047
PubMed Central
PMC8533624
DOI
10.3390/biom11101414
PII: biom11101414
Knihovny.cz E-zdroje
- Klíčová slova
- branched-chain amino acids, gut metabolome, gut microbiome, insulin resistance, type 2 diabetes,
- MeSH
- diabetes mellitus 2. typu krev genetika MeSH
- inzulinová rezistence genetika MeSH
- krevní glukóza genetika MeSH
- lidé MeSH
- obezita krev genetika MeSH
- střevní mikroflóra genetika MeSH
- symbióza genetika MeSH
- větvené aminokyseliny krev genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- krevní glukóza MeSH
- větvené aminokyseliny MeSH
The microbiota-harboring human gut is an exquisitely active ecosystem that has evolved in a constant symbiosis with the human host. It produces numerous compounds depending on its metabolic capacity and substrates availability. Diet is the major source of the substrates that are metabolized to end-products, further serving as signal molecules in the microbiota-host cross-talk. Among these signal molecules, branched-chain amino acids (BCAAs) has gained significant scientific attention. BCAAs are abundant in animal-based dietary sources; they are both produced and degraded by gut microbiota and the host circulating levels are associated with the risk of type 2 diabetes. This review aims to summarize the current knowledge on the complex relationship between gut microbiota and its functional capacity to handle BCAAs as well as the host BCAA metabolism in insulin resistance development. Targeting gut microbiota BCAA metabolism with a dietary modulation could represent a promising approach in the prevention and treatment of insulin resistance related states, such as obesity and diabetes.
Zobrazit více v PubMed
Noce A., Marrone G., Di Daniele F., Ottaviani E., Wilson Jones G., Bernini R., Romani A., Rovella V. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients. 2019;11:1073. doi: 10.3390/nu11051073. PubMed DOI PMC
Cabello-Olmo M., Arana M., Urtasun R., Encio I.J., Barajas M. Role of Postbiotics in Diabetes Mellitus: Current Knowledge and Future Perspectives. Foods. 2021;10:1590. doi: 10.3390/foods10071590. PubMed DOI PMC
Guilloteau P., Martin L., Eeckhaut V., Ducatelle R., Zabielski R., Van Immerseel F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 2010;23:366–384. doi: 10.1017/S0954422410000247. PubMed DOI
Cresci G.A., Glueck B., McMullen M.R., Xin W., Allende D., Nagy L.E. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J. Gastroenterol. Hepatol. 2017;32:1587–1597. doi: 10.1111/jgh.13731. PubMed DOI PMC
Arpaia N., Campbell C., Fan X., Dikiy S., van der Veeken J., de Roos P., Liu H., Cross J.R., Pfeffer K., Coffer P.J., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–455. doi: 10.1038/nature12726. PubMed DOI PMC
Li R., Mao Z., Ye X., Zuo T. Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms. 2021;9:1017. doi: 10.3390/microorganisms9051017. PubMed DOI PMC
Schattenberg J.M., Galle P.R. Animal models of non-alcoholic steatohepatitis: Of mice and man. Dig. Dis. 2010;28:247–254. doi: 10.1159/000282097. PubMed DOI
Rao R.K. Acetaldehyde-induced barrier disruption and paracellular permeability in Caco-2 cell monolayer. Methods Mol. Biol. 2008;447:171–183. doi: 10.1007/978-1-59745-242-7_13. PubMed DOI
Newgard C.B., An J., Bain J.R., Muehlbauer M.J., Stevens R.D., Lien L.F., Haqq A.M., Shah S.H., Arlotto M., Slentz C.A., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–326. doi: 10.1016/j.cmet.2009.02.002. PubMed DOI PMC
Katagiri R., Goto A., Nakagawa T., Nishiumi S., Kobayashi T., Hidaka A., Budhathoki S., Yamaji T., Sawada N., Shimazu T., et al. Increased Levels of Branched-Chain Amino Acid Associated With Increased Risk of Pancreatic Cancer in a Prospective Case-Control Study of a Large Cohort. Gastroenterology. 2018;155:1474–1482.e1. doi: 10.1053/j.gastro.2018.07.033. PubMed DOI
Tobias D.K., Hazra A., Lawler P.R., Chandler P.D., Chasman D.I., Buring J.E., Lee I.M., Cheng S., Manson J.E., Mora S. Circulating branched-chain amino acids and long-term risk of obesity-related cancers in women. Sci. Rep. 2020;10:16534. doi: 10.1038/s41598-020-73499-x. PubMed DOI PMC
Gojda J., Strakova R., Plihalova A., Tuma P., Potockova J., Polak J., Andel M. Increased Incretin But Not Insulin Response after Oral versus Intravenous Branched Chain Amino Acids. Ann. Nutr. Metab. 2017;70:293–302. doi: 10.1159/000475604. PubMed DOI
Wahren J., Felig P., Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J. Clin. Investig. 1976;57:987–999. doi: 10.1172/JCI108375. PubMed DOI PMC
Vellai T. How the amino acid leucine activates the key cell-growth regulator mTOR. Nature. 2021;596:192–194. doi: 10.1038/d41586-021-01943-7. PubMed DOI
Pedroso J.A., Zampieri T.T., Donato J., Jr. Reviewing the Effects of L-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis. Nutrients. 2015;7:3914–3937. doi: 10.3390/nu7053914. PubMed DOI PMC
Holecek M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018;15:33. doi: 10.1186/s12986-018-0271-1. PubMed DOI PMC
Cole J.T. Metabolism of BCAAs. In: Rajendram R., Preedy V.R., Patel V.B., editors. Branched Chain Amino Acids in Clinical Nutrition. Volume 1. Humana Press; Totowa, NJ, USA: 2015. pp. 13–24.
Tremblay F., Krebs M., Dombrowski L., Brehm A., Bernroider E., Roth E., Nowotny P., Waldhausl W., Marette A., Roden M. Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability. Diabetes. 2005;54:2674–2684. doi: 10.2337/diabetes.54.9.2674. PubMed DOI
Nair K.S., Woolf P.D., Welle S.L., Matthews D.E. Leucine, glucose, and energy metabolism after 3 days of fasting in healthy human subjects. Am. J. Clin. Nutr. 1987;46:557–562. doi: 10.1093/ajcn/46.4.557. PubMed DOI
Kamaura M., Nishijima K., Takahashi M., Ando T., Mizushima S., Tochikubo O. Lifestyle modification in metabolic syndrome and associated changes in plasma amino acid profiles. Circ. J. 2010;74:2434–2440. doi: 10.1253/circj.CJ-10-0150. PubMed DOI
Wurtz P., Makinen V.P., Soininen P., Kangas A.J., Tukiainen T., Kettunen J., Savolainen M.J., Tammelin T., Viikari J.S., Ronnemaa T., et al. Metabolic signatures of insulin resistance in 7098 young adults. Diabetes. 2012;61:1372–1380. doi: 10.2337/db11-1355. PubMed DOI PMC
Wang T.J., Larson M.G., Vasan R.S., Cheng S., Rhee E.P., McCabe E., Lewis G.D., Fox C.S., Jacques P.F., Fernandez C., et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011;17:448–453. doi: 10.1038/nm.2307. PubMed DOI PMC
Lips M.A., Van Klinken J.B., van Harmelen V., Dharuri H.K., AC’t Hoen P.A., Laros J.F., van Ommen G.J., Janssen I.M., Van Ramshorst B., Van Wagensveld B.A., et al. Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes Care. 2014;37:3150–3156. doi: 10.2337/dc14-0195. PubMed DOI
Yin Q., Brameld J.M., Parr T., Murton A.J. Leucine and mTORc1 act independently to regulate 2-deoxyglucose uptake in L6 myotubes. Amino Acids. 2020;52:477–486. doi: 10.1007/s00726-020-02829-0. PubMed DOI
Lynch C.J., Adams S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014;10:723–736. doi: 10.1038/nrendo.2014.171. PubMed DOI PMC
Biswas D., Duffley L., Pulinilkunnil T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J. 2019;33:8711–8731. doi: 10.1096/fj.201802842RR. PubMed DOI
Newgard C.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15:606–614. doi: 10.1016/j.cmet.2012.01.024. PubMed DOI PMC
Wang T., Yao W., He Q., Shao Y., Zheng R., Huang F. L-leucine stimulates glutamate dehydrogenase activity and glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver. Anim. Nutr. 2018;4:329–337. doi: 10.1016/j.aninu.2017.12.002. PubMed DOI PMC
Binder E., Bermudez-Silva F.J., Andre C., Elie M., Romero-Zerbo S.Y., Leste-Lasserre T., Belluomo I., Duchampt A., Clark S., Aubert A., et al. Leucine supplementation protects from insulin resistance by regulating adiposity levels. PLoS ONE. 2013;8:e74705. doi: 10.1371/journal.pone.0074705. PubMed DOI PMC
Guo K., Yu Y.H., Hou J., Zhang Y. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus. Nutr. Metab. 2010;7:57. doi: 10.1186/1743-7075-7-57. PubMed DOI PMC
Hey P., Gow P., Testro A.G., Apostolov R., Chapman B., Sinclair M. Nutraceuticals for the treatment of sarcopenia in chronic liver disease. Clin. Nutr. ESPEN. 2021;41:13–22. doi: 10.1016/j.clnesp.2020.11.015. PubMed DOI
Leenders M., van Loon L.J. Leucine as a pharmaconutrient to prevent and treat sarcopenia and type 2 diabetes. Nutr. Rev. 2011;69:675–689. doi: 10.1111/j.1753-4887.2011.00443.x. PubMed DOI
Maykish A., Sikalidis A.K. Utilization of Hydroxyl-Methyl Butyrate, Leucine, Glutamine and Arginine Supplementation in Nutritional Management of Sarcopenia-Implications and Clinical Considerations for Type 2 Diabetes Mellitus Risk Modulation. J. Pers. Med. 2020;10:19. doi: 10.3390/jpm10010019. PubMed DOI PMC
Sikalidis A.K., Maykish A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship. Biomedicines. 2020;8:8. doi: 10.3390/biomedicines8010008. PubMed DOI PMC
Soares J.D.P., Howell S.L., Teixeira F.J., Pimentel G.D. Dietary Amino Acids and Immunonutrition Supplementation in Cancer-Induced Skeletal Muscle Mass Depletion: A Mini-Review. Curr. Pharm. Des. 2020;26:970–978. doi: 10.2174/1381612826666200218100420. PubMed DOI
Boulet M.M., Chevrier G., Grenier-Larouche T., Pelletier M., Nadeau M., Scarpa J., Prehn C., Marette A., Adamski J., Tchernof A. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. Am. J. Physiol. Endocrinol. Metab. 2015;309:E736–E746. doi: 10.1152/ajpendo.00231.2015. PubMed DOI
Lu J., Xie G., Jia W., Jia W. Insulin resistance and the metabolism of branched-chain amino acids. Front. Med. 2013;7:53–59. doi: 10.1007/s11684-013-0255-5. PubMed DOI
Green C.R., Wallace M., Divakaruni A.S., Phillips S.A., Murphy A.N., Ciaraldi T.P., Metallo C.M. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat. Chem. Biol. 2016;12:15–21. doi: 10.1038/nchembio.1961. PubMed DOI PMC
Crown S.B., Marze N., Antoniewicz M.R. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes. PLoS ONE. 2015;10:e0145850. doi: 10.1371/journal.pone.0145850. PubMed DOI PMC
Herman M.A., She P., Peroni O.D., Lynch C.J., Kahn B.B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 2010;285:11348–11356. doi: 10.1074/jbc.M109.075184. PubMed DOI PMC
Matthews D.E. Observations of branched-chain amino acid administration in humans. J. Nutr. 2005;135:1580S–1584S. doi: 10.1093/jn/135.6.1580S. PubMed DOI PMC
Gojda J., Waldauf P., Hruskova N., Blahutova B., Krajcova A., Urban T., Tuma P., Rasova K., Duska F. Lactate production without hypoxia in skeletal muscle during electrical cycling: Crossover study of femoral venous-arterial differences in healthy volunteers. PLoS ONE. 2019;14:e0200228. doi: 10.1371/journal.pone.0200228. PubMed DOI PMC
Everman S., Meyer C., Tran L., Hoffman N., Carroll C.C., Dedmon W.L., Katsanos C.S. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans. Am. J. Physiol. Endocrinol. Metab. 2016;311:E671–E677. doi: 10.1152/ajpendo.00120.2016. PubMed DOI PMC
Calbet J.A., MacLean D.A. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J. Nutr. 2002;132:2174–2182. doi: 10.1093/jn/132.8.2174. PubMed DOI
Nilsson M., Stenberg M., Frid A.H., Holst J.J., Bjorck I.M. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: The role of plasma amino acids and incretins. Am. J. Clin. Nutr. 2004;80:1246–1253. doi: 10.1093/ajcn/80.5.1246. PubMed DOI
Pedersen H.K., Gudmundsdottir V., Nielsen H.B., Hyotylainen T., Nielsen T., Jensen B.A., Forslund K., Hildebrand F., Prifti E., Falony G., et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–381. doi: 10.1038/nature18646. PubMed DOI
Liu R., Hong J., Xu X., Feng Q., Zhang D., Gu Y., Shi J., Zhao S., Liu W., Wang X., et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 2017;23:859–868. doi: 10.1038/nm.4358. PubMed DOI
Zeng S.L., Li S.Z., Xiao P.T., Cai Y.Y., Chu C., Chen B.Z., Li P., Li J., Liu E.H. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Sci. Adv. 2020;6:eaax6208. doi: 10.1126/sciadv.aax6208. PubMed DOI PMC
Blachier F., Mariotti F., Huneau J.F., Tome D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 2007;33:547–562. doi: 10.1007/s00726-006-0477-9. PubMed DOI
Davila A.M., Blachier F., Gotteland M., Andriamihaja M., Benetti P.H., Sanz Y., Tome D. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacol. Res. 2013;68:95–107. doi: 10.1016/j.phrs.2012.11.005. PubMed DOI
Reitzer L. Biosynthesis of Glutamate, Aspartate, Asparagine, L-Alanine, and D-Alanine. EcoSal Plus. 2004;1 doi: 10.1128/ecosalplus.3.6.1.3. PubMed DOI
Torrallardona D., Harris C.I., Coates M.E., Fuller M.F. Microbial amino acid synthesis and utilization in rats: Incorporation of 15N from 15NH4Cl into lysine in the tissues of germ-free and conventional rats. Br. J. Nutr. 1996;76:689–700. doi: 10.1079/BJN19960076. PubMed DOI
Metges C.C., El-Khoury A.E., Henneman L., Petzke K.J., Grant I., Bedri S., Pereira P.P., Ajami A.M., Fuller M.F., Young V.R. Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. Am. J. Physiol. 1999;277:E597–E607. doi: 10.1152/ajpendo.1999.277.4.E597. PubMed DOI
Metges C.C., Petzke K.J., Hennig U. Gas chromatography/combustion/isotope ratio mass spectrometric comparison of N-acetyl- and N-pivaloyl amino acid esters to measure 15N isotopic abundances in physiological samples: A pilot study on amino acid synthesis in the upper gastro-intestinal tract of minipigs. J. Mass Spectrom. 1996;31:367–376. doi: 10.1002/(SICI)1096-9888(199604)31:43.0.CO;2-V. PubMed DOI
Millward D.J., Forrester T., Ah-Sing E., Yeboah N., Gibson N., Badaloo A., Boyne M., Reade M., Persaud C., Jackson A. The transfer of 15N from urea to lysine in the human infant. Br. J. Nutr. 2000;83:505–512. doi: 10.1017/S0007114500000647. PubMed DOI
Neis E.P., Dejong C.H., Rensen S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015;7:2930–2946. doi: 10.3390/nu7042930. PubMed DOI PMC
Metges C.C. Contribution of microbial amino acids to amino acid homeostasis of the host. J. Nutr. 2000;130:1857S–1864S. doi: 10.1093/jn/130.7.1857S. PubMed DOI
Sridharan G.V., Choi K., Klemashevich C., Wu C., Prabakaran D., Pan L.B., Steinmeyer S., Mueller C., Yousofshahi M., Alaniz R.C., et al. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nat. Commun. 2014;5:5492. doi: 10.1038/ncomms6492. PubMed DOI
Smith E.A., Macfarlane G.T. Enumeration of human colonic bacteria producing phenolic and indolic compounds: Effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 1996;81:288–302. doi: 10.1111/j.1365-2672.1996.tb04331.x. PubMed DOI
Dai Z.L., Wu G., Zhu W.Y. Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Front. Biosci. 2011;16:1768–1786. doi: 10.2741/3820. PubMed DOI
Allison C., Macfarlane G.T. Influence of pH, nutrient availability, and growth rate on amine production by Bacteroides fragilis and Clostridium perfringens. Appl. Environ. Microbiol. 1989;55:2894–2898. doi: 10.1128/aem.55.11.2894-2898.1989. PubMed DOI PMC
Davila A.M., Blachier F., Gotteland M., Andriamihaja M., Benetti P.H., Sanz Y., Tome D. Re-print of “Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host”. Pharmacol. Res. 2013;69:114–126. doi: 10.1016/j.phrs.2013.01.003. PubMed DOI
Aguirre M., Eck A., Koenen M.E., Savelkoul P.H., Budding A.E., Venema K. Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Res. Microbiol. 2016;167:114–125. doi: 10.1016/j.resmic.2015.09.006. PubMed DOI
Kaiser J.C., Heinrichs D.E. Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. mBio. 2018;9:e01188-18. doi: 10.1128/mBio.01188-18. PubMed DOI PMC
Zhang Y.M., Rock C.O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 2008;6:222–233. doi: 10.1038/nrmicro1839. PubMed DOI
Scully S.M., Orlygsson J. Branched-chain amino acid catabolism of Thermoanaerobacter pseudoethanolicus reveals potential route to branched-chain alcohol formation. Extremophiles. 2020;24:121–133. doi: 10.1007/s00792-019-01140-5. PubMed DOI
Sun Y., Meng Q., Zhang Y., Gao H. Derepression of bkd by the FadR loss dictates elevated production of BCFAs and isoleucine starvation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020;1865:158577. doi: 10.1016/j.bbalip.2019.158577. PubMed DOI
David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC
Shortt C., Hasselwander O., Meynier A., Nauta A., Fernandez E.N., Putz P., Rowland I., Swann J., Turk J., Vermeiren J., et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur. J. Nutr. 2018;57:25–49. doi: 10.1007/s00394-017-1546-4. PubMed DOI PMC
Ottosson F., Brunkwall L., Ericson U., Nilsson P.M., Almgren P., Fernandez C., Melander O., Orho-Melander M. Connection Between BMI-Related Plasma Metabolite Profile and Gut Microbiota. J. Clin. Endocrinol. Metab. 2018;103:1491–1501. doi: 10.1210/jc.2017-02114. PubMed DOI
Org E., Blum Y., Kasela S., Mehrabian M., Kuusisto J., Kangas A.J., Soininen P., Wang Z., Ala-Korpela M., Hazen S.L., et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017;18:70. doi: 10.1186/s13059-017-1194-2. PubMed DOI PMC
Wang F., Wan Y., Yin K., Wei Y., Wang B., Yu X., Ni Y., Zheng J., Huang T., Song M., et al. Lower Circulating Branched-Chain Amino Acid Concentrations Among Vegetarians are Associated with Changes in Gut Microbial Composition and Function. Mol. Nutr. Food Res. 2019;63:e1900612. doi: 10.1002/mnfr.201900612. PubMed DOI
Mesnage R., Grundler F., Schwiertz A., Le Maho Y., Wilhelmi de Toledo F. Changes in human gut microbiota composition are linked to the energy metabolic switch during 10 d of Buchinger fasting. J. Nutr. Sci. 2019;8:e36. doi: 10.1017/jns.2019.33. PubMed DOI PMC
Zhang L., Yue Y., Shi M., Tian M., Ji J., Liao X., Hu X., Chen F. Dietary Luffa cylindrica (L.) Roem promotes branched-chain amino acid catabolism in the circulation system via gut microbiota in diet-induced obese mice. Food Chem. 2020;320:126648. doi: 10.1016/j.foodchem.2020.126648. PubMed DOI
Chen H., Nie Q., Hu J., Huang X., Yin J., Nie S. Multiomics Approach to Explore the Amelioration Mechanisms of Glucomannans on the Metabolic Disorder of Type 2 Diabetic Rats. J. Agric. Food Chem. 2021;69:2632–2645. doi: 10.1021/acs.jafc.0c07871. PubMed DOI
Ridaura V.K., Faith J.J., Rey F.E., Cheng J., Duncan A.E., Kau A.L., Griffin N.W., Lombard V., Henrissat B., Bain J.R., et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. doi: 10.1126/science.1241214. PubMed DOI PMC
Yue S.J., Liu J., Wang A.T., Meng X.T., Yang Z.R., Peng C., Guan H.S., Wang C.Y., Yan D. Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids. Am. J. Physiol. Endocrinol. Metab. 2019;316:E73–E85. doi: 10.1152/ajpendo.00256.2018. PubMed DOI
Wu W., Zhang L., Xia B., Tang S., Liu L., Xie J., Zhang H. Bioregional Alterations in Gut Microbiome Contribute to the Plasma Metabolomic Changes in Pigs Fed with Inulin. Microorganisms. 2020;8:111. doi: 10.3390/microorganisms8010111. PubMed DOI PMC
Sun Y., He Z., Li J., Gong S., Yuan S., Li T., Ning N., Xing L., Zhang L., Chen F., et al. Gentamicin Induced Microbiome Adaptations Associate With Increased BCAA Levels and Enhance Severity of Influenza Infection. Front. Immunol. 2020;11:608895. doi: 10.3389/fimmu.2020.608895. PubMed DOI PMC
Healthy microbiome - a mere idea or a sound concept?