Effects of Lactiplantibacillus plantarum and Lacticaseibacillus paracasei supplementation on the faecal metabolome in children with coeliac disease autoimmunity: a randomised, double-blinded placebo-controlled clinical trial
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37485388
PubMed Central
PMC10359497
DOI
10.3389/fnut.2023.1183963
Knihovny.cz E-zdroje
- Klíčová slova
- Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, NMR, coeliac disease, gut metabolome, probiotics,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Coeliac disease is a lifelong immune-mediated enteropathy manifested as gluten intolerance in individuals carrying specific human leukocyte antigen (HLA) molecules. Other factors than genetics and gluten intake, however, may play a role in triggering the disease. The gut internal environment is thought to be one of these potential contributing factors, and it can be influenced throughout life. METHODS: We examine the impact of Lactiplantibacillus plantarum HEAL9 and Lacticaseibacillus paracasei 8700:2 supplementation on the faecal metabolome in genetically predisposed children having tissue transglutaminase autoantibodies, i.e., coeliac disease autoimmunity. Probiotic strains were selected based on their beneficial properties, including mucosal permeability and immune modulation effects. The intervention group (n = 40) and control group (n = 38) took the probiotics or placebo daily for 6 months in a double-blinded randomised trial. Faecal samples were collected at baseline and after 3 and 6 months and analysed using the 1H NMR for metabolome. The incorporation of 16S rRNA sequencing as a supportive dataset complemented the analysis of the metabolome data. RESULTS: During the 6 months of intervention, the stool concentrations of 4-hydroxyphenylacetate increased in the intervention group as compared to controls, whereas concentrations of threonine, valine, leucine, isoleucine, methionine, phenylalanine, aspartate, and fumarate decreased. Additionally, a noteworthy effect on the glycine, serine, and threonine metabolic pathway has been observed. CONCLUSION: The findings suggest a modest yet significant impact of the probiotics on the faecal metabolome, primarily influencing proteolytic processes in the gut. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT03176095.
Department of Clinical Sciences Lund University Malmö Sweden
Department of Food Science Czech University of Life Sciences Prague Prague Czechia
Zobrazit více v PubMed
Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, et al. . Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. (1997) 3:797–801. 10.1038/nm0797-797 PubMed DOI
Ludvigsson JF, Rubio-Tapia A, van Dyke CT, Melton JL, Zinsmeister AR, Lahr BD, et al. . Increasing incidence of celiac disease in a North American population. Am J Gastroenterol. (2013) 108:818–24. 10.1038/ajg.2013.60 PubMed DOI PMC
Bergman D, King J, Lebwohl B, Clements MS, Roelstraete B, Kaplan GG, et al. . Two waves of coeliac disease incidence in Sweden: a nationwide population-based cohort study from 1990 to 2015. Gut. (2021) 71:gutjnl-2021-324209. 10.1136/gutjnl-2021-324209 PubMed DOI PMC
Valitutti F, Cucchiara S, Fasano A. Celiac disease and the microbiome. Nutrients. (2019) 11:2403. 10.3390/nu11102403 PubMed DOI PMC
Galipeau HJ, McCarville JL, Huebener S, Litwin O, Meisel M, Jabri B, et al. . Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am J Pathol. (2015) 185:2969–82. 10.1016/j.ajpath.2015.07.018 PubMed DOI PMC
Sellitto M, Bai G, Serena G, Fricke WF, Sturgeon C, Gajer P, et al. . Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS ONE. (2012) 7:e33387. 10.1371/journal.pone.0033387 PubMed DOI PMC
Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. (2008) 62:264–9. 10.1136/jcp.2008.061366 PubMed DOI
Sánchez E, De Palma G, Capilla A, Nova E, Pozo T, Castillejo G, et al. . Influence of environmental and genetic factors linked to celiac disease risk on infant gut colonization by bacteroides species. Appl Environ Microbiol. (2011) 77:5316–23. 10.1128/AEM.00365-11 PubMed DOI PMC
Cristofori F, Indrio F, Miniello V, De Angelis M, Francavilla R. Probiotics in celiac disease. Nutrients. (2018) 10:1824. 10.3390/nu10121824 PubMed DOI PMC
Cortés P, Harris DM Bi Y. Systematic approach to celiac disease: a comprehensive review for primary providers. Roman J Int Med. (2022) 60:93–102. 10.2478/rjim-2022-0002 PubMed DOI
Marasco G, Cirota GG, Rossini B, Lungaro L, Di Biase AR, Colecchia A, et al. . Probiotics, prebiotics and other dietary supplements for gut microbiota modulation in celiac disease patients. Nutrients. (2020) 12:2674. 10.3390/nu12092674 PubMed DOI PMC
Pecora F, Persico F, Gismondi P, Fornaroli F, Iuliano S, de'Angelis GL, et al. . Gut microbiota in celiac disease: is there any role for probiotics? Front Immunol. (2020) 11:957. 10.3389/fimmu.2020.00957 PubMed DOI PMC
Primec M, Klemenak M, Di Gioia D, Aloisio I, Bozzi Cionci N, Quagliariello A, et al. . Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-α and short-chain fatty acids. Clin Nutr. (2019) 38:1373–81. 10.1016/j.clnu.2018.06.931 PubMed DOI
Olshan KL, Leonard MM, Serena G, Zomorrodi AR, Fasano A. Gut microbiota in celiac disease: microbes, metabolites, pathways and therapeutics. Expert Rev Clin Immunol. (2020) 16:1075–92. 10.1080/1744666X.2021.1840354 PubMed DOI PMC
Håkansson Å, Andrén Aronsson C, Brundin C, Oscarsson E, Molin G, Agardh D. Effects of Lactobacillus plantarum and Lactobacillus paracasei on the peripheral immune response in children with celiac disease autoimmunity: a randomized, double-blind, placebo-controlled clinical trial. Nutrients. (2019) 11:925. 10.3390/nu11081925 PubMed DOI PMC
Oscarsson E, Håkansson Å, Andrén Aronsson C, Molin G, Agardh D. Effects of probiotic bacteria lactobacillaceae on the gut microbiota in children with celiac disease autoimmunity: a placebo-controlled and randomized clinical trial. Front Nutri. (2021) 8:771. 10.3389/fnut.2021.680771 PubMed DOI PMC
Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H, et al. . A review on human fecal metabolomics: methods, applications and the human fecal metabolome database. Anal Chim Acta. (2018) 1030:1–24. 10.1016/j.aca.2018.05.031 PubMed DOI
Leonard MM, Karathia H, Pujolassos M, Troisi J, Valitutti F, Subramanian P, et al. . Multi-omics analysis reveals the influence of genetic and environmental risk factors on developing gut microbiota in infants at risk of celiac disease. Microbiome. (2020) 8:906. 10.1186/s40168-020-00906-w PubMed DOI PMC
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. . The microbial metabolites, short-chain fatty acids, regulate colonic treg cell. Homeos Sci. (2013) 341:569–73. 10.1126/science.1241165 PubMed DOI PMC
Schippa S, Iebba V, Barbato M, Di Nardo G, Totino V, Checchi M, et al. . A distinctive “microbial signature” in celiac pediatric patients. BMC Microbiol. (2010) 10:175. 10.1186/1471-2180-10-175 PubMed DOI PMC
Forsberg G, Fahlgren A, Horstedt P, Hammarstrom S, Hernell O, Hammarstrom ML. Presence of bacteria and innate immunity of intestinal epithelium in childhood celiac disease. Am J Gastroenterol. (2004) 99:894–904. 10.1111/j.1572-0241.2004.04157.x PubMed DOI
Tjellström B, Lars Stenhammar, Lotta Högberg, Fälth-Magnusson K, Magnusson KE, Tore Midtvedt, et al. . Gut microflora associated characteristics in children with celiac disease. Am J Gastroenterol. (2005) 100:2784–8. 10.1111/j.1572-0241.2005.00313.x PubMed DOI
Makinder M, Kassara M, Karanikolou A, Biskou O, Buchanan E, Cardigan T, et al. . The metabolic activity of the gut microbiota and the impact of gluten free diet in children with coeliac disease. Proceedings of the Nutrition Society. (2014) 73:196. 10.1017/S0029665114000196 DOI
Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. (2003) 81:247–65. 10.1046/j.1440-1711.2003.t01-1-01177.x PubMed DOI
Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients. (2018) 10:1564. 10.3390/nu10111564 PubMed DOI PMC
Önning G, Hillman M, Hedin M, Montelius C, Eriksson J, Ahrné S, et al. . Intake of Lactiplantibacillus plantarum HEAL9 reduces the inflammatory markers soluble fractalkine and CD163 during acute stress: a randomized, double blind, placebo-controlled study. Physiol Behav. (2020) 225:113083. 10.1016/j.physbeh.2020.113083 PubMed DOI
Rask C, Adlerberth I, Berggren A, Ahrén IL, Wold AE. Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli. Clin Exp Immunol. (2013) 172:321–32. 10.1111/cei.12055 PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. (2016) 13:581–3. 10.1038/nmeth.3869 PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. . The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. (2012) 41:D590–6. 10.1093/nar/gks1219 PubMed DOI PMC
Jaimes JD, Slavíčková A, Hurych J, Cinek O, Nichols B, Vodolánová L, et al. . Stool metabolome-microbiota evaluation among children and adolescents with obesity, overweight, and normal-weight using 1H NMR and 16S rRNA gene profiling. Ishaq SL, editor. PLOS ONE. (2021) 16:e0247378. 10.1371/journal.pone.0247378 PubMed DOI PMC
Lamichhane S, Yde CC, Forssten S, Ouwehand AC, Saarinen M, Jensen HM, et al. . Impact of dietary polydextrose fiber on the human gut metabolome. J Agric Food Chem. (2014) 62:9944–51. 10.1021/jf5031218 PubMed DOI
Bervoets L, Ippel JH, Smolinska A, van Best N, Savelkoul PHM, Mommers MAH, et al. . Practical and robust NMR-based metabolic phenotyping of gut health in early life. J Proteome Res. (2021) 20:5079–87. 10.1021/acs.jproteome.1c00617 PubMed DOI PMC
Cui M, Trimigno A, Aru V, Khakimov B, Engelsen SB. Human Faecal 1H NMR Metabolomics: evaluation of solvent and sample processing on coverage and reproducibility of signature metabolites. Anal Chem. (2020) 92:9546–55. 10.1021/acs.analchem.0c00606 PubMed DOI
Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. (2006) 78:4281–90. 10.1021/ac051632c PubMed DOI
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Software. (2017) 82:13. 10.18637/jss.v082.i13 DOI
R Core Team . R: A Language and Environment for Statistical Computing. (2022). Available online at: https://www.r-project.org/
Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nuc Acids Res. (2009) 37:W652–60. 10.1093/nar/gkp356 PubMed DOI PMC
Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, et al. . MetaboAnalyst 50: narrowing the gap between raw spectra and functional insights. Nuc Acids Res. (2021) 49:W127–33. 10.1093/nar/gkab382 PubMed DOI PMC
Roager HM, Dragsted LO. Diet-derived microbial metabolites in health and disease. Nutri Bullet. (2019) 44:216–27. 10.1111/nbu.12396 DOI
Jackson MI, Jewell DE. Balance of saccharolysis and proteolysis underpins improvements in stool quality induced by adding a fiber bundle containing bound polyphenols to either hydrolyzed meat or grain-rich foods. Gut Microbes. (2018) 10:298–320. 10.1080/19490976.2018.1526580 PubMed DOI PMC
Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. (2011) 56:184–96. 10.1002/mnfr.201100542 PubMed DOI
Hamer HM, De Preter V, Windey K, Verbeke K. Functional analysis of colonic bacterial metabolism: relevant to health? Am J Physiol Gastroint Liver Physiol. (2012) 302:G1–9. 10.1152/ajpgi.00048.2011 PubMed DOI PMC
Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, et al. . Rapid and non-invasive metabonomic characterization of inflammatory bowel disease. J Proteome Res. (2007) 6:546–51. 10.1021/pr060470d PubMed DOI
Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, et al. . Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. (2011) 11:219. 10.1186/1471-2180-11-219 PubMed DOI PMC
De Angelis M, Vannini L, Di Cagno R, Cavallo N, Minervini F, Francavilla R, et al. . Salivary and fecal microbiota and metabolome of celiac children under gluten-free diet. Int J Food Microbiol. (2016) 239:125–32. 10.1016/j.ijfoodmicro.2016.07.025 PubMed DOI
Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin. Trends Food Sci Technol. (2016) 57:213–32. 10.1016/j.tifs.2016.08.011 DOI
van Passel MWJ, Kant R, Zoetendal EG, Plugge CM, Derrien M, Malfatti SA, et al. . The genome of akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE. (2011) 6:e16876. 10.1371/journal.pone.0016876 PubMed DOI PMC
Trastoy B, Naegeli A, Anso I, Sjögren J, Guerin ME. Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila. Nature Commun. (2020) 11:8696. 10.1038/s41467-020-18696-y PubMed DOI PMC
Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci. (2006) 11:164–70. 10.1016/j.cocis.2005.11.001 DOI
Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. (2020) 69:2232–43. 10.1136/gutjnl-2020-322260 PubMed DOI PMC
Gojda J, Cahova M. Gut microbiota as the link between elevated BCAA serum levels and insulin resistance. Biomolecules. (2021) 11:1414. 10.3390/biom11101414 PubMed DOI PMC
Zhao H, Jiang Z, Chang X, Xue H, Yahefu W, Zhang X. 4-hydroxyphenylacetic acid prevents acute APAP-induced liver injury by increasing phase II and antioxidant enzymes in mice. Front Pharmacol. (2018) 9:653. 10.3389/fphar.2018.00653 PubMed DOI PMC
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. . Enterotypes of the human gut microbiome. Nature. (2011) 473:174–80. 10.1038/nature09944 PubMed DOI PMC
Vieira-Silva S, Falony G, Darzi Y, Lima-Mendez G, Garcia Yunta R, Okuda S, et al. . Species–function relationships shape ecological properties of the human gut microbiome. Nat Microbiol. (2016) 1:88. 10.1038/nmicrobiol.2016.88 PubMed DOI
Zafar H, Saier MH. Gut Bacteroides species in health and disease. Gut Microbes. (2021) 13:1–20. 10.1080/19490976.2020.1848158 PubMed DOI PMC
Phytochemical S-methyl-L-cysteine sulfoxide from Brassicaceae: a key to health or a poison for bees?
ClinicalTrials.gov
NCT03176095