Phytochemical S-methyl-L-cysteine sulfoxide from Brassicaceae: a key to health or a poison for bees?

. 2024 Dec ; 14 (12) : 240219. [epub] 20241211

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39657820

Grantová podpora
Ministry of Agriculture of the Czech Republic
Ministry of Education, Youth, and Sports of the Czech Republic

Intensive agricultural practices impact the health and nutrition of pollinators like honey bees (Apis mellifera). Rapeseed (Brassica napus L.) is widely cultivated, providing diverse nutrients and phytochemicals, including S-methyl-L-cysteine sulfoxide (SMCSO). While the nutritional impact of rapeseed on bees is known, SMCSO's effects remain unexplored. We examined SMCSO and its related metabolites-3-methylthiolactic acid sulfoxide and N-acetyl-S-methyl-L-cysteine sulfoxide-analysing their seasonal fluctuations, colony variations and distribution in body parts. Our findings showed that these compounds in bee gut vary among colonies, possibly due to the dietary preferences, and are highly concentrated in bodies during the summer. They are distributed differently within bee bodies, with higher concentrations in the abdomens of foragers compared with nurses. Administration of SMCSO in a laboratory setting showed no immediate toxic effects but significantly boosted bees' antioxidant capacity. Long-term administration decreased bee body weight, particularly in the thorax and head, and altered amino acid metabolism. SMCSO is found in the nectar and pollen of rapeseed flowers and highly accumulates in rapeseed honey compared with other types of honey. This study reveals the dual impact of SMCSO on bee health, providing a basis for further ecological and physiological research to enhance bee health and colony sustainability.

Zobrazit více v PubMed

Potts SG, et al. . 2016. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229. (10.1038/nature20588) PubMed DOI

Tuerlings T, Buydens L, Smagghe G, Piot N. 2022. The impact of mass-flowering crops on bee pathogen dynamics. Int. J. Parasitol. Parasites Wildl. 18, 135–147. (10.1016/j.ijppaw.2022.05.001) PubMed DOI PMC

Schmidt LS, Schmidt JO, Rao H, Wang W, Xu L. 1995. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88, 1591–1595. (10.1093/jee/88.6.1591) DOI

McAulay MK, Forrest JRK. 2019. How do sunflower pollen mixtures affect survival of queenless microcolonies of bumblebees (Bombus impatiens)? Arthropod Plant Interact. 13, 517–529. (10.1007/s11829-018-9664-3) DOI

Requier F, Odoux JF, Tamic T, Moreau N, Henry M, Decourtye A, Bretagnolle V. 2015. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 25, 881–890. (10.1890/14-1011.1) PubMed DOI

Dolezal AG, St Clair AL, Zhang G, Toth AL, O’Neal ME. 2019. Native habitat mitigates feast-famine conditions faced by honey bees in an agricultural landscape. Proc. Natl Acad. Sci. USA 116, 25147–25155. (10.1073/pnas.1912801116) PubMed DOI PMC

Eurostat . 2024. Farms and hectares by type of crops, utilised agricultural area, economic size and NUTS 2 regions. See https://ec.europa.eu/eurostat/databrowser/view/ef_lus_allcrops__custom_11531287/default/table?lang=en.

Williams IH, Martin AP, White RP. 1986. The pollination requirements of oil-seed rape (Brassica napus L.). J. Agric. Sci. 106, 27–30. (10.1017/S0021859600061670) DOI

Abrol DP. 2007. Honeybees and rapeseed: a pollinator-plant interaction. Adv. Bot. Res. 45, 337–367. (10.1016/S0065-2296(07)45012-1) DOI

Westcott L, Nelson D. 2001. Canola pollination: an update. Bee World 82, 115–129. (10.1080/0005772X.2001.11099514) DOI

Cook SM, Awmack CS, Murray DA, Williams IH. 2003. Are honey bees’ foraging preferences affected by pollen amino acid composition? Ecol. Entomol. 28, 622–627. (10.1046/j.1365-2311.2003.00548.x) DOI

Maldini M, Foddai M, Natella F, Petretto GL, Rourke JP, Chessa M, Pintore G. 2017. Identification and quantification of glucosinolates in different tissues of Raphanus raphanistrum by liquid chromatography tandem-mass spectrometry. J. Food Compost. Anal. 61, 20–27. (10.1016/j.jfca.2016.06.002) DOI

Galanakis CM. 2019. Glucosinolates: properties, recovery, and applications. Cambridge, MA: Academic Press. (10.1016/C2018-0-00955-X) DOI

Nanetti A, Ugolini L, Cilia G, Pagnotta E, Malaguti L, Cardaio I, Matteo R, Lazzeri L. 2021. Seed meals from Brassica nigra and Eruca sativa control artificial Nosema ceranae infections in Apis mellifera. Microorganisms 9, 1–19. (10.3390/microorganisms9050949) PubMed DOI PMC

Ugolini L, et al. . 2021. Glucosinolate bioactivation by Apis mellifera workers and its impact on Nosema ceranae infection at the colony level. Biomolecules 11, 1–22. (10.3390/biom11111657) PubMed DOI PMC

Stevenson PC. 2020. For antagonists and mutualists: the paradox of insect toxic secondary metabolites in nectar and pollen. Phytochem. Rev. 19, 603–614. (10.1007/s11101-019-09642-y) DOI

Palmer-Young EC, Sadd BM, Stevenson PC, Irwin RE, Adler LS. 2016. Bumble bee parasite strains vary in resistance to phytochemicals. Sci. Rep. 6, 37087. (10.1038/srep37087) PubMed DOI PMC

Glavinic U, Blagojevic J, Ristanic M, Stevanovic J, Lakic N, Mirilovic M, Stanimirovic Z. 2022. Use of thymol in Nosema ceranae control and health improvement of infected honey bees. Insects 13, 574. (10.3390/insects13070574) PubMed DOI PMC

Costa C, Lodesani M, Maistrello L. 2010. Effect of thymol and resveratrol administered with candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions. Apidologie 41, 141–150. (10.1051/apido/2009070) DOI

Canché-Collí C, Estrella-Maldonado H, Medina-Medina LA, Moo-Valle H, Calvo-Irabien LM, Chan-Vivas E, Rodríguez R, Canto A. 2021. Effect of yeast and essential oil-enriched diets on critical determinants of health and immune function in Africanized Apis mellifera. PeerJ 9, e12164. (10.7717/peerj.12164) PubMed DOI PMC

Stevenson PC, Nicolson SW, Wright GA. 2017. Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct. Ecol. 31, 65–75. (10.1111/1365-2435.12761) DOI

Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, Borland AM, Stevenson PC. 2013. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339, 1202–1204. (10.1126/science.1228806) PubMed DOI PMC

Qiao J, Zhang Y, Haubruge E, Wang K, El-Seedi HR, Dong J, Xu X, Zhang H. 2024. New insights into bee pollen: nutrients, phytochemicals, functions and wall-disruption. Food Res. Int. 178, 113934. (10.1016/j.foodres.2024.113934) PubMed DOI

Gao J, Zhao G, Yu Y, Liu F. 2010. High concentration of nectar quercetin enhances worker resistance to queen’s signals in bees. J. Chem. Ecol. 36, 1241–1243. (10.1007/s10886-010-9866-3) PubMed DOI

Edmands WMB, Gooderham NJ, Holmes E, Mitchell SC. 2013. S-methyl-l-cysteine sulphoxide: the cinderella phytochemical. Toxicol. Res. (Camb.) 2, 11–22. (10.1039/C2TX20030A) DOI

Hill CR, Haoci Liu A, McCahon L, Zhong L, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Blekkenhorst LC. 2023. S-methyl cysteine sulfoxide and its potential role in human health: a scoping review. Crit. Rev. Food Sci. Nutr. 1–14. (10.1080/10408398.2023.2267133) PubMed DOI

Traka MH, et al. . 2019. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention: results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. Am. J. Clin. Nutr. 109, 1133–1144. (10.1093/ajcn/nqz012) PubMed DOI PMC

Kumari K, Augusti KT. 2002. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn.) as compared to standard drugs in alloxan diabetic rats. Indian J. Exp. Biol. 40, 1005–1009. PubMed

Kumari K, Augusti KT. 2007. Lipid lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn. in high cholesterol diet fed rats. J. Ethnopharmacol. 109, 367–371. (10.1016/j.jep.2006.07.045) PubMed DOI

Lee S, et al. . 2022. 1H NMR profiling of honey bee bodies revealed metabolic differences between summer and winter bees. Insects 13, 1–13. (10.3390/insects13020193) PubMed DOI PMC

Page RE, Peng CYS. 2001. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711. (10.1016/s0531-5565(00)00236-9) PubMed DOI

O’Keefe SJD, et al. . 2015. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342. (10.1038/ncomms7342) PubMed DOI PMC

Posma JM, et al. . 2017. Integrated analytical and statistical two-dimensional spectroscopy strategy for metabolite identification: application to dietary biomarkers. Anal. Chem. 89, 3300–3309. (10.1021/acs.analchem.6b03324) PubMed DOI PMC

Bellec L, Seimandi‐Corda G, Menacer K, Trabalon M, Ollivier J, Lunel C, Faure S, Cortesero A, Hervé M. 2022. Factors driving the within‐plant patterns of resource exploitation in a herbivore. Funct. Ecol. 36, 1700–1712. (10.1111/1365-2435.14058) DOI

Ourry M, et al. . 2018. Influence of belowground herbivory on the dynamics of root and rhizosphere microbial communities. Front. Ecol. Evol. 6, 371108. (10.3389/fevo.2018.00091) DOI

Liu Z, Qiao D, Li H, Chen L. 2024. S-methyl-L-cysteine sulfoxide as a characteristic marker for rape royal jelly: insights from untargeted and targeted metabolomic analysis. Food Chem. 437, 137880. (10.1016/j.foodchem.2023.137880) PubMed DOI

Fluri P, Lüscher M, Wille H, Gerig L. 1982. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 28, 61–68. (10.1016/0022-1910(82)90023-3) DOI

Mattila HR, Harris JL, Otis GW. 2001. Timing of production of winter bees in honey bee (Apis mellifera) colonies. Insectes Soc. 48, 88–93. (10.1007/PL00001764) DOI

Edmands WMB, Beckonert OP, Stella C, Campbell A, Lake BG, Lindon JC, Holmes E, Gooderham NJ. 2011. Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. J. Proteome Res. 10, 4513–4521. (10.1021/pr200326k) PubMed DOI

Mitchell SC, Smith RL, Waring RH, Aldington GF. 1984. The metabolism of S-methyl-L-cysteine in man. Xenobiotica 14, 767–779. (10.3109/00498258409151475) PubMed DOI

Waring RH, Harris RM, Steventon GB, Mitchell SC. 2003. Degradation to sulphate of S-methyl-L-cysteine sulphoxide and S-carboxymethyl-L-cysteine sulphoxide in man. Drug Metabol. Drug Interact. 19, 241–255. (10.1515/dmdi.2003.19.4.241) PubMed DOI

Nakamura YK, Kawai K, Furukawa H, Matsuo T, Shimoi K, Tomita I, Nakamura Y. 1997. Suppressing effects of S-methyl methanethiosulfonate and diphenyl disulfide on mitomycin C-induced somatic mutation and recombination in Drosophila melanogaster and micronuclei in mice. Mutat. Res. 385, 41–46. (10.1016/s0921-8777(97)00033-5) PubMed DOI

Pospiech M, Ljasovská S, Titěra D, Kružík V, Javůrková Z, Tremlová B. 2020. Pollen diversity in honeys of the Czech Republic in the 2019 season. Potr. S. J. F. Sci. 14, 1115–1123. (10.5219/1504) DOI

Czech Statistical Office . 2023. Harvest estimates: September 2023. Table 2: production estimates of selected crops, comparison with a five-year and a ten-year average. See https://www.czso.cz/csu/czso/ari/harvest-estimates-september-2023.

Montaño A, Beato VM, Mansilla F, Orgaz F. 2011. Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum l.) grown in Andalusia, Spain. J. Agric. Food Chem. 59, 1301–1307. (10.1021/jf104494j) PubMed DOI

Kubec R, Svobodová M, Velíšek J. 2001. Gas-chromatographic determination of S-methylcysteine sulfoxide in cruciferous vegetables. Eur. Food Res. Technol. 213, 386–388. (10.1007/s002170100384) DOI

Griffiths DW, Smith WHM. 1989. Variation in S-methyl cysteine sulphoxide concentration with harvest date in forage rape (Brassica napus). J. Sci. Food Agric. 47, 249–252. (10.1002/jsfa.2740470212) DOI

Hervé MR, Delourme R, Gravot A, Marnet N, Berardocco S, Cortesero AM. 2014. Manipulating feeding stimulation to protect crops against insect pests? J. Chem. Ecol. 40, 1220–1231. (10.1007/s10886-014-0517-y) PubMed DOI

Couvillon MJ, Riddell Pearce FC, Accleton C, Fensome KA, Quah SKL, Taylor EL, Ratnieks FLW. 2015. Honey bee foraging distance depends on month and forage type. Apidologie 46, 61–70. (10.1007/s13592-014-0302-5) DOI

Kunc M, Dobeš P, Hurychová J, Vojtek L, Poiani SB, Danihlík J, Havlík J, Titěra D, Hyršl P. 2019. The year of the honey bee (Apis mellifera L.) with respect to its physiology and immunity: a search for biochemical markers of longevity. Insects 10, 1–16. (10.3390/insects10080244) PubMed DOI PMC

Winston ML. 1987. The biology of the honey bee. Cambridge, MA: Harvard University Press.

Keller I, Fluri P, Imdorf A. 2005. Pollen nutrition and colony development in honey bees—part II. Bee World 86, 27–34. (10.1080/0005772X.2005.11099650) DOI

Friedt W, Snowdon R. 2010. Oil crops. New York, NY: Springer. (10.1007/978-0-387-77594-4) DOI

Griffiths DW, Macfarlane‐Smith WH, Boag B. 1994. The effect of cultivar, sample date and grazing on the concentration of S-methylcysteine sulphoxide in oilseed and forage rapes (Brassica napus). J. Sci. Food Agric. 64, 283–288. (10.1002/jsfa.2740640307) DOI

Horníčková J, Kubec R, Velíšek J, Cejpek K, Ovesná J, Stavělíková H. 2011. Changes of S-alk(en)ylcysteine sulfoxide levels during the growth of different garlic morphotypes. Czech J. Food Sci. 29, 373–381. (10.17221/3/2011-CJFS) DOI

Bernklau E, Arathi HS. 2023. Seasonal patterns of beneficial phytochemical availability in honey and stored pollen from honey bee colonies in large apiaries. J. Econ. Entomol. 116, 1069–1077. (10.1093/jee/toad096) PubMed DOI

Crailsheim K, Hrassnigg N, Stabentheiner A. 1996. Diurnal behavioural differences in forager and nurse honey bees (Apis mellifera carnica Pollm). Apidologie 27, 235–244. (10.1051/apido:19960406) DOI

Neukirch A. 1982. Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J. Comp. Physiol. B 146, 35–40. (10.1007/BF00688714) DOI

Gmeinbauer R, Crailsheim K. 1993. Glucose utilization during flight of honeybee (Apis mellifera) workers, drones and queens. J. Insect Physiol. 39, 959–967. (10.1016/0022-1910(93)90005-C) DOI

Harano K, Nakamura J. 2016. Nectar loads as fuel for collecting nectar and pollen in honeybees: adjustment by sugar concentration. J. Comp. Physiol. A 202, 435–443. (10.1007/s00359-016-1088-x) PubMed DOI

Rodney S, Purdy J. 2020. Dietary requirements of individual nectar foragers, and colony-level pollen and nectar consumption: a review to support pesticide exposure assessment for honey bees. Apidologie 51, 163–179. (10.1007/s13592-019-00694-9) DOI

Blatt J, Roces F. 2001. Haemolymph sugar levels in foraging honeybees (Apis mellifera carnica): dependence on metabolic rate and in vivo measurement of maximal rates of trehalose synthesis. J. Exp. Biol. 204, 2709–2716. (10.1242/jeb.204.15.2709) PubMed DOI

Nicolson SW, Human H, Pirk CWW. 2022. Honey bees save energy in honey processing by dehydrating nectar before returning to the nest. Sci. Rep. 12, 16224. (10.1038/s41598-022-20626-5) PubMed DOI PMC

Corby-Harris V, Snyder L, Meador C. 2019. Fat body lipolysis connects poor nutrition to hypopharyngeal gland degradation in Apis mellifera. J. Insect Physiol. 116, 1–9. (10.1016/j.jinsphys.2019.04.001) PubMed DOI

Brodschneider R, Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie 41, 278–294. (10.1051/apido/2010012) DOI

Scofield HN, Mattila HR. 2015. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS One 10, e0121731. (10.1371/journal.pone.0121731) PubMed DOI PMC

Lemos LIC, et al. . 2021. S-methyl cysteine sulfoxide mitigates histopathological damage, alleviate oxidative stress and promotes immunomodulation in diabetic rats. J. Complement. Integr. Med. 18, 719–725. (10.1515/jcim-2020-0220) PubMed DOI

Đorđievski S, Vukašinović EL, Čelić TV, Pihler I, Kebert M, Kojić D, Purać J. 2023. Spermidine dietary supplementation and polyamines level in reference to survival and lifespan of honey bees. Sci. Rep. 13, 4329. (10.1038/s41598-023-31456-4) PubMed DOI PMC

Zhang G, Zhang W, Cui X, Xu B. 2015. Zinc nutrition increases the antioxidant defenses of honey bees. Entomol. Exp. Appl. 156, 201–210. (10.1111/eea.12342) DOI

Li Z, Duan J, Chen L, Wang Y, Qin Q, Dang X, Zhou Z. 2022. Melatonin enhances the antioxidant capacity to rescue the honey bee Apis mellifera from the ecotoxicological effects caused by environmental imidacloprid. Ecotoxicol. Environ. Saf. 239, 113622. (10.1016/j.ecoenv.2022.113622) PubMed DOI

Ricigliano VA, Cank KB, Todd DA, Knowles SL, Oberlies NH. 2022. Metabolomics-guided comparison of pollen and microalgae-based artificial diets in honey bees. J. Agric. Food Chem. 70, 9790–9801. (10.1021/acs.jafc.2c02583) PubMed DOI PMC

Margotta JW, Roberts SP, Elekonich MM. 2018. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. J. Exp. Biol. 221, jeb183228. (10.1242/jeb.183228) PubMed DOI

Alaux C, Folschweiller M, McDonnell C, Beslay D, Cousin M, Dussaubat C, Brunet JL, Le Conte Y. 2011. Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). J. Invertebr. Pathol. 106, 380–385. (10.1016/j.jip.2010.12.005) PubMed DOI

Cabirol A, Moriano-Gutierrez S, Engel P. 2024. Neuroactive metabolites modulated by the gut microbiota in honey bees. Mol. Microbiol. 122, 284–293. (10.1111/mmi.15167) PubMed DOI

Pratavieira M, da Silva Menegasso AR, Roat T, Malaspina O, Palma MS. 2020. In situ metabolomics of the honeybee brain: the metabolism of L-arginine through the polyamine pathway in the proboscis extension response (PER). J. Proteome Res. 19, 832–844. (10.1021/acs.jproteome.9b00653) PubMed DOI

Kunc M, et al. . 2023. Omics-based analysis of honey bee (Apis mellifera) response to Varroa sp. parasitisation and associated factors reveals changes impairing winter bee generation. Insect Biochem. Mol. Biol. 152, 103877. (10.1016/j.ibmb.2022.103877) PubMed DOI

Dobeš P, Kunc M, Hurychová J, Votavová A, Komzáková O, Hyršl P. 2020. The effect of foraging on bumble bees, Bombus terrestris, reared under laboratory conditions. Insects 11, 1–15. (10.3390/insects11050321) PubMed DOI PMC

Jenickova E, Andrén Aronsson C, Mascellani Bergo A, Cinek O, Havlik J, Agardh D. 2023. Effects of Lactiplantibacillus plantarum and Lacticaseibacillus paracasei supplementation on the faecal metabolome in children with coeliac disease autoimmunity: a randomised, double-blinded placebo-controlled clinical trial. Front. Nutr. 10, 1183963. (10.3389/fnut.2023.1183963) PubMed DOI PMC

Mascellani A, et al. . 2021. Polyketide derivatives in the resistance of Gerbera hybrida to powdery mildew. Front. Plant Sci. 12, 790907. (10.3389/fpls.2021.790907) PubMed DOI PMC

Hadley W, Romain F, Lionel H, Kirill M, Vaughan D. 2023. dplyr: a grammar of aata manipulation. R package version 1.1.4. (10.32614/CRAN.package.dplyr) DOI

Kassambara A. 2023. Rstatix: pipe-friendly framework for basic statistical tests. R package version 0.7.2. (10.32614/CRAN.package.rstatix) DOI

Auguie B. 2017. gridExtra: miscellaneous functions for ‘grid’ graphics. R package version 2.3. (10.32614/CRAN.package.gridExtra) DOI

Aphalo PJ, Slowikowski K, Mouksassi S. 2024. ggpmisc: miscellaneous extensions to ggplot2. R package version 0.6.0. (10.32614/CRAN.package.ggpmisc) DOI

Kassambara A. 2023. Ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.6.0. (10.32614/CRAN.package.ggpubr) DOI

Wickham H. 2016. ggplot2: elegant graphics for data analysis. Cham, Switzerland: Springer-Verlag. (10.1007/978-3-319-24277-4) DOI

Pang Z, et al. . 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396. (10.1093/nar/gkab382) PubMed DOI PMC

Lee S, Dobeš P, Marciniak J, Mascellani Bergo A, Kamler M, Maršík P. 2024. Supplementary material from: Phytochemical S-Methyl-L-cysteine sulfoxide from Brassicaceae: a key to health or a poison for bees? Figshare. (10.6084/m9.figshare.c.7550484) PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phytochemical S-methyl-L-cysteine sulfoxide from Brassicaceae: a key to health or a poison for bees?

. 2024 Dec ; 14 (12) : 240219. [epub] 20241211

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...