Phytochemical S-methyl-L-cysteine sulfoxide from Brassicaceae: a key to health or a poison for bees?
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Ministry of Agriculture of the Czech Republic
Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
39657820
PubMed Central
PMC11631464
DOI
10.1098/rsob.240219
Knihovny.cz E-zdroje
- Klíčová slova
- Apis mellifera, Brassicaceae, S-methyl-L-cysteine sulfoxide, phytochemical, rapeseed, toxicity,
- MeSH
- antioxidancia farmakologie MeSH
- Brassica napus metabolismus MeSH
- Brassicaceae chemie MeSH
- cystein * analogy a deriváty metabolismus MeSH
- fytonutrienty farmakologie MeSH
- med analýza MeSH
- opylení MeSH
- pyl chemie MeSH
- roční období MeSH
- včely účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- cystein * MeSH
- fytonutrienty MeSH
Intensive agricultural practices impact the health and nutrition of pollinators like honey bees (Apis mellifera). Rapeseed (Brassica napus L.) is widely cultivated, providing diverse nutrients and phytochemicals, including S-methyl-L-cysteine sulfoxide (SMCSO). While the nutritional impact of rapeseed on bees is known, SMCSO's effects remain unexplored. We examined SMCSO and its related metabolites-3-methylthiolactic acid sulfoxide and N-acetyl-S-methyl-L-cysteine sulfoxide-analysing their seasonal fluctuations, colony variations and distribution in body parts. Our findings showed that these compounds in bee gut vary among colonies, possibly due to the dietary preferences, and are highly concentrated in bodies during the summer. They are distributed differently within bee bodies, with higher concentrations in the abdomens of foragers compared with nurses. Administration of SMCSO in a laboratory setting showed no immediate toxic effects but significantly boosted bees' antioxidant capacity. Long-term administration decreased bee body weight, particularly in the thorax and head, and altered amino acid metabolism. SMCSO is found in the nectar and pollen of rapeseed flowers and highly accumulates in rapeseed honey compared with other types of honey. This study reveals the dual impact of SMCSO on bee health, providing a basis for further ecological and physiological research to enhance bee health and colony sustainability.
Bee Research Institute Maslovice Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Potts SG, et al. . 2016. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229. (10.1038/nature20588) PubMed DOI
Tuerlings T, Buydens L, Smagghe G, Piot N. 2022. The impact of mass-flowering crops on bee pathogen dynamics. Int. J. Parasitol. Parasites Wildl. 18, 135–147. (10.1016/j.ijppaw.2022.05.001) PubMed DOI PMC
Schmidt LS, Schmidt JO, Rao H, Wang W, Xu L. 1995. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. 88, 1591–1595. (10.1093/jee/88.6.1591) DOI
McAulay MK, Forrest JRK. 2019. How do sunflower pollen mixtures affect survival of queenless microcolonies of bumblebees (Bombus impatiens)? Arthropod Plant Interact. 13, 517–529. (10.1007/s11829-018-9664-3) DOI
Requier F, Odoux JF, Tamic T, Moreau N, Henry M, Decourtye A, Bretagnolle V. 2015. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 25, 881–890. (10.1890/14-1011.1) PubMed DOI
Dolezal AG, St Clair AL, Zhang G, Toth AL, O’Neal ME. 2019. Native habitat mitigates feast-famine conditions faced by honey bees in an agricultural landscape. Proc. Natl Acad. Sci. USA 116, 25147–25155. (10.1073/pnas.1912801116) PubMed DOI PMC
Eurostat . 2024. Farms and hectares by type of crops, utilised agricultural area, economic size and NUTS 2 regions. See https://ec.europa.eu/eurostat/databrowser/view/ef_lus_allcrops__custom_11531287/default/table?lang=en.
Williams IH, Martin AP, White RP. 1986. The pollination requirements of oil-seed rape (Brassica napus L.). J. Agric. Sci. 106, 27–30. (10.1017/S0021859600061670) DOI
Abrol DP. 2007. Honeybees and rapeseed: a pollinator-plant interaction. Adv. Bot. Res. 45, 337–367. (10.1016/S0065-2296(07)45012-1) DOI
Westcott L, Nelson D. 2001. Canola pollination: an update. Bee World 82, 115–129. (10.1080/0005772X.2001.11099514) DOI
Cook SM, Awmack CS, Murray DA, Williams IH. 2003. Are honey bees’ foraging preferences affected by pollen amino acid composition? Ecol. Entomol. 28, 622–627. (10.1046/j.1365-2311.2003.00548.x) DOI
Maldini M, Foddai M, Natella F, Petretto GL, Rourke JP, Chessa M, Pintore G. 2017. Identification and quantification of glucosinolates in different tissues of Raphanus raphanistrum by liquid chromatography tandem-mass spectrometry. J. Food Compost. Anal. 61, 20–27. (10.1016/j.jfca.2016.06.002) DOI
Galanakis CM. 2019. Glucosinolates: properties, recovery, and applications. Cambridge, MA: Academic Press. (10.1016/C2018-0-00955-X) DOI
Nanetti A, Ugolini L, Cilia G, Pagnotta E, Malaguti L, Cardaio I, Matteo R, Lazzeri L. 2021. Seed meals from Brassica nigra and Eruca sativa control artificial Nosema ceranae infections in Apis mellifera. Microorganisms 9, 1–19. (10.3390/microorganisms9050949) PubMed DOI PMC
Ugolini L, et al. . 2021. Glucosinolate bioactivation by Apis mellifera workers and its impact on Nosema ceranae infection at the colony level. Biomolecules 11, 1–22. (10.3390/biom11111657) PubMed DOI PMC
Stevenson PC. 2020. For antagonists and mutualists: the paradox of insect toxic secondary metabolites in nectar and pollen. Phytochem. Rev. 19, 603–614. (10.1007/s11101-019-09642-y) DOI
Palmer-Young EC, Sadd BM, Stevenson PC, Irwin RE, Adler LS. 2016. Bumble bee parasite strains vary in resistance to phytochemicals. Sci. Rep. 6, 37087. (10.1038/srep37087) PubMed DOI PMC
Glavinic U, Blagojevic J, Ristanic M, Stevanovic J, Lakic N, Mirilovic M, Stanimirovic Z. 2022. Use of thymol in Nosema ceranae control and health improvement of infected honey bees. Insects 13, 574. (10.3390/insects13070574) PubMed DOI PMC
Costa C, Lodesani M, Maistrello L. 2010. Effect of thymol and resveratrol administered with candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions. Apidologie 41, 141–150. (10.1051/apido/2009070) DOI
Canché-Collí C, Estrella-Maldonado H, Medina-Medina LA, Moo-Valle H, Calvo-Irabien LM, Chan-Vivas E, Rodríguez R, Canto A. 2021. Effect of yeast and essential oil-enriched diets on critical determinants of health and immune function in Africanized Apis mellifera. PeerJ 9, e12164. (10.7717/peerj.12164) PubMed DOI PMC
Stevenson PC, Nicolson SW, Wright GA. 2017. Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct. Ecol. 31, 65–75. (10.1111/1365-2435.12761) DOI
Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, Borland AM, Stevenson PC. 2013. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339, 1202–1204. (10.1126/science.1228806) PubMed DOI PMC
Qiao J, Zhang Y, Haubruge E, Wang K, El-Seedi HR, Dong J, Xu X, Zhang H. 2024. New insights into bee pollen: nutrients, phytochemicals, functions and wall-disruption. Food Res. Int. 178, 113934. (10.1016/j.foodres.2024.113934) PubMed DOI
Gao J, Zhao G, Yu Y, Liu F. 2010. High concentration of nectar quercetin enhances worker resistance to queen’s signals in bees. J. Chem. Ecol. 36, 1241–1243. (10.1007/s10886-010-9866-3) PubMed DOI
Edmands WMB, Gooderham NJ, Holmes E, Mitchell SC. 2013. S-methyl-l-cysteine sulphoxide: the cinderella phytochemical. Toxicol. Res. (Camb.) 2, 11–22. (10.1039/C2TX20030A) DOI
Hill CR, Haoci Liu A, McCahon L, Zhong L, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Blekkenhorst LC. 2023. S-methyl cysteine sulfoxide and its potential role in human health: a scoping review. Crit. Rev. Food Sci. Nutr. 1–14. (10.1080/10408398.2023.2267133) PubMed DOI
Traka MH, et al. . 2019. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention: results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. Am. J. Clin. Nutr. 109, 1133–1144. (10.1093/ajcn/nqz012) PubMed DOI PMC
Kumari K, Augusti KT. 2002. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn.) as compared to standard drugs in alloxan diabetic rats. Indian J. Exp. Biol. 40, 1005–1009. PubMed
Kumari K, Augusti KT. 2007. Lipid lowering effect of S-methyl cysteine sulfoxide from Allium cepa Linn. in high cholesterol diet fed rats. J. Ethnopharmacol. 109, 367–371. (10.1016/j.jep.2006.07.045) PubMed DOI
Lee S, et al. . 2022. 1H NMR profiling of honey bee bodies revealed metabolic differences between summer and winter bees. Insects 13, 1–13. (10.3390/insects13020193) PubMed DOI PMC
Page RE, Peng CYS. 2001. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711. (10.1016/s0531-5565(00)00236-9) PubMed DOI
O’Keefe SJD, et al. . 2015. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342. (10.1038/ncomms7342) PubMed DOI PMC
Posma JM, et al. . 2017. Integrated analytical and statistical two-dimensional spectroscopy strategy for metabolite identification: application to dietary biomarkers. Anal. Chem. 89, 3300–3309. (10.1021/acs.analchem.6b03324) PubMed DOI PMC
Bellec L, Seimandi‐Corda G, Menacer K, Trabalon M, Ollivier J, Lunel C, Faure S, Cortesero A, Hervé M. 2022. Factors driving the within‐plant patterns of resource exploitation in a herbivore. Funct. Ecol. 36, 1700–1712. (10.1111/1365-2435.14058) DOI
Ourry M, et al. . 2018. Influence of belowground herbivory on the dynamics of root and rhizosphere microbial communities. Front. Ecol. Evol. 6, 371108. (10.3389/fevo.2018.00091) DOI
Liu Z, Qiao D, Li H, Chen L. 2024. S-methyl-L-cysteine sulfoxide as a characteristic marker for rape royal jelly: insights from untargeted and targeted metabolomic analysis. Food Chem. 437, 137880. (10.1016/j.foodchem.2023.137880) PubMed DOI
Fluri P, Lüscher M, Wille H, Gerig L. 1982. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 28, 61–68. (10.1016/0022-1910(82)90023-3) DOI
Mattila HR, Harris JL, Otis GW. 2001. Timing of production of winter bees in honey bee (Apis mellifera) colonies. Insectes Soc. 48, 88–93. (10.1007/PL00001764) DOI
Edmands WMB, Beckonert OP, Stella C, Campbell A, Lake BG, Lindon JC, Holmes E, Gooderham NJ. 2011. Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. J. Proteome Res. 10, 4513–4521. (10.1021/pr200326k) PubMed DOI
Mitchell SC, Smith RL, Waring RH, Aldington GF. 1984. The metabolism of S-methyl-L-cysteine in man. Xenobiotica 14, 767–779. (10.3109/00498258409151475) PubMed DOI
Waring RH, Harris RM, Steventon GB, Mitchell SC. 2003. Degradation to sulphate of S-methyl-L-cysteine sulphoxide and S-carboxymethyl-L-cysteine sulphoxide in man. Drug Metabol. Drug Interact. 19, 241–255. (10.1515/dmdi.2003.19.4.241) PubMed DOI
Nakamura YK, Kawai K, Furukawa H, Matsuo T, Shimoi K, Tomita I, Nakamura Y. 1997. Suppressing effects of S-methyl methanethiosulfonate and diphenyl disulfide on mitomycin C-induced somatic mutation and recombination in Drosophila melanogaster and micronuclei in mice. Mutat. Res. 385, 41–46. (10.1016/s0921-8777(97)00033-5) PubMed DOI
Pospiech M, Ljasovská S, Titěra D, Kružík V, Javůrková Z, Tremlová B. 2020. Pollen diversity in honeys of the Czech Republic in the 2019 season. Potr. S. J. F. Sci. 14, 1115–1123. (10.5219/1504) DOI
Czech Statistical Office . 2023. Harvest estimates: September 2023. Table 2: production estimates of selected crops, comparison with a five-year and a ten-year average. See https://www.czso.cz/csu/czso/ari/harvest-estimates-september-2023.
Montaño A, Beato VM, Mansilla F, Orgaz F. 2011. Effect of genetic characteristics and environmental factors on organosulfur compounds in garlic (Allium sativum l.) grown in Andalusia, Spain. J. Agric. Food Chem. 59, 1301–1307. (10.1021/jf104494j) PubMed DOI
Kubec R, Svobodová M, Velíšek J. 2001. Gas-chromatographic determination of S-methylcysteine sulfoxide in cruciferous vegetables. Eur. Food Res. Technol. 213, 386–388. (10.1007/s002170100384) DOI
Griffiths DW, Smith WHM. 1989. Variation in S-methyl cysteine sulphoxide concentration with harvest date in forage rape (Brassica napus). J. Sci. Food Agric. 47, 249–252. (10.1002/jsfa.2740470212) DOI
Hervé MR, Delourme R, Gravot A, Marnet N, Berardocco S, Cortesero AM. 2014. Manipulating feeding stimulation to protect crops against insect pests? J. Chem. Ecol. 40, 1220–1231. (10.1007/s10886-014-0517-y) PubMed DOI
Couvillon MJ, Riddell Pearce FC, Accleton C, Fensome KA, Quah SKL, Taylor EL, Ratnieks FLW. 2015. Honey bee foraging distance depends on month and forage type. Apidologie 46, 61–70. (10.1007/s13592-014-0302-5) DOI
Kunc M, Dobeš P, Hurychová J, Vojtek L, Poiani SB, Danihlík J, Havlík J, Titěra D, Hyršl P. 2019. The year of the honey bee (Apis mellifera L.) with respect to its physiology and immunity: a search for biochemical markers of longevity. Insects 10, 1–16. (10.3390/insects10080244) PubMed DOI PMC
Winston ML. 1987. The biology of the honey bee. Cambridge, MA: Harvard University Press.
Keller I, Fluri P, Imdorf A. 2005. Pollen nutrition and colony development in honey bees—part II. Bee World 86, 27–34. (10.1080/0005772X.2005.11099650) DOI
Friedt W, Snowdon R. 2010. Oil crops. New York, NY: Springer. (10.1007/978-0-387-77594-4) DOI
Griffiths DW, Macfarlane‐Smith WH, Boag B. 1994. The effect of cultivar, sample date and grazing on the concentration of S-methylcysteine sulphoxide in oilseed and forage rapes (Brassica napus). J. Sci. Food Agric. 64, 283–288. (10.1002/jsfa.2740640307) DOI
Horníčková J, Kubec R, Velíšek J, Cejpek K, Ovesná J, Stavělíková H. 2011. Changes of S-alk(en)ylcysteine sulfoxide levels during the growth of different garlic morphotypes. Czech J. Food Sci. 29, 373–381. (10.17221/3/2011-CJFS) DOI
Bernklau E, Arathi HS. 2023. Seasonal patterns of beneficial phytochemical availability in honey and stored pollen from honey bee colonies in large apiaries. J. Econ. Entomol. 116, 1069–1077. (10.1093/jee/toad096) PubMed DOI
Crailsheim K, Hrassnigg N, Stabentheiner A. 1996. Diurnal behavioural differences in forager and nurse honey bees (Apis mellifera carnica Pollm). Apidologie 27, 235–244. (10.1051/apido:19960406) DOI
Neukirch A. 1982. Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J. Comp. Physiol. B 146, 35–40. (10.1007/BF00688714) DOI
Gmeinbauer R, Crailsheim K. 1993. Glucose utilization during flight of honeybee (Apis mellifera) workers, drones and queens. J. Insect Physiol. 39, 959–967. (10.1016/0022-1910(93)90005-C) DOI
Harano K, Nakamura J. 2016. Nectar loads as fuel for collecting nectar and pollen in honeybees: adjustment by sugar concentration. J. Comp. Physiol. A 202, 435–443. (10.1007/s00359-016-1088-x) PubMed DOI
Rodney S, Purdy J. 2020. Dietary requirements of individual nectar foragers, and colony-level pollen and nectar consumption: a review to support pesticide exposure assessment for honey bees. Apidologie 51, 163–179. (10.1007/s13592-019-00694-9) DOI
Blatt J, Roces F. 2001. Haemolymph sugar levels in foraging honeybees (Apis mellifera carnica): dependence on metabolic rate and in vivo measurement of maximal rates of trehalose synthesis. J. Exp. Biol. 204, 2709–2716. (10.1242/jeb.204.15.2709) PubMed DOI
Nicolson SW, Human H, Pirk CWW. 2022. Honey bees save energy in honey processing by dehydrating nectar before returning to the nest. Sci. Rep. 12, 16224. (10.1038/s41598-022-20626-5) PubMed DOI PMC
Corby-Harris V, Snyder L, Meador C. 2019. Fat body lipolysis connects poor nutrition to hypopharyngeal gland degradation in Apis mellifera. J. Insect Physiol. 116, 1–9. (10.1016/j.jinsphys.2019.04.001) PubMed DOI
Brodschneider R, Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie 41, 278–294. (10.1051/apido/2010012) DOI
Scofield HN, Mattila HR. 2015. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS One 10, e0121731. (10.1371/journal.pone.0121731) PubMed DOI PMC
Lemos LIC, et al. . 2021. S-methyl cysteine sulfoxide mitigates histopathological damage, alleviate oxidative stress and promotes immunomodulation in diabetic rats. J. Complement. Integr. Med. 18, 719–725. (10.1515/jcim-2020-0220) PubMed DOI
Đorđievski S, Vukašinović EL, Čelić TV, Pihler I, Kebert M, Kojić D, Purać J. 2023. Spermidine dietary supplementation and polyamines level in reference to survival and lifespan of honey bees. Sci. Rep. 13, 4329. (10.1038/s41598-023-31456-4) PubMed DOI PMC
Zhang G, Zhang W, Cui X, Xu B. 2015. Zinc nutrition increases the antioxidant defenses of honey bees. Entomol. Exp. Appl. 156, 201–210. (10.1111/eea.12342) DOI
Li Z, Duan J, Chen L, Wang Y, Qin Q, Dang X, Zhou Z. 2022. Melatonin enhances the antioxidant capacity to rescue the honey bee Apis mellifera from the ecotoxicological effects caused by environmental imidacloprid. Ecotoxicol. Environ. Saf. 239, 113622. (10.1016/j.ecoenv.2022.113622) PubMed DOI
Ricigliano VA, Cank KB, Todd DA, Knowles SL, Oberlies NH. 2022. Metabolomics-guided comparison of pollen and microalgae-based artificial diets in honey bees. J. Agric. Food Chem. 70, 9790–9801. (10.1021/acs.jafc.2c02583) PubMed DOI PMC
Margotta JW, Roberts SP, Elekonich MM. 2018. Effects of flight activity and age on oxidative damage in the honey bee, Apis mellifera. J. Exp. Biol. 221, jeb183228. (10.1242/jeb.183228) PubMed DOI
Alaux C, Folschweiller M, McDonnell C, Beslay D, Cousin M, Dussaubat C, Brunet JL, Le Conte Y. 2011. Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera). J. Invertebr. Pathol. 106, 380–385. (10.1016/j.jip.2010.12.005) PubMed DOI
Cabirol A, Moriano-Gutierrez S, Engel P. 2024. Neuroactive metabolites modulated by the gut microbiota in honey bees. Mol. Microbiol. 122, 284–293. (10.1111/mmi.15167) PubMed DOI
Pratavieira M, da Silva Menegasso AR, Roat T, Malaspina O, Palma MS. 2020. In situ metabolomics of the honeybee brain: the metabolism of L-arginine through the polyamine pathway in the proboscis extension response (PER). J. Proteome Res. 19, 832–844. (10.1021/acs.jproteome.9b00653) PubMed DOI
Kunc M, et al. . 2023. Omics-based analysis of honey bee (Apis mellifera) response to Varroa sp. parasitisation and associated factors reveals changes impairing winter bee generation. Insect Biochem. Mol. Biol. 152, 103877. (10.1016/j.ibmb.2022.103877) PubMed DOI
Dobeš P, Kunc M, Hurychová J, Votavová A, Komzáková O, Hyršl P. 2020. The effect of foraging on bumble bees, Bombus terrestris, reared under laboratory conditions. Insects 11, 1–15. (10.3390/insects11050321) PubMed DOI PMC
Jenickova E, Andrén Aronsson C, Mascellani Bergo A, Cinek O, Havlik J, Agardh D. 2023. Effects of Lactiplantibacillus plantarum and Lacticaseibacillus paracasei supplementation on the faecal metabolome in children with coeliac disease autoimmunity: a randomised, double-blinded placebo-controlled clinical trial. Front. Nutr. 10, 1183963. (10.3389/fnut.2023.1183963) PubMed DOI PMC
Mascellani A, et al. . 2021. Polyketide derivatives in the resistance of Gerbera hybrida to powdery mildew. Front. Plant Sci. 12, 790907. (10.3389/fpls.2021.790907) PubMed DOI PMC
Hadley W, Romain F, Lionel H, Kirill M, Vaughan D. 2023. dplyr: a grammar of aata manipulation. R package version 1.1.4. (10.32614/CRAN.package.dplyr) DOI
Kassambara A. 2023. Rstatix: pipe-friendly framework for basic statistical tests. R package version 0.7.2. (10.32614/CRAN.package.rstatix) DOI
Auguie B. 2017. gridExtra: miscellaneous functions for ‘grid’ graphics. R package version 2.3. (10.32614/CRAN.package.gridExtra) DOI
Aphalo PJ, Slowikowski K, Mouksassi S. 2024. ggpmisc: miscellaneous extensions to ggplot2. R package version 0.6.0. (10.32614/CRAN.package.ggpmisc) DOI
Kassambara A. 2023. Ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.6.0. (10.32614/CRAN.package.ggpubr) DOI
Wickham H. 2016. ggplot2: elegant graphics for data analysis. Cham, Switzerland: Springer-Verlag. (10.1007/978-3-319-24277-4) DOI
Pang Z, et al. . 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396. (10.1093/nar/gkab382) PubMed DOI PMC
Lee S, Dobeš P, Marciniak J, Mascellani Bergo A, Kamler M, Maršík P. 2024. Supplementary material from: Phytochemical S-Methyl-L-cysteine sulfoxide from Brassicaceae: a key to health or a poison for bees? Figshare. (10.6084/m9.figshare.c.7550484) PubMed DOI