1H NMR Profiling of Honey Bee Bodies Revealed Metabolic Differences between Summer and Winter Bees
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QJ1610248, QK1910286
Government of the Czech Republic
UIDB/50011/2020, UIDP/50011/2020
Ministry of Science Technology and Higher Education
PubMed
35206766
PubMed Central
PMC8875373
DOI
10.3390/insects13020193
PII: insects13020193
Knihovny.cz E-zdroje
- Klíčová slova
- Apis mellifera, longevity, metabolome, nuclear magnetic resonance, winter bees,
- Publikační typ
- časopisecké články MeSH
In temperate climates, honey bee workers of the species Apis mellifera have different lifespans depending on the seasonal phenotype: summer bees (short lifespan) and winter bees (long lifespan). Many studies have revealed the biochemical parameters involved in the lifespan differentiation of summer and winter bees. However, comprehensive information regarding the metabolic changes occurring in their bodies between the two is limited. This study used proton nuclear magnetic resonance (1H NMR) spectroscopy to analyze the metabolic differences between summer and winter bees of the same age. The multivariate analysis showed that summer and winter bees could be distinguished based on their metabolic profiles. Among the 36 metabolites found, 28 metabolites have displayed significant changes from summer to winter bees. Compared to summer bees, trehalose in winter bees showed 1.9 times higher concentration, and all amino acids except for proline and alanine showed decreased patterns. We have also detected an unknown compound, with a CH3 singlet at 2.83 ppm, which is a potential biomarker that is about 13 times higher in summer bees. Our results show that the metabolites in summer and winter bees have distinctive characteristics; this information could provide new insights and support further studies on honey bee longevity and overwintering.
Campus de Santiago University of Aveiro 3810 19 Aveiro Portugal
Honeybee Research Institute Dol 94 252 66 Maslovice Czech Republic
Zobrazit více v PubMed
Potts S.G., Biesmeijer J.C., Kremen C., Neumann P., Schweiger O., Kunin W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010;25:345–353. doi: 10.1016/j.tree.2010.01.007. PubMed DOI
Brodschneider R., Gray A., Adjlane N., Ballis A., Brusbardis V., Charrière J.D., Chlebo R., Coffey M.F., Dahle B., de Graaf D.C., et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 2018;57:452–457. doi: 10.1080/00218839.2018.1460911. DOI
Vanengelsdorp D., Caron D., Hayes J., Underwood R., Henson M., Rennich K., Spleen A., Andree M., Snyder R., Lee K., et al. A national survey of managed honey bee 2010–11 winter colony losses in the USA: Results from the Bee Informed Partnership. J. Apic. Res. 2012;51:115–124. doi: 10.3896/IBRA.1.51.1.14. DOI
Gray A., Brodschneider R., Adjlane N., Ballis A., Brusbardis V., Charrière J.-D., Chlebo R., Coffey M.F., Cornelissen B., da Costa C.A., et al. Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey including effects of forage sources. J. Apic. Res. 2019;58:479–485. doi: 10.1080/00218839.2019.1615661. DOI
Steinhauer N.A., Rennich K., Wilson M.E., Caron D.M., Lengerich E.J., Pettis J.S., Rose R., Skinner J.A., Tarpy D.R., Wilkes J.T., et al. A national survey of managed honey bee 2012–2013 annual colony losses in the USA: Results from the Bee Informed Partnership. J. Apic. Res. 2014;53:1–18. doi: 10.3896/IBRA.1.53.1.01. DOI
Van Engelsdorp D., Evans J.D., Saegerman C., Mullin C., Haubruge E., Nguyen B.K., Frazier M., Frazier J., Cox-Foster D., Chen Y., et al. Colony collapse disorder: A descriptive study. PLoS ONE. 2009;4:e6481. doi: 10.1371/journal.pone.0006481. PubMed DOI PMC
Van Dooremalen C., Gerritsen L., Cornelissen B., van der Steen J.J.M., van Langevelde F., Blacquière T. Winter survival of individual honey bees and honey bee colonies depends on level of varroa destructor infestation. PLoS ONE. 2012;7:e36285. doi: 10.1371/journal.pone.0036285. PubMed DOI PMC
Higes M., Martín-Hernández R., Botías C., Bailón E.G., González-Porto A.V., Barrios L., Del Nozal M.J., Bernal J.L., Jiménez J.J., Palencia P.G., et al. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 2008;10:2659–2669. doi: 10.1111/j.1462-2920.2008.01687.x. PubMed DOI
Highfield A.C., El Nagar A., Mackinder L.C.M., Noël L.M.L.J., Hall M.J., Martin S.J., Schroeder D.C. Deformed wing virus implicated in overwintering honeybee colony losses. Appl. Environ. Microbiol. 2009;75:7212–7220. doi: 10.1128/AEM.02227-09. PubMed DOI PMC
Simon-Delso N., Martin G.S., Bruneau E., Minsart L.A., Mouret C., Hautier L. Honeybee colony disorder in crop areas: The role of pesticides and viruses. PLoS ONE. 2014;9:e103073. doi: 10.1371/journal.pone.0103073. PubMed DOI PMC
Requier F., Odoux J.F., Henry M., Bretagnolle V. The carry-over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. J. Appl. Ecol. 2017;54:1161–1170. doi: 10.1111/1365-2664.12836. DOI
Seitz N., Traynor K.S., Steinhauer N., Rennich K., Wilson M.E., Ellis J.D., Rose R., Tarpy D.R., Sagili R.R., Caron D.M., et al. A national survey of managed honey bee 2014–2015 annual colony losses in the USA Nicola. J. Apic. Res. 2015;54:292–304. doi: 10.1080/00218839.2016.1153294. DOI
Le Conte Y., Navajas M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. 2008;27:485–497, 499–510. doi: 10.20506/rst.27.2.1819. PubMed DOI
Page R.E., Peng C.Y.S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 2001;36:695–711. doi: 10.1016/S0531-5565(00)00236-9. PubMed DOI
Mattila H.R., Harris J.L., Otis G.W. Timing of production of winter bees in honey bee (Apis mellifera) colonies. Insectes Soc. 2001;48:88–93. doi: 10.1007/PL00001764. DOI
Fluri P., Lüscher M., Wille H., Gerig L. Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J. Insect Physiol. 1982;28:61–68. doi: 10.1016/0022-1910(82)90023-3. DOI
Seeley T.D. The Lives of Bees. Princeton University Press; Princeton, NJ, USA: 2019.
Omholt S.W., Amdam G.V. Epigenetic regulation of aging in honeybee workers. Sci. Aging Knowl. Environ. 2004;2004:pe28. doi: 10.1126/sageke.2004.26.pe28. PubMed DOI
Corona M., Velarde R.A., Remolina S., Moran-lauter A., Wang Y., Hughes K.A., Robinson G.E. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Pnas. 2007;104:7128–7133. doi: 10.1073/pnas.0701909104. PubMed DOI PMC
Harwood G.P., Ihle K.E., Salmela H., Amdam G.V. Regulation of Honeybee Worker (Apis mellifera) Life Histories by Vitellogenin. 3rd ed. Volume 2. Elsevier; Amsterdam, The Netherlands: 2017.
Kunert K., Crailsheim K. Seasonal changes in carbohydrate, lipid and protein content in emerging worker honeybees and their mortality. J. Apic. Res. 1988;27:13–21. doi: 10.1080/00218839.1988.11100775. DOI
Kunc M., Dobeš P., Hurychová J., Vojtek L., Poiani S.B., Danihlík J., Havlík J., Titěra D., Hyršl P. The year of the honey bee (Apis mellifera L.) with respect to its physiology and immunity: A search for biochemical markers of longevity. Insects. 2019;10:244. doi: 10.3390/insects10080244. PubMed DOI PMC
Kešnerová L., Emery O., Troilo M., Liberti J., Erkosar B., Engel P. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 2020;14:801–814. doi: 10.1038/s41396-019-0568-8. PubMed DOI PMC
Seehuus S.C., Krekling T., Amdam G.V. Cellular senescence in honey bee brain is largely independent of chronological age. Exp. Gerontol. 2006;41:1117–1125. doi: 10.1016/j.exger.2006.08.004. PubMed DOI PMC
Behrends A., Scheiner R. Learning at old age: A study on winter bees. Front. Behav. Neurosci. 2010;4:15. doi: 10.3389/fnbeh.2010.00015. PubMed DOI PMC
Johnson C.H., Ivanisevic J., Siuzdak G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016;17:451–459. doi: 10.1038/nrm.2016.25. PubMed DOI PMC
Fan T.W.M., Lane A.N. Applications of NMR spectroscopy to systems biochemistry. Prog. Nucl. Magn. Reson. Spectrosc. 2016;92–93:18–53. doi: 10.1016/j.pnmrs.2016.01.005. PubMed DOI PMC
Cox J.E., Thummel C.S., Tennessen J.M. Metabolomic studies in Drosophila. Genetics. 2017;206:1169–1185. doi: 10.1534/genetics.117.200014. PubMed DOI PMC
Lenz E.M., Hägele B.F., Wilson I.D., Simpson S.J. High resolution 1H NMR spectroscopic studies of the composition of the haemolymph of crowd- and solitary-reared nymphs of the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 2001;32:51–56. doi: 10.1016/S0965-1748(01)00078-9. PubMed DOI
Kapranas A., Snart C.J.P., Williams H., Hardy I.C.W., Barrett D.A. Metabolomics of aging assessed in individual parasitoid wasps. Sci. Rep. 2016;6:34848. doi: 10.1038/srep34848. PubMed DOI PMC
Wang Y., Carolan J.C., Hao F., Nicholson J.K., Wilkinson T.L., Douglas A.E. Integrated metabonomic-proteomic analysis of an insect-bacterial symbiotic system. J. Proteome Res. 2010;9:1257–1267. doi: 10.1021/pr9007392. PubMed DOI
Jousse C., Dalle C., Abila A., Traikia M., Diogon M., Lyan B., El Alaoui H., Vidau C., Delbac F. A combined LC-MS and NMR approach to reveal metabolic changes in the hemolymph of honeybees infected by the gut parasite Nosema ceranae. J. Invertebr. Pathol. 2020;176:1–8. doi: 10.1016/j.jip.2020.107478. PubMed DOI
Dostálková S., Dobeš P., Kunc M., Hurychová J., Škrabišová M., Petřivalský M., Titěra D., Havlík J., Hyršl P., Danihlík J. Winter honeybee (Apis mellifera) populations show greater potential to induce immune responses than summer populations after immune stimuli. J. Exp. Biol. 2021;224 doi: 10.1242/jeb.232595. PubMed DOI
Williams G.R., Alaux C., Costa C., Csáki T., Doublet V., Eisenhardt D., Fries I., Kuhn R., McMahon D.P., Medrzycki P., et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 2013;52:1–36. doi: 10.3896/IBRA.1.52.1.04. DOI
Pang Z., Chong J., Li S., Xia J. Metaboanalystr 3.0: Toward an optimized workflow for global metabolomics. Metabolites. 2020;10:186. doi: 10.3390/metabo10050186. PubMed DOI PMC
Chong J., Wishart D.S., Xia J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinforma. 2019;68:1–128. doi: 10.1002/cpbi.86. PubMed DOI
Lê S., Josse J., Husson F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008;25:1–18. doi: 10.18637/jss.v025.i01. DOI
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016.
Blatt J., Roces F. Haemolymph sugar levels in foraging honeybees (Apis mellifera carnica): Dependence on metabolic rate and in vivo measurement of maximal rates of trehalose synthesis. J. Exp. Biol. 2001;204:2709–2716. doi: 10.1242/jeb.204.15.2709. PubMed DOI
Suarez R.K., Darveau C.A., Welch K.C., O’Brien D.M., Roubik D.W., Hochachka P.W. Energy metabolism in orchid bee flight muscles: Carbohydrate fuels all. J. Exp. Biol. 2005;208:3573–3579. doi: 10.1242/jeb.01775. PubMed DOI
Arrese E.L., Soulages J.L. Insect Fat Body: Energy, Metabolism, and Regulation. Annu. Rev. Entomol. 2010;55:207–225. doi: 10.1146/annurev-ento-112408-085356. PubMed DOI PMC
Hollis Woodard S., Duennes M.A., Watrous K.M., Jha S. Diet and nutritional status during early adult life have immediate and persistent effects on queen bumble bees. Conserv. Physiol. 2019;7:coz048. doi: 10.1093/conphys/coz048. PubMed DOI PMC
Thompson S.N. Trehalose—The Insect “Blood” Sugar. Adv. Insect Phys. 2003;31:205–285. doi: 10.1016/S0065-2806(03)31004-5. DOI
Koštál V., Zahradníčková H., Šimek P., Zelený J. Multiple component system of sugars and polyols in the overwintering spruce bark beetle, Ips typographus. J. Insect Physiol. 2007;53:580–586. doi: 10.1016/j.jinsphys.2007.02.009. PubMed DOI
Overgaard J., Malmendal A., Sørensen J.G., Bundy J.G., Loeschcke V., Nielsen N.C., Holmstrup M. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. J. Insect Physiol. 2007;53:1218–1232. doi: 10.1016/j.jinsphys.2007.06.012. PubMed DOI
Watanabe M., Kikawada T., Minagawa N., Yukuhiro F., Okuda T. Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J. Exp. Biol. 2002;205:2799–2802. doi: 10.1242/jeb.205.18.2799. PubMed DOI
Thompson K.M., Huber D.P.W., Murray B.W. Autumn shifts in cold tolerance metabolites in overwintering adult mountain pine beetles. PLoS ONE. 2020;15:e0227203. doi: 10.1371/journal.pone.0227203. PubMed DOI PMC
Qin M., Wang H., Liu Z., Wang Y., Zhang W., Xu B. Changes in cold tolerance during the overwintering period in Apis mellifera ligustica. J. Apic. Res. 2019;58:702–709. doi: 10.1080/00218839.2019.1634461. DOI
Crailsheim K. Dependence of protein metabolism on age and season in the honeybee (Apis mellifica carnica Pollm) J. Insect Physiol. 1986;32:629–634. doi: 10.1016/0022-1910(86)90092-2. DOI
Haydak M.H. Honey Bee Nutrition. Annu. Rev. Entomol. 1970;15:143–156. doi: 10.1146/annurev.en.15.010170.001043. DOI
Crailsheim K. The protein balance of the honey bee worker. Apidologie. 1990;21:417–429. doi: 10.1051/apido:19900504. DOI
Crailsheim K., Leonhard B. Amino acids in honeybee worker haemolymph. Amino Acids. 1997;13:141–153. doi: 10.1007/BF01373212. DOI
Hrassnigg N., Leonhard B., Crailsheim K. Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.) Amino Acids. 2003;24:205–212. doi: 10.1007/s00726-002-0311-y. PubMed DOI
Storey K.B., Storey J.M. Natural freezing survival in animals. Annu. Rev. Ecol. Syst. 1996;27:365–386. doi: 10.1146/annurev.ecolsys.27.1.365. DOI
Koštál V., Šimek P., Zahradníčková H., Cimlová J., Štětina T. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc. Natl. Acad. Sci. USA. 2012;109:3270–3274. doi: 10.1073/pnas.1119986109. PubMed DOI PMC
Koštál V., Korbelová J., Rozsypal J., Zahradníčková H., Cimlová J., Tomčala A., Šimek P. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly drosophila melanogaster. PLoS ONE. 2011;6:e25025. doi: 10.1371/journal.pone.0025025. PubMed DOI PMC
Williams C.M., McCue M.D., Sunny N.E., Szejner-Sigal A., Morgan T.J., Allison D.B., Hahn D.A. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster. Proc. R. Soc. B Biol. Sci. 2016;283 doi: 10.1098/rspb.2016.1317. PubMed DOI PMC
Mattila H.R., Otis G.W. Dwindling pollen resources trigger the transition to broodless populations of long-lived honeybees each autumn. Ecol. Entomol. 2007;32:496–505. doi: 10.1111/j.1365-2311.2007.00904.x. DOI
Le Couteur D.G., Solon-Biet S., Cogger V.C., Mitchell S.J., Senior A., De Cabo R., Raubenheimer D., Simpson S.J. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 2016;73:1237–1252. doi: 10.1007/s00018-015-2120-y. PubMed DOI PMC
Paoli P.P., Wakeling L.A., Wright G.A., Ford D. The dietary proportion of essential amino acids and Sir2 influence lifespan in the honeybee. Age. 2014;36:1239–1247. doi: 10.1007/s11357-014-9649-9. PubMed DOI PMC
Gómez-Moracho T., Durand T., Pasquaretta C., Heeb P., Lihoreau M. Artificial diets modulate infection rates by nosema ceranae in bumblebees. Microorganisms. 2021;9:158. doi: 10.3390/microorganisms9010158. PubMed DOI PMC
Amdam G.V., Simões Z.L.P., Hagen A., Norberg K., Schrøder K., Mikkelsen Ø., Kirkwood T.B.L., Omholt S.W. Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp. Gerontol. 2004;39:767–773. doi: 10.1016/j.exger.2004.02.010. PubMed DOI
Imboden H., König R., Ott P., Lustig A., Kämpfer U., Lanzrein B. Characterization of the native vitellogenin and vitellin of the cockroach, Nauphoeta cinerea, and comparison with other species. Insect Biochem. 1987;17:353–365. doi: 10.1016/0020-1790(87)90079-5. DOI
Wheeler D.E., Kawooya J.K. Purification and characterization of honey bee vitellogenin. Arch. Insect Biochem. Physiol. 1990;14:253–267. doi: 10.1002/arch.940140405. PubMed DOI
Moessinger C., Klizaite K., Steinhagen A., Philippou-Massier J., Shevchenko A., Hoch M., Ejsing C.S., Thiele C. Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage. BMC Cell Biol. 2014;15:43. doi: 10.1186/s12860-014-0043-3. PubMed DOI PMC
Hardie D.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 2007;8:774–785. doi: 10.1038/nrm2249. PubMed DOI
Bonkowski M.S., Sinclair D.A. Slowing ageing by design: The rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 2016;17:679–690. doi: 10.1038/nrm.2016.93. PubMed DOI PMC
Apfeld J., O’Connor G., McDonagh T., DiStefano P.S., Curtis R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 2004;18:3004–3009. doi: 10.1101/gad.1255404. PubMed DOI PMC
Funakoshi M., Tsuda M., Muramatsu K., Hatsuda H., Morishita S., Aigaki T. A gain-of-function screen identifies wdb and lkb1 as lifespan-extending genes in Drosophila. Biochem. Biophys. Res. Commun. 2011;405:667–672. doi: 10.1016/j.bbrc.2011.01.090. PubMed DOI
Chuang Y.L., Hsu C.Y. Changes in mitochondrial energy utilization in young and old worker honeybees (Apis mellifera) Age. 2013;35:1867–1879. doi: 10.1007/s11357-012-9490-y. PubMed DOI PMC
Hsu C.Y., Chuang Y.L. Changes in energy-regulated molecules in the trophocytes and fat cells of young and old worker honeybees (Apis mellifera) J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014;69:955–964. doi: 10.1093/gerona/glt163. PubMed DOI