Parasitism, life history traits and immune defence in cyprinid fish from Central Europe
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18226212
PubMed Central
PMC2270801
DOI
10.1186/1471-2148-8-29
PII: 1471-2148-8-29
Knihovny.cz E-zdroje
- MeSH
- cizopasní červi růst a vývoj MeSH
- gonády růst a vývoj parazitologie MeSH
- ryby růst a vývoj imunologie parazitologie MeSH
- slezina růst a vývoj parazitologie MeSH
- velikost orgánu MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: The main prediction of life-history theory is that optimal energy allocated among the traits is related to the growth, maintenance and survival. It is hypothesized that the optimal resource allocated to immune function, which generates resistance towards parasites and reduce the fitness losses caused by parasitism, is depending on other requirements for energetic resource and the benefits associated with them. The aims of this study are to investigate in a comparative way (1) how parasitism is related to fish life history traits (fecundity, longevity, mortality), (2) whether there is a trade-off between reproduction and immune investments in fish females (i.e. energetic hypothesis) and in males (i.e. immunohandicap hypothesis), (3) whether parasitism influences host immunity (spleen size) and reproduction (gonad size) in females and males. RESULTS: Data on metazoan parasites of 23 cyprinid fish species from Central Europe were used for the analyses as well as new data collected from a field study. Ectoparasite species richness was negatively correlated with the fish mortality estimated by the k-value and positively correlated with fish body size, suggesting that parasite diversity increases with fish longevity. A negative relationship between spleen size and gonad size, controlling for fish body size, was found in females but not in males. Moreover, parasite abundance was positively correlated with fish spleen size and negatively with fish gonad size in females. CONCLUSION: The comparative analyses using cyprinid fish species demonstrated that natural mortality could be considered as a factor contributing to the variability of parasite species richness and moreover, parasite species benefit from long-lived fish. The results obtained from the analyses investigating the potential trade-off between reproduction and immunity could be interpreted as an energetic trade-off between female reproduction and immune function. The lack of negative relationship between gonad size and spleen size in males did not support our prediction based on the immunohandicap hypothesis.
Zobrazit více v PubMed
Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol. 1996;11:317–321. doi: 10.1016/0169-5347(96)10039-2. PubMed DOI
Møller AP, Merino S, Brown CR, Robertson RJ. Immune defence and host sociality: a comparative study of swallows and martins. Am Nat. 2001;158:136–145. doi: 10.1086/321308. PubMed DOI
Saino N, Calza S, Møller AP. Effects of a dipteran ectoparasite on immune response and growth trade-offs in barn swallow, Hirundo rustica, nestlings. Oikos. 1998;81:217–228. doi: 10.2307/3547043. DOI
Morand S, Poulin R. Nematode parasite species richness and the evolution of spleen size in birds. Can J Zool. 2000;78:1356–1360. doi: 10.1139/cjz-78-8-1356. DOI
Møller AP, Erritzøe J. Coevolution of host immune defence and parasite-induced mortality: relative spleen size and mortality in altricial birds. Oikos. 2002;99:95–100. doi: 10.1034/j.1600-0706.2002.990110.x. DOI
Skarstein F, Folstad I. Sexual dichromatism and the immunocompetence handicap: an observational approach using Arctic charr. Oikos. 1996;76:359–367. doi: 10.2307/3546208. DOI
Skarstein F, Folstad I, Liljedal S. Whether to reproduce or not: immune suppression and costs of parasites during reproduction in the Arctic charr. Can J Zool. 2001;79:271–278. doi: 10.1139/cjz-79-2-271. DOI
Charnov EL, Turner TF, Winemiller KO. Reproductive constraints and the evolution of life histories with indeterminate growth. Proc Nat Acad Sci USA. 2001;98:9460–9464. doi: 10.1073/pnas.161294498. PubMed DOI PMC
Reznick D, Ghalambor C, Nunney L. The evolution of senescence in fish. Mech Ageing Dev. 2002;123:773–789. doi: 10.1016/S0047-6374(01)00423-7. PubMed DOI
Brown CR, Brown MB. Spleen volume varies with colony size and parasite load in a colonial bird. Proc R Soc Lond Ser B. 2002;269:1367–1373. doi: 10.1098/rspb.2002.2036. PubMed DOI PMC
Møller AP, Christe P, Garamszegi LZ. Coevolutionary arms races: increased host immune defence promotes specialization by avian fleas. J Evol Biol. 2005;18:46–59. doi: 10.1111/j.1420-9101.2004.00774.x. PubMed DOI
Møller AP, Erritzøe J, Garamszegi LZ. Covariation between brain size and immunity in birds: implications for brain size. J Evol Biol. 2005;18:223–237. doi: 10.1111/j.1420-9101.2004.00805.x. PubMed DOI
Vainikka A, Jokinen EI, Kortet R, Taskinen J. Gender – and season – dependent relationships between testosterone, oestradiol and immune functions in wild roach. J Fish Biol. 2004;64:227–240. doi: 10.1111/j.1095-8649.2004.00306.x. DOI
Vainikka A, Kortet R, Paukku S, Rantala MJ, Pirhonen J. What do male tench, Tinca tinca, advertise with morphological ornaments? Acta Ethol. 2005;8:70–78. doi: 10.1007/s10211-005-0002-2. DOI
John JL. Parasites and the avian spleen: helminths. Biol J Linn Soc. 1995;54:87–106.
Møller AP, Dufva R, Erritzøe J. Host immune function and sexual selection in birds. J Evol Biol. 1998;11:703–719. doi: 10.1007/s000360050114. DOI
National Research Council. Biologic Markers in Immunotoxicology. Washington, DC: National Academy Press; 1992. PubMed
Dalmo RA, Ingebritsen K, Bøgwald J. Nonspecific defence mechanism in fish, with particular reference to the reticuloendothelial system (RES) J Fish Dis. 1997;20:241–273. doi: 10.1046/j.1365-2761.1997.00302.x. DOI
Kortet R, Taskinen J, Sinisalo T, Jokinen I. Breeding-related seasonal changes in immunocompetence, health state and condition of the cyprinid fish, Rutilus rutilus, L. Biol J Linn Soc. 2003;78:117–127. doi: 10.1046/j.1095-8312.2003.00136.x. DOI
Ottová E, Šimková A, Jurajda J, Dávidová M, Ondračková M, Pečínková M, Gelnar M. Sexual ornamentation and parasite infection in males of common bream (Abramis brama): a reflection of immunocompetence status or simple cost of reproduction? Evol Ecol Res. 2005;7:581–593.
Ottová E, Šimková A, Morand S. The role of major histocompatibility complex diversity in vigour of fish males (Abramis brama L.) and parasite selection. Biol J Lin Soc. 2007;90:525–538. doi: 10.1111/j.1095-8312.2007.00743.x. DOI
Lamková K, Šimková A, Palíková M, Jurajda P, Lojek A. Seasonal changes in immunocomptence and parasitism in chub (Leuciscus cephalus), a freshwater cyprinid fish. Parasitol Res. 2007;101:775–789. doi: 10.1007/s00436-007-0546-3. PubMed DOI
McPhail JD, Peacock SD. Some effects of the cestode (Schistocephalus solidus) on reproduction in the threespine stickleback (Gasterosteus aculeatus): evolutionary aspects of a host-parasite interaction. Can J Zool. 1983;61:901–908.
Johnson MW, Dick TA. Parasite effects on the survival, growth, and reproductive potential of yellow perch (Perca flavescens Mitchill) in Canadian Shield lakes. Can J Zool. 2001;79:1980–1992. doi: 10.1139/cjz-79-11-1980. DOI
Bush S, Dalsgaard I, Buchmann K. Concominant exposure of rainbow trout fry to Gyrodactylus derjavini and Flavobacterium psychrophilum: effects on infection and mortality of host. Vet Parasitol. 2003;117:117–122. doi: 10.1016/j.vetpar.2003.07.018. PubMed DOI
Collyer ML, Stochwell CA. Experimental evidence for cots of parasitism for a threatened species, White Sands pupfish (Cyprinodon tularosa) J Anim Ecol. 2004;73:821–830. doi: 10.1111/j.0021-8790.2004.00855.x. DOI
Jokela I, Taskinen I, Mutikainen P, Kopp K. Virulence of parasites in hosts under environmental stress: experiments with anoxin and starvation. Oikos. 2005;108:156–164. doi: 10.1111/j.0030-1299.2005.13185.x. DOI
Šimková A, Jarkovský J, Koubková B, Baruš V, Prokeš M. Associations between fish reproductive cycle and the dynamics of metazoan parasite infection. Parasitol Res. 2005;95:65–72. doi: 10.1007/s00436-004-1261-y. PubMed DOI
Folstad I, Karter AJ. Parasites, bright males, and the immunocompetence handicap. Am Nat. 1992;139:603–622. doi: 10.1086/285346. DOI
Wedekind C, Folstad I. Adaptive or non adaptive immunosuppression by sex hormones? Am Nat. 1994;143:936–938. doi: 10.1086/285641. DOI
Kurtz J, Sauer KP. The immunocompetence handicap hypothesis: testing the genetic predictions. Proc R Soc Lond Ser B. 1999;266:2515–2522. doi: 10.1098/rspb.1999.0954. PubMed DOI PMC
Kortet R, Taskinen J. Parasitism, condition and number of front head breeding tubercles in roach (Rutilus rutilus L.) Ecol Fresh Fish. 2004;13:119–124. doi: 10.1111/j.1600-0633.2004.00039.x. DOI
Slater CH, Schreck CB. Testosterone alters the immune response of chinook salmon, Oncorhynchus tshawytscha. Gen Comp Endocr. 1993;89:291–298. doi: 10.1006/gcen.1993.1035. PubMed DOI
Hou Y, Suzuki Y, Aida K. Effects of steroid hormones on immunoglobulin M (IgM) in rainbow trout. Fish Physiol Biochem. 1999;20:155–162. doi: 10.1023/A:1007799617597. DOI
Hamilton WD, Zuk M. Heritable true fitness and bright birds: a role for parasites? Science. 1982;218:384–387. doi: 10.1126/science.7123238. PubMed DOI
Folstad I, Hope AM, Karter A, Skorping A. Sexually selected color in male sticklebacks – a signal of both parasite exposure and parasite resistance. Oikos. 1994;69:511–515. doi: 10.2307/3545863. DOI
Kortet R, Vainikka A, Rantala MJ, Jokinen I, Taskinen J. Sexual ornamentation, androgens and papillomatosis in male roach (Rutilus rutilus L.) Evol Ecol Res. 2003;5:411–419.
Froese R, Pauly D. FishBase. World Wide Web electronic publication. 2005. http://www.fishbase.org
Morand S. In: Evolutionary biology of host-parasites relationships: theory meets reality. Poulin R, Morand S, Skorping A, editor. Amsterdam: Elsevier; 2000. Wormy world: comparative tests of theoretical hypotheses on parasite species richness; pp. 63–79.
Rigby MC, Moret Y. In: Evolutionary biology of host-parasites relationships: theory meets reality. Poulin R, Morand S, Skorping A, editor. Amsterdam: Elsevier; 2000. Life-history traide-offs and immune defences; pp. 129–142.
Poulin R, Morand S. The parasite biodiversity. Washington: Smithsonian Institution Press; 2004.
Ward PI. Sexual showiness and parasitism in freshwater fish: combined data from several isolated water systems. Oikos. 1989;55:428–429. doi: 10.2307/3565605. DOI
Wedekind C. Detailed information about parasites revealed by sexual ornamentation. Proc R Soc Lond Ser B. 1992;247:169–174. doi: 10.1098/rspb.1992.0024. DOI
Taskinen J, Kortet R. Dead and alive parasites: sexual ornaments signal resistance in the male fish, Rutilus rutilus. Evol Ecol Res. 2002;4:919–929.
Ardia DR, Clotfelter ED. The novel application of an immunological technique reveals the immunosuppressive effect of phytoestrogens in Betta splendens. J Fish Biol. 2006;68(Suppl A):144–149. doi: 10.1111/j.0022-1112.2006.00962.x. DOI
Šimková A, Morand S, Matějusová I, Jurajda P, Gelnar M. Local and regional influences on patterns of parasite species richness in central European fishes. Biodivers Conserv. 2001;10:511–525. doi: 10.1023/A:1016658427730. DOI
Møller AP. In: Host-parasite evolution: general principles and avian models. Clayton DH, Moore J, editor. Oxford: Oxford University Press; 1997. Parasitism and evolution of host life history; pp. 105–127.
Møller AP. Temporal change in mite abundance and its effect on barn swallow reproduction and sexual selection. J Evol Biol. 2002;15:495–504. doi: 10.1046/j.1420-9101.2002.00386.x. DOI
Lusk S, Baruš V, Vostradovský J. Fish in our waters. Academia: Prague; 1983. (In Czech)
Baruš V, Oliva O. Petromyzontes and Osteichthyes. Prague: Academy of Science of Czech Republic; 1995. (In Czech)
Ergens R, Lom J. Causative agents of fish diseases. Prague: Academia; 1970. (In Czech)
Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1–15. doi: 10.1086/284325. DOI
Purvis A, Rambault A. Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci. 1995;11:247–251. PubMed
Gilles A, Lecointre G, Miquelis A, Loerstcher M, Chappaz R, Brun G. Partial combination applied to phylogeny of European cyprinids using the mitochondrial control region. Mol Phyl Evol. 2001;19:22–33. doi: 10.1006/mpev.2000.0916. PubMed DOI
Harvey PH. On rethinking allometry. J Theor Biol. 1982;95:37–41. doi: 10.1016/0022-5193(82)90285-5. PubMed DOI
Jones KE, Purvis A, Gittleman JL. Biological correlated of extinction risk in bats. Am Nat. 2003;161:601–613. doi: 10.1086/368289. PubMed DOI
Garland TJr, Harvey PH, Ives AR. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol. 1992;41:18–32. doi: 10.2307/2992503. DOI