Improved method for high-efficiency electrotransformation of Escherichia coli with the large BAC plasmids
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- bakteriální transformace * MeSH
- bakteriologické techniky metody MeSH
- elektroporace metody MeSH
- Escherichia coli genetika MeSH
- mikrobiální genetika metody MeSH
- plazmidy * MeSH
- technika přenosu genů * MeSH
- umělé bakteriální chromozomy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
High transformation competency of Escherichia coli is one of the critical factors in the bacterial artificial chromosome (BAC)-based DNA library construction. Many electroporation protocols have been published until now, but the majority of them was optimized for transformation of small plasmids. Large plasmids with a size above 50 kbp display reduced transformation efficiency and thereby require specific conditions in the preparation and electroporation of electrocompetent cells. In the present work, we have optimized the parameters critical to the application of BAC DNA electrotransformation into E. coli. Systematic evaluation of electroporation variables has revealed several key factors like temperature of growth, media supplements, washing buffer, and cell concentration. Improvements made in the transformation protocol have led to electrocompetent cells with transformation efficiency up to 7 × 10(8) transformants per microgram of 120 kbp BAC plasmid DNA. We have successfully used in-house prepared competent cells, the quality of which is comparable with those produced by different companies, in the construction of metagenomic libraries from the soil. Our protocol can also be beneficial for other application with limited DNA source.
Zobrazit více v PubMed
Bioelectrochemistry. 2010 Oct;79(2):265-71 PubMed
Nucleic Acids Res. 1995 May 11;23(9):1641 PubMed
Biophys J. 1992 Nov;63(5):1320-7 PubMed
Nature. 1968 Mar 23;217(5134):1110-4 PubMed
J Mol Biol. 1980 Apr;138(2):179-207 PubMed
Biophys J. 1990 Jul;58(1):13-9 PubMed
Lett Appl Microbiol. 2009 Mar;48(3):349-54 PubMed
Methods Enzymol. 1991;204:63-113 PubMed
J Mol Biol. 1970 Oct 14;53(1):159-62 PubMed
Prog Nucleic Acid Res Mol Biol. 1994;47:299-329 PubMed
Biotechnology (N Y). 1990 Sep;8(9):841-4 PubMed
Appl Microbiol Biotechnol. 2010 Feb;85(5):1301-13 PubMed
Biochem Biophys Res Commun. 1982 Jul 30;107(2):584-7 PubMed
Nucleic Acids Res. 1988 Jul 11;16(13):6127-45 PubMed
Lett Appl Microbiol. 1994 Nov;19(5):312-6 PubMed
J Mol Biol. 1986 May 5;189(1):113-30 PubMed
Nucleic Acids Res. 1999 Feb 1;27(3):910-1 PubMed
Anal Biochem. 1988 Apr;170(1):38-44 PubMed
Biochim Biophys Acta. 2005 Aug 5;1724(3):270-80 PubMed
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 PubMed
Anal Biochem. 2003 Sep 1;320(1):152-5 PubMed
Nucleic Acids Res. 1989 Nov 25;17(22):9494 PubMed
J Mol Microbiol Biotechnol. 1999 Nov;1(2):193-202 PubMed
Nucleic Acids Res. 1994 Nov 25;22(23):4922-31 PubMed
Methods Enzymol. 1994;235:375-85 PubMed
Nucleic Acids Res. 1995 Jun 11;23(11):1990-6 PubMed
Gene. 1990 Nov 30;96(1):23-8 PubMed
Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172-5 PubMed
PLoS One. 2012;7(2):e31386 PubMed