The discovery of a new nonbile acid modulator of Takeda G protein-coupled receptor 5: An integrated computational approach

. 2025 Jan ; 358 (1) : e2400423.

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39801251

Grantová podpora
SVV 260 663 Ministry of Education, Youth, and Sport of the Czech Republic
LM2018140 Ministry of Education, Youth, and Sport of the Czech Republic
90140 Ministry of Education, Youth, and Sport of the Czech Republic
Martina Roeselová Memorial Fellowship granted by the IOCB Tech Foundation

The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5. However, TGR5 agonists with nonsteroidal structures have not been widely explored. This study aimed at discovering new TGR5 agonists using bile acid derivatives as a basis for a computational approach. We applied a combination of pharmacophore-based, molecular docking, and molecular dynamic (MD) simulation to identify potential compounds as new TGR5 agonists. Through pharmacophore screening and molecular docking, we identified 41 candidate compounds. From these, five candidates were selected based on criteria including pharmacophore features, a docking score of less than 9.2 kcal/mol, and similarity in essential interaction patterns with a reference ligand. Biological assays of the five hits confirmed that Hit-3 activates TGR5 similarly to the bile acid control. This was supported by MD simulation results, which indicated that a hydrogen bond interaction with Tyr240 is involved in TGR5 activation. Hit-3 (CSC089939231) represents a new nonsteroidal lead that can be further optimized to design potent TGR5 agonists.

Zobrazit více v PubMed

Di Leva F. S., Di Marino D., Limongelli V., Handb. Exp. Pharmacol. 2019, 256, 111. PubMed

Sepe V., Distrutti E., Limongelli V., Fiorucci S., Zampella A., Future Med. Chem. 2015, 7(9), 1109. PubMed

Keitel V., Stindt J., Häussinger D., Handb. Exp. Pharmacol. 2019, 256, 19. PubMed

Ma L., Yang F., Wu X., Mao C., Guo L., Miao T., Zang S. K., Jiang X., Shen D. D., Wei T., Zhou H., Wei Q., Li S., Shu Q., Feng S., Jiang C., Chu B., Du L., Sun J. P., Yu X., Zhang Y., Zhang P., Proc. Natl. Acad. Sci , 2022. 119(29), e2117054119. PubMed PMC

Sindhu T., Srinivasan P., J. Recept. Signal Transduct. 2017, 37(2), 109. PubMed

Watanabe M., Houten S. M., Mataki C., Christoffolete M. A., Kim B. W., Sato H., Messaddeq N., Harney J. W., Ezaki O., Kodama T., Schoonjans K., Bianco A. C., Auwerx J., Nature 2006, 439(7075), 484. PubMed

Hu M.‐M., He W. R., Gao P., Yang Q., He K., Cao L. B., Li S., Feng Y. Q., Shu H. B., Cell Res. 2019, 29(3), 193. PubMed PMC

Bhimanwar R. S., Lokhande K. B., Shrivastava A., Singh A., Chitlange S. S., Mittal A., J. Biomol. Struct. Dyn. 2023, 41, 13314. PubMed

De Marino S., Festa C., Sepe V., Zampella A., in Bile Acids and Their Receptors (Eds: Fiorucci S., Distrutti E.), Springer International Publishing, Cham: 2019, pp. 137.

Kumar D. P., Asgharpour A., Mirshahi F., Park S. H., Liu S., Imai Y., Nadler J. L., Grider J. R., Murthy K. S., Sanyal A. J., J. Biol. Chem. 2016, 291(13), 6626. PubMed PMC

Gioiello A., Rosatelli E., Nuti R., Macchiarulo A., Pellicciari R., Expert Opin. Ther. Pat. 2012, 22(12), 1399. PubMed

Di Leva F. S., Festa C., Carino A., De Marino S., Marchianò S., Di Marino D., Finamore C., Monti M. C., Zampella A., Fiorucci S., Limongelli V., Sci. Rep. 2019, 9(1), 2504. PubMed PMC

Yang F., Mao C., Guo L., Lin J., Ming Q., Xiao P., Wu X., Shen Q., Guo S., Shen D. D., Lu R., Zhang L., Huang S., Ping Y., Zhang C., Ma C., Zhang K., Liang X., Shen Y., Nan F., Yi F., Luca V. C., Zhou J., Jiang C., Sun J. P., Xie X., Yu X., Zhang Y., Nature 2020, 587(7834), 499. PubMed

Stefela A., Kaspar M., Drastik M., Kronenberger T., Micuda S., Dracinsky M., Klepetarova B., Kudova E., Pavek P., Front. Pharmacol. 2021, 12, 713149. PubMed PMC

Pellicciari R., Gioiello A., Macchiarulo A., Thomas C., Rosatelli E., Natalini B., Sardella R., Pruzanski M., Roda A., Pastorini E., Schoonjans K., Auwerx J., J. Med. Chem. 2009, 52(24), 7958. PubMed

Gioiello A., Macchiarulo A., Carotti A., Filipponi P., Costantino G., Rizzo G., Adorini L., Pellicciari R., Bioorg. Med. Chem. 2011, 19(8), 2650. PubMed

Langer T., Mol. Inf. 2010, 29(6–7), 470. PubMed

Wermuth C. G., Ganellin C. R., Lindberg P., Mitscher L. A., Pure Appl. Chem. 1998, 70(5), 1129.

Castronuovo G., Elia V., Perez‐Casas S., Velleca F., J. Mol. Liq. 2000, 88(2), 163.

Muley L., Baum B., Smolinski M., Freindorf M., Heine A., Klebe G., Hangauer D. G., J. Med. Chem. 2010, 53(5), 2126. PubMed

Yang S.‐Y., Drug Discov. Today 2010, 15(11), 444. PubMed

Thangapandian S., John S., Sakkiah S., Lee K. W., Eur. J. Med. Chem. 2010, 45(10), 4409. PubMed

Sunseri J., Koes D. R., Nucleic Acids Res. 2016, 44(W1), W442. PubMed PMC

Hevener K. E., Zhao W., Ball D. M., Babaoglu K., Qi J., White S. W., Lee R. E., J. Chem. Inf. Model. 2009, 49(2), 444. PubMed PMC

Trott O., Olson A. J., J. Comput. Chem. 2010, 31(2), 455. PubMed PMC

Kawamata Y., Fujii R., Hosoya M., Harada M., Yoshida H., Miwa M., Fukusumi S., Habata Y., Itoh T., Shintani Y., Hinuma S., Fujisawa Y., Fujino M., J. Biol. Chem. 2003, 278(11), 9435. PubMed

Hofmann A. F., Hagey L. R., J. Lipid Res. 2014, 55(8), 1553. PubMed PMC

Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B. A., Thiessen P. A., Yu B., Zaslavsky L., Zhang J., Bolton E. E., Nucleic Acids Res. 2022, 51(D1), D1373. PubMed PMC

Mysinger M. M., Carchia M., Irwin J. J., Shoichet B. K., J. Med. Chem. 2012, 55(14), 6582. PubMed PMC

Triballeau N., Acher F., Brabet I., Pin J. P., Bertrand H. O., J. Med. Chem. 2005, 48(7), 2534. PubMed

Pellicciari R., Gioiello A., Sabbatini P., Venturoni F., Nuti R., Colliva C., Rizzo G., Adorini L., Pruzanski M., Roda A., Macchiarulo A., ACS Med. Chem. Lett. 2012, 3(4), 273. PubMed PMC

Purushottamachar P., Patel J. B., Gediya L. K., Clement O. O., Njar V. C. O., Eur. J. Med. Chem. 2012, 47, 412. PubMed PMC

Baell J. B., Holloway G. A., J. Med. Chem. 2010, 53(7), 2719. PubMed

O'Boyle N. M., Banck M., James C. A., Morley C., Vandermeersch T., Hutchison G. R., J. Cheminf. 2011, 3(1), 33. PubMed PMC

Dallakyan S., Olson A. J., Methods Mol. Biol. 2015, 1263, 243. PubMed

Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E., J. Comput. Chem. 2004, 25(13), 1605. PubMed

Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C., J. Comput. Chem. 2005, 26(16), 1701. PubMed

Huang J., MacKerell A. D. Jr., J. Comput. Chem. 2013, 34(25), 2135. PubMed PMC

Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., Hutchison G. R., J. Cheminf. 2012, 4(1), 17. PubMed PMC

Vanommeslaeghe K., Raman E. P., MacKerell A. D. Jr., J. Chem. Inf. Model. 2012, 52(12), 3155. PubMed PMC

Pires D. E. V., Blundell T. L., Ascher D. B., J. Med. Chem. 2015, 58(9), 4066. PubMed PMC

Daina A., Michielin O., Zoete V., Sci. Rep. 2017. 7(1), p. 42717. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...