The discovery of a new nonbile acid modulator of Takeda G protein-coupled receptor 5: An integrated computational approach
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články
Grantová podpora
SVV 260 663
Ministry of Education, Youth, and Sport of the Czech Republic
LM2018140
Ministry of Education, Youth, and Sport of the Czech Republic
90140
Ministry of Education, Youth, and Sport of the Czech Republic
Martina Roeselová Memorial Fellowship granted by the IOCB Tech Foundation
PubMed
39801251
PubMed Central
PMC11726147
DOI
10.1002/ardp.202400423
Knihovny.cz E-zdroje
- Klíčová slova
- INT‐777, TGR5, molecular docking, nonbile acid, pharmacophore,
- MeSH
- lidé MeSH
- ligandy MeSH
- molekulární struktura MeSH
- objevování léků MeSH
- receptory spřažené s G-proteiny * agonisté metabolismus MeSH
- simulace molekulární dynamiky * MeSH
- simulace molekulového dockingu * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- žlučové kyseliny a soli chemie metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- GPBAR1 protein, human MeSH Prohlížeč
- ligandy MeSH
- receptory spřažené s G-proteiny * MeSH
- žlučové kyseliny a soli MeSH
The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5. However, TGR5 agonists with nonsteroidal structures have not been widely explored. This study aimed at discovering new TGR5 agonists using bile acid derivatives as a basis for a computational approach. We applied a combination of pharmacophore-based, molecular docking, and molecular dynamic (MD) simulation to identify potential compounds as new TGR5 agonists. Through pharmacophore screening and molecular docking, we identified 41 candidate compounds. From these, five candidates were selected based on criteria including pharmacophore features, a docking score of less than 9.2 kcal/mol, and similarity in essential interaction patterns with a reference ligand. Biological assays of the five hits confirmed that Hit-3 activates TGR5 similarly to the bile acid control. This was supported by MD simulation results, which indicated that a hydrogen bond interaction with Tyr240 is involved in TGR5 activation. Hit-3 (CSC089939231) represents a new nonsteroidal lead that can be further optimized to design potent TGR5 agonists.
Zobrazit více v PubMed
Di Leva F. S., Di Marino D., Limongelli V., Handb. Exp. Pharmacol. 2019, 256, 111. PubMed
Sepe V., Distrutti E., Limongelli V., Fiorucci S., Zampella A., Future Med. Chem. 2015, 7(9), 1109. PubMed
Keitel V., Stindt J., Häussinger D., Handb. Exp. Pharmacol. 2019, 256, 19. PubMed
Ma L., Yang F., Wu X., Mao C., Guo L., Miao T., Zang S. K., Jiang X., Shen D. D., Wei T., Zhou H., Wei Q., Li S., Shu Q., Feng S., Jiang C., Chu B., Du L., Sun J. P., Yu X., Zhang Y., Zhang P., Proc. Natl. Acad. Sci , 2022. 119(29), e2117054119. PubMed PMC
Sindhu T., Srinivasan P., J. Recept. Signal Transduct. 2017, 37(2), 109. PubMed
Watanabe M., Houten S. M., Mataki C., Christoffolete M. A., Kim B. W., Sato H., Messaddeq N., Harney J. W., Ezaki O., Kodama T., Schoonjans K., Bianco A. C., Auwerx J., Nature 2006, 439(7075), 484. PubMed
Hu M.‐M., He W. R., Gao P., Yang Q., He K., Cao L. B., Li S., Feng Y. Q., Shu H. B., Cell Res. 2019, 29(3), 193. PubMed PMC
Bhimanwar R. S., Lokhande K. B., Shrivastava A., Singh A., Chitlange S. S., Mittal A., J. Biomol. Struct. Dyn. 2023, 41, 13314. PubMed
De Marino S., Festa C., Sepe V., Zampella A., in Bile Acids and Their Receptors (Eds: Fiorucci S., Distrutti E.), Springer International Publishing, Cham: 2019, pp. 137.
Kumar D. P., Asgharpour A., Mirshahi F., Park S. H., Liu S., Imai Y., Nadler J. L., Grider J. R., Murthy K. S., Sanyal A. J., J. Biol. Chem. 2016, 291(13), 6626. PubMed PMC
Gioiello A., Rosatelli E., Nuti R., Macchiarulo A., Pellicciari R., Expert Opin. Ther. Pat. 2012, 22(12), 1399. PubMed
Di Leva F. S., Festa C., Carino A., De Marino S., Marchianò S., Di Marino D., Finamore C., Monti M. C., Zampella A., Fiorucci S., Limongelli V., Sci. Rep. 2019, 9(1), 2504. PubMed PMC
Yang F., Mao C., Guo L., Lin J., Ming Q., Xiao P., Wu X., Shen Q., Guo S., Shen D. D., Lu R., Zhang L., Huang S., Ping Y., Zhang C., Ma C., Zhang K., Liang X., Shen Y., Nan F., Yi F., Luca V. C., Zhou J., Jiang C., Sun J. P., Xie X., Yu X., Zhang Y., Nature 2020, 587(7834), 499. PubMed
Stefela A., Kaspar M., Drastik M., Kronenberger T., Micuda S., Dracinsky M., Klepetarova B., Kudova E., Pavek P., Front. Pharmacol. 2021, 12, 713149. PubMed PMC
Pellicciari R., Gioiello A., Macchiarulo A., Thomas C., Rosatelli E., Natalini B., Sardella R., Pruzanski M., Roda A., Pastorini E., Schoonjans K., Auwerx J., J. Med. Chem. 2009, 52(24), 7958. PubMed
Gioiello A., Macchiarulo A., Carotti A., Filipponi P., Costantino G., Rizzo G., Adorini L., Pellicciari R., Bioorg. Med. Chem. 2011, 19(8), 2650. PubMed
Langer T., Mol. Inf. 2010, 29(6–7), 470. PubMed
Wermuth C. G., Ganellin C. R., Lindberg P., Mitscher L. A., Pure Appl. Chem. 1998, 70(5), 1129.
Castronuovo G., Elia V., Perez‐Casas S., Velleca F., J. Mol. Liq. 2000, 88(2), 163.
Muley L., Baum B., Smolinski M., Freindorf M., Heine A., Klebe G., Hangauer D. G., J. Med. Chem. 2010, 53(5), 2126. PubMed
Yang S.‐Y., Drug Discov. Today 2010, 15(11), 444. PubMed
Thangapandian S., John S., Sakkiah S., Lee K. W., Eur. J. Med. Chem. 2010, 45(10), 4409. PubMed
Sunseri J., Koes D. R., Nucleic Acids Res. 2016, 44(W1), W442. PubMed PMC
Hevener K. E., Zhao W., Ball D. M., Babaoglu K., Qi J., White S. W., Lee R. E., J. Chem. Inf. Model. 2009, 49(2), 444. PubMed PMC
Trott O., Olson A. J., J. Comput. Chem. 2010, 31(2), 455. PubMed PMC
Kawamata Y., Fujii R., Hosoya M., Harada M., Yoshida H., Miwa M., Fukusumi S., Habata Y., Itoh T., Shintani Y., Hinuma S., Fujisawa Y., Fujino M., J. Biol. Chem. 2003, 278(11), 9435. PubMed
Hofmann A. F., Hagey L. R., J. Lipid Res. 2014, 55(8), 1553. PubMed PMC
Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B. A., Thiessen P. A., Yu B., Zaslavsky L., Zhang J., Bolton E. E., Nucleic Acids Res. 2022, 51(D1), D1373. PubMed PMC
Mysinger M. M., Carchia M., Irwin J. J., Shoichet B. K., J. Med. Chem. 2012, 55(14), 6582. PubMed PMC
Triballeau N., Acher F., Brabet I., Pin J. P., Bertrand H. O., J. Med. Chem. 2005, 48(7), 2534. PubMed
Pellicciari R., Gioiello A., Sabbatini P., Venturoni F., Nuti R., Colliva C., Rizzo G., Adorini L., Pruzanski M., Roda A., Macchiarulo A., ACS Med. Chem. Lett. 2012, 3(4), 273. PubMed PMC
Purushottamachar P., Patel J. B., Gediya L. K., Clement O. O., Njar V. C. O., Eur. J. Med. Chem. 2012, 47, 412. PubMed PMC
Baell J. B., Holloway G. A., J. Med. Chem. 2010, 53(7), 2719. PubMed
O'Boyle N. M., Banck M., James C. A., Morley C., Vandermeersch T., Hutchison G. R., J. Cheminf. 2011, 3(1), 33. PubMed PMC
Dallakyan S., Olson A. J., Methods Mol. Biol. 2015, 1263, 243. PubMed
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E., J. Comput. Chem. 2004, 25(13), 1605. PubMed
Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C., J. Comput. Chem. 2005, 26(16), 1701. PubMed
Huang J., MacKerell A. D. Jr., J. Comput. Chem. 2013, 34(25), 2135. PubMed PMC
Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., Hutchison G. R., J. Cheminf. 2012, 4(1), 17. PubMed PMC
Vanommeslaeghe K., Raman E. P., MacKerell A. D. Jr., J. Chem. Inf. Model. 2012, 52(12), 3155. PubMed PMC
Pires D. E. V., Blundell T. L., Ascher D. B., J. Med. Chem. 2015, 58(9), 4066. PubMed PMC
Daina A., Michielin O., Zoete V., Sci. Rep. 2017. 7(1), p. 42717. PubMed PMC