(E)-7-Ethylidene-lithocholic Acid (7-ELCA) Is a Potent Dual Farnesoid X Receptor (FXR) Antagonist and GPBAR1 Agonist Inhibiting FXR-Induced Gene Expression in Hepatocytes and Stimulating Glucagon-like Peptide-1 Secretion From Enteroendocrine Cells

. 2021 ; 12 () : 713149. [epub] 20210813

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34483922

Bile acids (BAs) are key signaling steroidal molecules that regulate glucose, lipid, and energy homeostasis via interactions with the farnesoid X receptor (FXR) and G-protein bile acid receptor 1 (GPBAR1). Extensive medicinal chemistry modifications of the BA scaffold led to the discovery of potent selective or dual FXR and GPBAR1 agonists. Herein, we discovered 7-ethylidene-lithocholic acid (7-ELCA) as a novel combined FXR antagonist/GPBAR1 agonist (IC50 = 15 μM/EC50 = 26 nM) with no off-target activation in a library of 7-alkyl substituted derivatives of BAs. 7-ELCA significantly suppressed the effect of the FXR agonist obeticholic acid in BSEP and SHP regulation in human hepatocytes. Importantly, 7-ELCA significantly stimulated the production of glucagon-like peptide-1 (GLP-1), an incretin with insulinotropic effect in postprandial glucose utilization, in intestinal enteroendocrine cells. We can suggest that 7-ELCA may be a prospective approach to the treatment of type II diabetes as the dual modulation of GPBAR1 and FXR has been supposed to be effective in the synergistic regulation of glucose homeostasis in the intestine.

Zobrazit více v PubMed

Ahmad T. R., Haeusler R. A. (2019). Bile Acids in Glucose Metabolism and Insulin Signalling - Mechanisms and Research Needs. Nat. Rev. Endocrinol. 15, 701–712. 10.1038/s41574-019-0266-7 PubMed DOI PMC

Arab J. P., Karpen S. J., Dawson P. A., Arrese M., Trauner M. (2017). Bile Acids and Nonalcoholic Fatty Liver Disease: Molecular Insights and Therapeutic Perspectives. Hepatology 65, 350–362. 10.1002/hep.28709 PubMed DOI PMC

Bjedov S., Jakimov D., Pilipović A., Poša M., Sakač M. (2017). Antitumor Activity of Newly Synthesized Oxo and Ethylidene Derivatives of Bile Acids and Their Amides and Oxazolines. Steroids 120, 19–25. 10.1016/j.steroids.2017.01.008 PubMed DOI

Brighton C. A., Rievaj J., Kuhre R. E., Glass L. L., Schoonjans K., Holst J. J., et al. (2015). Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors. Endocrinology 156, 3961–3970. 10.1210/en.2015-1321 PubMed DOI PMC

Cao H., Chen Z. X., Wang K., Ning M. M., Zou Q. A., Feng Y., et al. (2016). Intestinally-targeted TGR5 Agonists Equipped with Quaternary Ammonium Have an Improved Hypoglycemic Effect and Reduced Gallbladder Filling Effect. Sci. Rep. 6, 28676. 10.1038/srep28676 PubMed DOI PMC

Carazo A., Dusek J., Holas O., Skoda J., Hyrsova L., Smutny T., et al. (2018). Teriflunomide Is an Indirect Human Constitutive Androstane Receptor (CAR) Activator Interacting with Epidermal Growth Factor (EGF) Signaling. Front. Pharmacol. 9, 993. 10.3389/fphar.2018.00993 PubMed DOI PMC

Carino A., Biagioli M., Marchianò S., Scarpelli P., Zampella A., Limongelli V., et al. (2018). Disruption of TFGβ-SMAD3 Pathway by the Nuclear Receptor SHP Mediates the Antifibrotic Activities of BAR704, a Novel Highly Selective FXR Ligand. Pharmacol. Res. 131, 17–31. 10.1016/j.phrs.2018.02.033 PubMed DOI

Chaudhari S. N., Harris D. A., Aliakbarian H., Luo J. N., Henke M. T., Subramaniam R., et al. (2021). Bariatric Surgery Reveals a Gut-Restricted TGR5 Agonist with Anti-diabetic Effects. Nat. Chem. Biol. 17, 20–29. 10.1038/s41589-020-0604-z PubMed DOI PMC

Chen T., Reich N. W., Bell N., Finn P. D., Rodriguez D., Kohler J., et al. (2018). Design of Gut-Restricted Thiazolidine Agonists of G Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5). J. Med. Chem. 61, 7589–7613. 10.1021/acs.jmedchem.8b00308 PubMed DOI

Cui J., Huang L., Zhao A., Lew J.-L., Yu J., Sahoo S., et al. (2003). Guggulsterone Is a Farnesoid X Receptor Antagonist in Coactivator Association Assays but Acts to Enhance Transcription of Bile Salt export Pump. J. Biol. Chem. 278, 10214–10220. 10.1074/jbc.m209323200 PubMed DOI

D'Amore C., Di Leva F. S., Sepe V., Renga B., Del Gaudio C., D'Auria M. V., et al. (2014). Design, Synthesis, and Biological Evaluation of Potent Dual Agonists of Nuclear and Membrane Bile Acid Receptors. J. Med. Chem. 57, 937–954. 10.1021/jm401873d PubMed DOI

Ðanić M., Stanimirov B., Pavlović N., Goločorbin-Kon S., Al-Salami H., Stankov K., et al. (2018). Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Front. Pharmacol. 9, 1382. 10.3389/fphar.2018.01382 PubMed DOI PMC

De Marino S., Festa C., Sepe V., Zampella A. (2019). Chemistry and Pharmacology of GPBAR1 and FXR Selective Agonists, Dual Agonists, and Antagonists. Handb Exp. Pharmacol. 256, 137–165. 10.1007/164_2019_237 PubMed DOI

Di Leva F. S., Di Marino D., Limongelli V. (2019). Structural Insight into the Binding Mode of FXR and GPBAR1 Modulators. Handb Exp. Pharmacol. 256, 111–136. 10.1007/164_2019_234 PubMed DOI

Donkers J. M., Roscam Abbing R. L. P., van de Graaf S. F. J. (2019). Developments in Bile Salt Based Therapies: A Critical Overview. Biochem. Pharmacol. 161, 1–13. 10.1016/j.bcp.2018.12.018 PubMed DOI

Downes M., Verdecia M. A., Roecker A. J., Hughes R., Hogenesch J. B., Kast-Woelbern H. R., et al. (2003). A Chemical, Genetic, and Structural Analysis of the Nuclear Bile Acid Receptor FXR. Mol. Cel 11, 1079–1092. 10.1016/s1097-2765(03)00104-7 PubMed DOI PMC

Duan H., Ning M., Zou Q., Ye Y., Feng Y., Zhang L., et al. (2015). Discovery of Intestinal Targeted TGR5 Agonists for the Treatment of Type 2 Diabetes. J. Med. Chem. 58, 3315–3328. 10.1021/jm500829b PubMed DOI

Dvorák Z., Vrzal R., Pávek P., Ulrichová J. (2008). An Evidence for Regulatory Cross-Talk between Aryl Hydrocarbon Receptor and Glucocorticoid Receptor in HepG2 Cells. Physiol. Res. 57, 427–435. 10.33549/physiolres.931090 PubMed DOI

Fang S., Suh J. M., Reilly S. M., Yu E., Osborn O., Lackey D., et al. (2015). Intestinal FXR Agonism Promotes Adipose Tissue browning and Reduces Obesity and Insulin Resistance. Nat. Med. 21, 159–165. 10.1038/nm.3760 PubMed DOI PMC

Farrugia L. J. (2012). WinGXandORTEP for Windows: an Update. J. Appl. Cryst. 45, 849–854. 10.1107/s0021889812029111 DOI

Festa C., Renga B., D’Amore C., Sepe V., Finamore C., De Marino S., et al. (2014). Exploitation of Cholane Scaffold for the Discovery of Potent and Selective Farnesoid X Receptor (FXR) and G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1) Ligands. J. Med. Chem. 57, 8477–8495. 10.1021/jm501273r PubMed DOI

Fieser L. F., Rajagopalan S. (1950). Oxidation of Steroids. III. Selective Oxidations and Acylations in the Bile Acid Series1. J. Am. Chem. Soc. 72, 5530–5536. 10.1021/ja01168a046 DOI

Fieser L. F., Rajagopalan S. (1949). Selective Oxidation with N-Bromosuccinimide. I. Cholic Acid. J. Am. Chem. Soc. 71, 3935–3938. 10.1021/ja01180a015 DOI

Fiorucci S., Di Giorgio C., Distrutti E. (2019). Obeticholic Acid: An Update of its Pharmacological Activities in Liver Disorders. Handb Exp. Pharmacol. 256, 283–295. 10.1007/164_2019_227 PubMed DOI

Fujino T., Une M., Imanaka T., Inoue K., Nishimaki-Mogami T. (2004). Structure-activity Relationship of Bile Acids and Bile Acid Analogs in Regard to FXR Activation. J. Lipid Res. 45, 132–138. 10.1194/jlr.m300215-jlr200 PubMed DOI

Gertzen C. G. W., Spomer L., Smits S. H. J., Häussinger D., Keitel V., Gohlke H. (2015). Mutational Mapping of the Transmembrane Binding Site of the G-Protein Coupled Receptor TGR5 and Binding Mode Prediction of TGR5 Agonists. Eur. J. Med. Chem. 104, 57–72. 10.1016/j.ejmech.2015.09.024 PubMed DOI

Glicksman C., Pournaras D. J., Wright M., Roberts R., Mahon D., Welbourn R., et al. (2010). Postprandial Plasma Bile Acid Responses in normal Weight and Obese Subjects. Ann. Clin. Biochem. 47, 482–484. 10.1258/acb.2010.010040 PubMed DOI

Gonzalez F. J., Jiang C., Patterson A. D. (2016). An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology 151, 845–859. 10.1053/j.gastro.2016.08.057 PubMed DOI PMC

Gonzalez F. J., Jiang C., Xie C., Patterson A. D. (2017). Intestinal Farnesoid X Receptor Signaling Modulates Metabolic Disease. Dig. Dis. 35, 178–184. 10.1159/000450908 PubMed DOI PMC

Han C. Y. (2018). Update on FXR Biology: Promising Therapeutic Target?. Int. J. Mol. Sci. 19, 2069. 10.3390/ijms19072069 PubMed DOI PMC

Han X., Cui Z.-Y., Song J., Piao H.-Q., Lian L.-H., Hou L.-S., et al. (2019). Acanthoic Acid Modulates Lipogenesis in Nonalcoholic Fatty Liver Disease via FXR/LXRs-dependent Manner. Chemico-Biological Interactions 311, 108794. 10.1016/j.cbi.2019.108794 PubMed DOI

Haslewood G. A. D. (1942). Preparation of Deoxycholic Acid. Nature 150, 211. 10.1038/150211b0 DOI

Hui S., Liu Y., Chen M., Wang X., Lang H., Zhou M., et al. (2019). Capsaicin Improves Glucose Tolerance and Insulin Sensitivity through Modulation of the Gut Microbiota-Bile Acid-FXR Axis in Type 2 Diabetic Db/db Mice. Mol. Nutr. Food Res. 63, e1900608. 10.1002/mnfr.201900608 PubMed DOI

Iguchi Y., Nishimaki-Mogami T., Yamaguchi M., Teraoka F., Kaneko T., Une M. (2011). Effects of Chemical Modification of Ursodeoxycholic Acid on TGR5 Activation. Biol. Pharm. Bull. 34, 1–7. 10.1248/bpb.34.1 PubMed DOI

Katsuma S., Hirasawa A., Tsujimoto G. (2005). Bile Acids Promote Glucagon-like Peptide-1 Secretion through TGR5 in a Murine Enteroendocrine Cell Line STC-1. Biochem. Biophysical Res. Commun. 329, 386–390. 10.1016/j.bbrc.2005.01.139 PubMed DOI

Kawamata Y., Fujii R., Hosoya M., Harada M., Yoshida H., Miwa M., et al. (2003). A G Protein-Coupled Receptor Responsive to Bile Acids. J. Biol. Chem. 278, 9435–9440. 10.1074/jbc.m209706200 PubMed DOI

Kecman S., Škrbić R., Badnjevic Cengic A., Mooranian A., Al-Salami H., Mikov M., et al. (2020). Potentials of Human Bile Acids and Their Salts in Pharmaceutical Nano Delivery and Formulations Adjuvants. Thc 28, 325–335. 10.3233/thc-191845 PubMed DOI

Keitel V., Stindt J., Häussinger D. (2019). Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb Exp. Pharmacol. 256, 19–49. 10.1007/164_2019_230 PubMed DOI

Kim H., Une M., Hino A., Wada H., Yoshii M., Kuramoto T., et al. (2000). Bile Acid Sulfonate and 7-alkylated Bile Acid Analogs: Effect on Intestinal Absorption of Taurocholate and Cholesterol 7α-Hydroxylase Activity in Cultured Rat Hepatocytes. Steroids 65, 24–28. 10.1016/s0039-128x(99)00075-6 PubMed DOI

Lamers C., Schubert-Zsilavecz M., Merk D. (2014). Medicinal Chemistry and Pharmacological Effects of Farnesoid X Receptor (FXR) Antagonists. Ctmc 14, 2188–2205. 10.2174/1568026614666141112103516 PubMed DOI

Lasalle M., Hoguet V., Hennuyer N., Leroux F., Piveteau C., Belloy L., et al. (2017). Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon like Peptide-1 Secretion and Improve Glucose Tolerance. J. Med. Chem. 60, 4185–4211. 10.1021/acs.jmedchem.6b01873 PubMed DOI

Laskowski R. A., Swindells M. B. (2011). LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 51, 2778–2786. 10.1021/ci200227u PubMed DOI

Li F., Jiang C., Krausz K. W., Li Y., Albert I., Hao H., et al. (2013). Microbiome Remodelling Leads to Inhibition of Intestinal Farnesoid X Receptor Signalling and Decreased Obesity. Nat. Commun. 4, 2384. 10.1038/ncomms3384 PubMed DOI PMC

Li P., Zhu L., Yang X., Li W., Sun X., Yi B., et al. (2018). Farnesoid X Receptor (FXR) Interacts with Camp Response Element Binding Protein (CREB) to Modulate Glucagon-like Peptide-1 (7-36) Amide (GLP-1) Secretion by Intestinal L Cell. Cell Physiol Biochem. 47, 1442–1452. 10.1159/000490836 PubMed DOI

Ma S.-y., Ning M.-m., Zou Q.-a., Feng Y., Ye Y.-l., Shen J.-h., et al. (2016). OL3, a Novel Low-Absorbed TGR5 Agonist with Reduced Side Effects, Lowered Blood Glucose via Dual Actions on TGR5 Activation and DPP-4 Inhibition. Acta Pharmacol. Sin 37, 1359–1369. 10.1038/aps.2016.27 PubMed DOI PMC

Macchiarulo A., Gioiello A., Thomas C., Pols T. W. H., Nuti R., Ferrari C., et al. (2013). Probing the Binding Site of Bile Acids in TGR5. ACS Med. Chem. Lett. 4, 1158–1162. 10.1021/ml400247k PubMed DOI PMC

Massafra V., Pellicciari R., Gioiello A., van Mil S. W. C. (2018). Progress and Challenges of Selective Farnesoid X Receptor Modulation. Pharmacol. Ther. 191, 162–177. 10.1016/j.pharmthera.2018.06.009 PubMed DOI

Merk D., Sreeramulu S., Kudlinzki D., Saxena K., Linhard V., Gande S. L., et al. (2019). Molecular Tuning of Farnesoid X Receptor Partial Agonism. Nat. Commun. 10, 2915. 10.1038/s41467-019-10853-2 PubMed DOI PMC

Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., et al. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 30, 2785–2791. 10.1002/jcc.21256 PubMed DOI PMC

Nakhi A., McDermott C. M., Stoltz K. L., John K., Hawkinson J. E., Ambrose E. A., et al. (2019). 7-Methylation of Chenodeoxycholic Acid Derivatives Yields a Substantial Increase in TGR5 Receptor Potency. J. Med. Chem. 62, 6824–6830. 10.1021/acs.jmedchem.9b00770 PubMed DOI

Niss K., Jakobsson M. E., Westergaard D., Belling K. G., Olsen J. V., Brunak S. (2020). Effects of Active Farnesoid X Receptor on GLUTag Enteroendocrine L Cells. Mol. Cell Endocrinol. 517, 110923. 10.1016/j.mce.2020.110923 PubMed DOI

Pathak P., Liu H., Boehme S., Xie C., Krausz K. W., Gonzalez F., et al. (2017). Farnesoid X Receptor Induces Takeda G-Protein Receptor 5 Cross-Talk to Regulate Bile Acid Synthesis and Hepatic Metabolism. J. Biol. Chem. 292, 11055–11069. 10.1074/jbc.m117.784322 PubMed DOI PMC

Pathak P., Xie C., Nichols R. G., Ferrell J. M., Boehme S., Krausz K. W., et al. (2018). Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G‐protein Bile Acid Receptor‐1 Signaling to Improve Metabolism. Hepatology 68, 1574–1588. 10.1002/hep.29857 PubMed DOI PMC

Pellicciari R., Fiorucci S., Camaioni E., Clerici C., Costantino G., Maloney P. R., et al. (2002). 6α-Ethyl-Chenodeoxycholic Acid (6-ECDCA), a Potent and Selective FXR Agonist Endowed with Anticholestatic Activity. J. Med. Chem. 45, 3569–3572. 10.1021/jm025529g PubMed DOI

Pellicciari R., Gioiello A., Macchiarulo A., Thomas C., Rosatelli E., Natalini B., et al. (2009). Discovery of 6α-Ethyl-23(S)-methylcholic Acid (S-EMCA, INT-777) as a Potent and Selective Agonist for the TGR5 Receptor, a Novel Target for Diabesity. J. Med. Chem. 52, 7958–7961. 10.1021/jm901390p PubMed DOI

Pellicciari R., Gioiello A., Sabbatini P., Venturoni F., Nuti R., Colliva C., et al. (2012). Avicholic Acid: A Lead Compound from Birds on the Route to Potent TGR5 Modulators. ACS Med. Chem. Lett. 3, 273–277. 10.1021/ml200256d PubMed DOI PMC

Perino A., Pols T. W. H., Nomura M., Stein S., Pellicciari R., Schoonjans K. (2014). TGR5 Reduces Macrophage Migration through mTOR-Induced C/EBPβ Differential Translation. J. Clin. Invest. 124, 5424–5436. 10.1172/jci76289 PubMed DOI PMC

Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., et al. (2004). UCSF Chimera?A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 25, 1605–1612. 10.1002/jcc.20084 PubMed DOI

Pols T. W. H., Nomura M., Harach T., Lo Sasso G., Oosterveer M. H., Thomas C., et al. (2011). TGR5 Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading. Cel Metab. 14, 747–757. 10.1016/j.cmet.2011.11.006 PubMed DOI PMC

Posa M., Bjedov S., Sebenji A., Sakac M. (2014). Wittig Reaction (With Ethylidene Triphenylphosphorane) of Oxo-Hydroxy Derivatives of 5beta-Cholanic Acid: Hydrophobicity, Haemolytic Potential and Capacity of Derived Ethylidene Derivatives for Solubilisation of Cholesterol. Steroids 86, 16–25. 10.1016/j.steroids.2014.04.018 PubMed DOI

Prawitt J., Abdelkarim M., Stroeve J. H. M., Popescu I., Duez H., Velagapudi V. R., et al. (2011). Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes 60, 1861–1871. 10.2337/db11-0030 PubMed DOI PMC

Ratziu V., Sanyal A. J., Loomba R., Rinella M., Harrison S., Anstee Q. M., et al. (2019). REGENERATE: Design of a Pivotal, Randomised, Phase 3 Study Evaluating the Safety and Efficacy of Obeticholic Acid in Patients with Fibrosis Due to Nonalcoholic Steatohepatitis. Contemp. Clin. Trials 84, 105803. 10.1016/j.cct.2019.06.017 PubMed DOI

Rizzo G., Passeri D., De Franco F., Ciaccioli G., Donadio L., Rizzo G., et al. (2010). Functional Characterization of the Semisynthetic Bile Acid Derivative INT-767, a Dual Farnesoid X Receptor and TGR5 Agonist. Mol. Pharmacol. 78, 617–630. 10.1124/mol.110.064501 PubMed DOI PMC

Sayin S. I., Wahlström A., Felin J., Jäntti S., Marschall H.-U., Bamberg K., et al. (2013). Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cel Metab. 17, 225–235. 10.1016/j.cmet.2013.01.003 PubMed DOI

Sepe V., Festa C., Renga B., Carino A., Cipriani S., Finamore C., et al. (2016a). Insights on FXR Selective Modulation. Speculation on Bile Acid Chemical Space in the Discovery of Potent and Selective Agonists. Sci. Rep. 6, 19008. 10.1038/srep19008 PubMed DOI PMC

Sepe V., Distrutti E., Fiorucci S., Zampella A. (2018). Farnesoid X Receptor Modulators 2014-present: a Patent Review. Expert Opin. Ther. Patents 28, 351–364. 10.1080/13543776.2018.1459569 PubMed DOI

Sepe V., Distrutti E., Limongelli V., Fiorucci S., Zampella A. (2015). Steroidal Scaffolds as FXR and GPBAR1 Ligands: from Chemistry to Therapeutical Application. Future Med. Chem. 7, 1109–1135. 10.4155/fmc.15.54 PubMed DOI

Sepe V., Renga B., Festa C., D’Amore C., Masullo D., Cipriani S., et al. (2014). Modification on Ursodeoxycholic Acid (UDCA) Scaffold. Discovery of Bile Acid Derivatives as Selective Agonists of Cell-Surface G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1). J. Med. Chem. 57, 7687–7701. 10.1021/jm500889f PubMed DOI

Sepe V., Renga B., Festa C., Finamore C., Masullo D., Carino A., et al. (2016b). Investigation on Bile Acid Receptor Regulators. Discovery of Cholanoic Acid Derivatives with Dual G-Protein Coupled Bile Acid Receptor 1 (GPBAR1) Antagonistic and Farnesoid X Receptor (FXR) Modulatory Activity. Steroids 105, 59–67. 10.1016/j.steroids.2015.11.003 PubMed DOI

Stedman C., Liddle C., Coulter S., Sonoda J., Alvarez J. G., Evans R. M., et al. (2006). Benefit of Farnesoid X Receptor Inhibition in Obstructive Cholestasis. Proc. Natl. Acad. Sci. 103, 11323–11328. 10.1073/pnas.0604772103 PubMed DOI PMC

Stefela A., Kaspar M., Drastik M., Holas O., Hroch M., Smutny T., et al. (2020). 3β-Isoobeticholic Acid Efficiently Activates the Farnesoid X Receptor (FXR) Due to its Epimerization to 3α-Epimer by Hepatic Metabolism. J. Steroid Biochem. Mol. Biol. 202, 105702. 10.1016/j.jsbmb.2020.105702 PubMed DOI

Sun L., Xie C., Wang G., Wu Y., Wu Q., Wang X., et al. (2018). Gut Microbiota and Intestinal FXR Mediate the Clinical Benefits of Metformin. Nat. Med. 24, 1919–1929. 10.1038/s41591-018-0222-4 PubMed DOI PMC

Thomas C., Gioiello A., Noriega L., Strehle A., Oury J., Rizzo G., et al. (2009). TGR5-mediated Bile Acid Sensing Controls Glucose Homeostasis. Cel Metab. 10, 167–177. 10.1016/j.cmet.2009.08.001 PubMed DOI PMC

Trabelsi M. S., Daoudi M., Prawitt J., Ducastel S., Touche V., Sayin S. I., et al. (2015). Farnesoid X Receptor Inhibits Glucagon-like Peptide-1 Production by Enteroendocrine L Cells. Nat. Commun. 6, 7629. 10.1038/ncomms8629 PubMed DOI PMC

Trott O., Olson A. J. (2010). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 31, 455–461. 10.1002/jcc.21334 PubMed DOI PMC

Une M., Yamanaga K., Mosbach E. H., Kuroki S., Hoshita T. (1989). Synthesis of Bile Acid Analogs: 7-alkylated Chenodeoxycholic Acids. Steroids 53, 97–105. 10.1016/0039-128x(89)90148-7 PubMed DOI

Une M., Yamanaga K., Mosbach E. H., Tsujimura K., Hoshita T. (1990). Metabolism of 7 Beta-Alkyl Chenodeoxycholic Acid Analogs and Their Effect on Cholesterol Metabolism in Hamsters. J. Lipid Res. 31, 1015–1021. 10.1016/s0022-2275(20)42741-5 PubMed DOI

Urizar N. L., Liverman A. B., Dodds D. T., Silva F. V., Ordentlich P., Yan Y., et al. (2002). A Natural Product that Lowers Cholesterol as an Antagonist Ligand for FXR. Science 296, 1703–1706. 10.1126/science.1072891 PubMed DOI

van Zutphen T., Bertolini A., de Vries H. D., Bloks V. W., de Boer J. F., Jonker J. W., et al. (2019). Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. Handb Exp. Pharmacol. 256, 207–234. 10.1007/164_2019_233 PubMed DOI

Watanabe M., Houten S. M., Mataki C., Christoffolete M. A., Kim B. W., Sato H., et al. (2006). Bile Acids Induce Energy Expenditure by Promoting Intracellular Thyroid Hormone Activation. Nature 439, 484–489. 10.1038/nature04330 PubMed DOI

Xu X., Shi X., Chen Y., Zhou T., Wang J., Xu X., et al. (2018). HS218 as an FXR Antagonist Suppresses Gluconeogenesis by Inhibiting FXR Binding to PGC-1α Promoter. Metabolism 85, 126–138. 10.1016/j.metabol.2018.03.016 PubMed DOI

Yang F., Mao C., Guo L., Lin J., Ming Q., Xiao P., et al. (2020). Structural Basis of GPBAR Activation and Bile Acid Recognition. Nature 587, 499–504. 10.1038/s41586-020-2569-1 PubMed DOI

Zhang X., Wall M., Sui Z., Kauffman J., Hou C., Chen C., et al. (2017). Discovery of Orally Efficacious Tetrahydrobenzimidazoles as TGR5 Agonists for Type 2 Diabetes. ACS Med. Chem. Lett. 8, 560–565. 10.1021/acsmedchemlett.7b00116 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace