Carvedilol impairs bile acid homeostasis in mice: implication for nonalcoholic steatohepatitis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 DK130884
NIDDK NIH HHS - United States
R01DK130884
NIDDK NIH HHS - United States
PubMed
37632784
PubMed Central
PMC10682974
DOI
10.1093/toxsci/kfad088
PII: 7252273
Knihovny.cz E-zdroje
- Klíčová slova
- bile acids, carvedilol, nonalcoholic steatohepatitis,
- MeSH
- homeostáza MeSH
- játra MeSH
- karvedilol farmakologie metabolismus MeSH
- lidé MeSH
- membránové transportní proteiny metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater * metabolismus MeSH
- žlučové kyseliny a soli metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- karvedilol MeSH
- membránové transportní proteiny MeSH
- žlučové kyseliny a soli MeSH
Carvedilol is a widely used beta-adrenoreceptor antagonist for multiple cardiovascular indications; however, it may induce cholestasis in patients, but the mechanism for this effect is unclear. Carvedilol also prevents the development of various forms of experimental liver injury, but its effect on nonalcoholic steatohepatitis (NASH) is largely unknown. In this study, we determined the effect of carvedilol (10 mg/kg/day p.o.) on bile formation and bile acid (BA) turnover in male C57BL/6 mice consuming either a chow diet or a western-type NASH-inducing diet. BAs were profiled by liquid chromatography-mass spectrometry and BA-related enzymes, transporters, and regulators were evaluated by western blot analysis and qRT-PCR. In chow diet-fed mice, carvedilol increased plasma concentrations of BAs resulting from reduced BA uptake to hepatocytes via Ntcp transporter downregulation. Inhibition of the β-adrenoreceptor-cAMP-Epac1-Ntcp pathway by carvedilol may be the post-transcriptional mechanism underlying this effect. In contrast, carvedilol did not worsen the deterioration of BA homeostasis accompanying NASH; however, it shifted the spectra of BAs toward more hydrophilic and less toxic α-muricholic and hyocholic acids. This positive effect of carvedilol was associated with a significant attenuation of liver steatosis, inflammation, and fibrosis in NASH mice. In conclusion, our results indicate that carvedilol may increase BAs in plasma by modifying their liver transport. In addition, carvedilol provided significant hepatoprotection in a NASH murine model without worsening BA accumulation. These data suggest beneficial effects of carvedilol in patients at high risk for developing NASH.
Division of Gastroenterology and Hepatology Mayo Clinic Rochester Minnesota USA
Institute of Clinical Biochemistry and Diagnostics University Hospital Hradec Kralove Czech Republic
Zobrazit více v PubMed
Abdel-Kawy H. S. (2021). Effect of carvedilol versus propranolol on acute and chronic liver toxicity in rats. Drug Chem. Toxicol. 44, 101–111. PubMed
Abdullah Shamim M., Yeung S., Shahid A., Chen M., Wang J., Desai P., Parsa C., Orlando R., Meyskens F. L. Jr., Kelly K. M., et al. (2022). Topical carvedilol delivery prevents UV-induced skin cancer with negligible systemic absorption. Int. J. Pharm. 611, 121302. PubMed PMC
Albhaisi S. A. M., Bajaj J. S., Sanyal A. J. (2020). Role of gut microbiota in liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G84–G98. PubMed
Arab J. P., Karpen S. J., Dawson P. A., Arrese M., Trauner M. (2017). Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 65, 350–362. PubMed PMC
Araujo Junior R. F., Garcia V. B., Leitao R. F., Brito G. A., Miguel Ede C., Guedes P. M., de Araujo A. A. (2016). Carvedilol improves inflammatory response, oxidative stress and fibrosis in the alcohol-induced liver injury in rats by regulating Kuppfer cells and hepatic stellate cells. PLoS One 11, e0148868. PubMed PMC
Bartley A., Yang T., Arocha R., Malphurs W. L., Larkin R., Magee K. L., Vickroy T. W., Zubcevic J. (2018). Increased abundance of lactobacillales in the colon of beta-adrenergic receptor knock out mouse is associated with increased gut bacterial production of short chain fatty acids and reduced il17 expression in circulating cd4(+) immune cells. Front. Physiol. 9, 1593. PubMed PMC
Bröderdorf S., Zang S., Schaletzki Y., Grube M., Kroemer H. K., Jedlitschky G. (2014). Camp regulates expression of the cyclic nucleotide transporter mrp4 (abcc4) through the epac pathway. Pharmacogenet. Genomics. 24, 522–526. PubMed
Carino A., Marchianò S., Biagioli M., Scarpelli P., Bordoni M., Di Giorgio C., Roselli R., Fiorucci C., Monti M. C., Distrutti E., et al. (2021). The bile acid activated receptors gpbar1 and fxr exert antagonistic effects on autophagy. FASEB J. 35, e21271. PubMed
Cristina Igreja Sá I., Tripska K., Alaei Faradonbeh F., Hroch M., Lastuvkova H., Schreiberova J., Kacerovsky M., Pericacho M., Nachtigal P., Micuda S. (2023). Labetalol and soluble endoglin aggravate bile acid retention in mice with ethinylestradiol-induced cholestasis. Front. Pharmacol. 14, 1116422. PubMed PMC
de Boer J. F., Verkade E., Mulder N. L., de Vries H. D., Huijkman N., Koehorst M., Boer T., Wolters J. C., Bloks V. W., van de Sluis B., et al. (2020). A human-like bile acid pool induced by deletion of hepatic cyp2c70 modulates effects of fxr activation in mice. J. Lipid Res. 61, 291–305. PubMed PMC
Dobrzyn P., Dobrzyn A., Miyazaki M., Cohen P., Asilmaz E., Hardie D. G., Friedman J. M., Ntambi J. M. (2004). Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc. Natl. Acad. Sci. U.S.A. 101, 6409–6414. PubMed PMC
Ekstedt M., Franzen L. E., Mathiesen U. L., Thorelius L., Holmqvist M., Bodemar G., Kechagias S. (2006). Long-term follow-up of patients with nafld and elevated liver enzymes. Hepatology 44, 865–873. PubMed
Fernández-Ramos D., Lopitz-Otsoa F., Delacruz-Villar L., Bilbao J., Pagano M., Mosca L., Bizkarguenaga M., Serrano-Macia M., Azkargorta M., Iruarrizaga-Lejarreta M., et al. (2020). Arachidyl amido cholanoic acid improves liver glucose and lipid homeostasis in nonalcoholic steatohepatitis via AMPK and mTOR regulation. World J. Gastroenterol. 26, 5101–5117. PubMed PMC
Ganz M., Csak T., Szabo G. (2014). High fat diet feeding results in gender specific steatohepatitis and inflammasome activation. World J. Gastroenterol. 20, 8525–8534. PubMed PMC
Gao P., Yang B., Yu H. Y., Meng R. R., Si J. Y. (2017). Carvedilol alleviates the biliary cirrhosis through inhibiting the endoplasmic reticulum stress. Eur. Rev. Med. Pharmacol. Sci. 21, 5813–5820. PubMed
Gürtler A., Kunz N., Gomolka M., Hornhardt S., Friedl A. A., McDonald K., Kohn J. E., Posch A. (2013). Stain-free technology as a normalization tool in western blot analysis. Anal. Biochem. 433, 105–111. PubMed
Hakucho A., Liu J., Liu X., Fujimiya T. (2014). Carvedilol improves ethanol-induced liver injury via modifying the interaction between oxidative stress and sympathetic hyperactivity in rats. Hepatol. Res. 44, 560–570. PubMed
Chiang J. Y. (2017). Recent advances in understanding bile acid homeostasis. F1000Res. 6, 2029. PubMed PMC
Igreja Sá I. C., Tripska K., Hroch M., Hyspler R., Ticha A., Lastuvkova H., Schreiberova J., Dolezelova E., Eissazadeh S., Vitverova B., et al. (2020). Soluble endoglin as a potential biomarker of nonalcoholic steatohepatitis (NASH) development, participating in aggravation of NASH-related changes in mouse liver. Int. J. Mol. Sci. 21, 9021. PubMed PMC
Kothari S., Dhami-Shah H., Shah S. R. (2019). Antidiabetic drugs and statins in nonalcoholic fatty liver disease. J. Clin. Exp. Hepatol. 9, 723–730. PubMed PMC
Lastuvkova H., Faradonbeh F. A., Schreiberova J., Hroch M., Mokry J., Faistova H., Nova Z., Hyspler R., Igreja Sa I. C., Nachtigal P., et al. (2021). Atorvastatin modulates bile acid homeostasis in mice with diet-induced nonalcoholic steatohepatitis. Int. J. Mol. Sci. 22, 6468. PubMed PMC
Li X., Yuan Z., Liu R., Hassan H. M., Yang H., Sun R., Zhang L., Jiang Z. (2016). UDCA and CDCA alleviate 17alpha-ethinylestradiol-induced cholestasis through PKA-AMPK pathways in rats. Toxicol. Appl. Pharmacol. 311, 12–25. PubMed
Ling L., Li G., Wang G., Meng D., Li Z., Zhang C. (2019). Carvedilol improves liver cirrhosis in rats by inhibiting hepatic stellate cell activation, proliferation, invasion and collagen synthesis. Mol. Med. Rep. 20, 1605–1612. PubMed PMC
Liu J., Lu H., Lu Y. F., Lei X., Cui J. Y., Ellis E., Strom S. C., Klaassen C. D. (2014). Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures. Toxicol. Sci. 141, 538–546. PubMed PMC
Mayati A., Moreau A., Denizot C., Stieger B., Parmentier Y., Fardel O. (2017). Beta2-adrenergic receptor-mediated in vitro regulation of human hepatic drug transporter expression by epinephrine. Eur. J. Pharm. Sci. 106, 302–312. PubMed
Mayer P. G. K., Qvartskhava N., Sommerfeld A., Gorg B., Haussinger D. (2019). Regulation of plasma membrane localization of the Na(+)-taurocholate co-transporting polypeptide by glycochenodeoxycholate and tauroursodeoxycholate. Cell. Physiol. Biochem. 52, 1427–1445. PubMed
McKee C., Soeda J., Asilmaz E., Sigalla B., Morgan M., Sinelli N., Roskams T., Oben J. A. (2013). Propranolol, a beta-adrenoceptor antagonist, worsens liver injury in a model of non-alcoholic steatohepatitis. Biochem. Biophys. Res. Commun. 437, 597–602. PubMed PMC
Meng D., Li Z., Wang G., Ling L., Wu Y., Zhang C. (2018). Carvedilol attenuates liver fibrosis by suppressing autophagy and promoting apoptosis in hepatic stellate cells. Biomed. Pharmacother. 108, 1617–1627. PubMed
Misra S., Varticovski L., Arias I. M. (2003). Mechanisms by which camp increases bile acid secretion in rat liver and canalicular membrane vesicles. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G316–324. PubMed
Miyazaki M., Sampath H., Liu X., Flowers M. T., Chu K., Dobrzyn A., Ntambi J. M. (2009). Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem. Biophys. Res. Commun. 380, 818–822. PubMed PMC
Mukhopadhayay S., Ananthanarayanan M., Stieger B., Meier P. J., Suchy F. J., Anwer M. S. (1997). Camp increases liver Na+-taurocholate cotransport by translocating transporter to plasma membranes. Am. J. Physiol. 273, G842–848. PubMed
Mullish B. H., Pechlivanis A., Barker G. F., Thursz M. R., Marchesi J. R., McDonald J. A. K. (2018). Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease. Methods 149, 49–58. PubMed PMC
Nardotto G. H. B., Lanchote V. L., Coelho E. B., Della Pasqua O. (2017). Population pharmacokinetics of carvedilol enantiomers and their metabolites in healthy subjects and type-2 diabetes patients. Eur. J. Pharm. Sci. 109S, S108–S115. PubMed
Prasnicka A., Cermanova J., Hroch M., Dolezelova E., Rozkydalova L., Smutny T., Carazo A., Chladek J., Lenicek M., Nachtigal P., et al. (2017). Iron depletion induces hepatic secretion of biliary lipids and glutathione in rats. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 1862, 1469–1480. PubMed
Rua J., Prata A. R., Marques R., Silva R., Gomes B., Fraga J., Fortuna J. (2019). Carvedilol-induced liver injury, a rare cause of mixed hepatitis: A clinical case. GE Port. J. Gastroenterol. 26, 196–201. PubMed PMC
Sheka A. C., Adeyi O., Thompson J., Hameed B., Crawford P. A., Ikramuddin S. (2020). Nonalcoholic steatohepatitis: A review. JAMA 323, 1175–1183. PubMed
Shi Y., Pizzini J., Wang H., Das F., Azees P. A. A., Choudhury G. G., Barnes J. L., Zang M., Weintraub S. T., Yeh C.-K., et al. (2021). Β2-adrenergic receptor agonist induced hepatic steatosis in mice: Modeling nonalcoholic fatty liver disease in hyperadrenergic states. Am. J. Physiol. Endocrinol. Metab. 321, E90–E104. PubMed PMC
Sigala B., McKee C., Soeda J., Pazienza V., Morgan M., Lin C. I., Selden C., Vander Borght S., Mazzoccoli G., Roskams T., et al. (2013). Sympathetic nervous system catecholamines and neuropeptide y neurotransmitters are upregulated in human nafld and modulate the fibrogenic function of hepatic stellate cells. PLoS One 8, e72928. PubMed PMC
Skoda J., Dusek J., Drastik M., Stefela A., Dohnalova K., Chalupsky K., Smutny T., Micuda S., Gerbal-Chaloin S., Pavek P. (2020). Diazepam promotes translocation of human constitutive androstane receptor (CAR) via direct interaction with the ligand-binding domain. Cells 9, 2532. PubMed PMC
Soliman G. F., Rashed L. A., Morsi H., Ibrahim W., Abdallah H., Bastawy N., Abdel Maksoud O. M. (2019). Interrelation of liver vascularity to non-alcoholic fatty liver through a comparative study of the vasodilator effect of carvedilol or nicorandil in rats. Life Sci. 222, 175–182. PubMed
Song P., Rockwell C. E., Cui J. Y., Klaassen C. D. (2015). Individual bile acids have differential effects on bile acid signaling in mice. Toxicol. Appl. Pharmacol. 283, 57–64. PubMed PMC
Stefela A., Kaspar M., Drastik M., Kronenberger T., Micuda S., Dracinsky M., Klepetarova B., Kudova E., Pavek P. (2021). (E)-7-Ethylidene-lithocholic acid (7-ELCA) is a potent dual farnesoid X receptor (FXR) antagonist and GPBAR1 agonist inhibiting FXR-induced gene expression in hepatocytes and stimulating glucagon-like peptide-1 secretion from enteroendocrine cells. Front. Pharmacol. 12, 713149. PubMed PMC
Stefela A., Kaspar M., Drastik M., Holas O., Hroch M., Smutny T., Skoda J., Hutníková M., Pandey A. V., Micuda S., et al. (2020). 3β-isoobeticholic acid efficiently activates the farnesoid x receptor (FXR) due to its epimerization to 3α-epimer by hepatic metabolism. J. Steroid Biochem. Mol. Biol. 202, 105702. PubMed
Tian X., Zhao C., Guo J., Xie S., Yin F., Huo X., Zhang X. (2017). Carvedilol attenuates the progression of hepatic fibrosis induced by bile duct ligation. Biomed Res. Int. 2017, 4612769. PubMed PMC
Uher M., Mičuda S., Kacerovský M., Hroch M. (2023). An alternative approach to validation of liquid chromatography-mass spectrometry methods for the quantification of endogenous compounds. J. Chromatogr. A 1705, 464173. PubMed
Villanueva C., Albillos A., Genesca J., Garcia-Pagan J. C., Calleja J. L., Aracil C., Banares R., Morillas R. M., Poca M., Penas B., et al. (2019). Beta blockers to prevent decompensation of cirrhosis in patients with clinically significant portal hypertension (PREDESCI): A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 393, 1597–1608. PubMed
Wu Y., Li Z., Xiu A. Y., Meng D. X., Wang S. N., Zhang C. Q. (2019). Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des. Devel. Ther. 13, 2667–2676. PubMed PMC
Younossi Z., Anstee Q. M., Marietti M., Hardy T., Henry L., Eslam M., George J., Bugianesi E. (2018). Global burden of nafld and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20. PubMed
Zheng X., Chen T., Jiang R., Zhao A., Wu Q., Kuang J., Sun D., Ren Z., Li M., Zhao M., et al. (2021). Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 33, 791–803.e797. PubMed
Zucchetti A. E., Barosso I. R., Boaglio A., Pellegrino J. M., Ochoa E. J., Roma M. G., Crocenzi F. A. S., Pozzi E. J. (2011). Prevention of estradiol 17beta-d-glucuronide-induced canalicular transporter internalization by hormonal modulation of camp in rat hepatocytes. Mol. Biol. Cell. 22, 3902–3915. PubMed PMC
Zucchetti A. E., Barosso I. R., Boaglio A. C., Luquita M. G., Roma M. G., Crocenzi F. A., Sanchez Pozzi E. J. (2013). Hormonal modulation of hepatic camp prevents estradiol 17beta-d-glucuronide-induced cholestasis in perfused rat liver. Dig. Dis. Sci. 58, 1602–1614. PubMed