Labetalol and soluble endoglin aggravate bile acid retention in mice with ethinylestradiol-induced cholestasis

. 2023 ; 14 () : 1116422. [epub] 20230126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36778021

Labetalol is used for the therapy of hypertension in preeclampsia. Preeclampsia is characterized by high soluble endoglin (sEng) concentration in plasma and coincides with intrahepatic cholestasis during pregnancy (ICP), which threatens the fetus with the toxicity of cumulating bile acids (BA). Therefore, we hypothesized that both labetalol and increased sEng levels worsen BA cumulation in estrogen-induced cholestasis. C57BL/6J, transgenic mice overexpressing human sEng, and their wild-type littermates were administrated with ethinylestradiol (EE, 10 mg/kg s.c., the mice model of ICP) and labetalol (10 mg/kg s.c.) for 5 days with sample collection and analysis. Plasma was also taken from healthy pregnant women and patients with ICP. Administration of labetalol to mice with EE cholestasis aggravated the increase in BA plasma concentrations by induction of hepatic Mrp4 efflux transporter. Labetalol potentiated the increment of sEng plasma levels induced by estrogen. Increased plasma levels of sEng were also observed in patients with ICP. Moreover, increased plasma levels of human sEng in transgenic mice aggravated estrogen-induced cholestasis in labetalol-treated mice and increased BA concentration in plasma via enhanced reabsorption of BAs in the ileum due to the upregulation of the Asbt transporter. In conclusion, we demonstrated that labetalol increases plasma concentrations of BAs in estrogen-induced cholestasis, and sEng aggravates this retention. Importantly, increased sEng levels in experimental and clinical forms of ICPs might present a novel mechanism explaining the coincidence of ICP with preeclampsia. Our data encourage BA monitoring in the plasma of pregnant women with preeclampsia and labetalol therapy.

Zobrazit více v PubMed

Alaei Faradonbeh F., Lastuvkova H., Cermanova J., Hroch M., Nova Z., Uher M., et al. (2022). Multidrug resistance-associated protein 2 deficiency aggravates estrogen-induced impairment of bile acid metabolomics in rats. Front. Physiol. 13, 859294. 10.3389/fphys.2022.859294 PubMed DOI PMC

Anwer M. S. (2004). Cellular regulation of hepatic bile acid transport in health and cholestasis. Hepatology 39, 581–590. 10.1002/hep.20090 PubMed DOI

Appelman M. D., Wettengel J. M., Protzer U., Oude Elferink R. P. J., Van De Graaf S. F. J. (2021). Molecular regulation of the hepatic bile acid uptake transporter and HBV entry receptor NTCP. Biochimica Biophysica Acta (BBA) - Mol. Cell Biol. Lipids 1866, 158960. 10.1016/j.bbalip.2021.158960 PubMed DOI

Dolezelova E., Sa I. C. I., Prasnicka A., Hroch M., Hyspler R., Ticha A., et al. (2019). High soluble endoglin levels regulate cholesterol homeostasis and bile acids turnover in the liver of transgenic mice. Life Sci. 232, 116643. 10.1016/j.lfs.2019.116643 PubMed DOI

Faradonbeh F. A., Sa I., Lastuvkova H., Cermanova J., Hroch M., Faistova H., et al. (2021). Metformin impairs bile acid homeostasis in ethinylestradiol-induced cholestasis in mice. Chem. Biol. Interact. 345, 109525. 10.1016/j.cbi.2021.109525 PubMed DOI

Firoz T., Webber D., Rowe H. (2015). Drug-induced fulminant hepatic failure in pregnancy. Obstet. Med. 8, 190–192. 10.1177/1753495X15598909 PubMed DOI PMC

Gallardo-Vara E., Gamella-Pozuelo L., Perez-Roque L., Bartha J. L., Garcia-Palmero I., Casal J. I., et al. (2020). Potential role of circulating endoglin in hypertension via the upregulated expression of BMP4. Cells 9. 10.3390/cells9040988 PubMed DOI PMC

Gijbels E., Pieters A., De Muynck K., Vinken M., Devisscher L. (2021). Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int. 41, 656–682. 10.1111/liv.14800 PubMed DOI PMC

Glantz A., Marschall H. U., Mattsson L. A. (2004). Intrahepatic cholestasis of pregnancy: Relationships between bile acid levels and fetal complication rates. Hepatology 40, 467–474. 10.1002/hep.20336 PubMed DOI

Gougos A., Letarte M. (1990). Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J. Biol. Chem. 265, 8361–8364. 10.1016/s0021-9258(19)38892-1 PubMed DOI

Hawinkels L. J., Kuiper P., Wiercinska E., Verspaget H. W., Liu Z., Pardali E., et al. (2010). Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res. 70, 4141–4150. 10.1158/0008-5472.CAN-09-4466 PubMed DOI

Heikkinen J., Maentausta O., Ylostalo P., Janne O. (1981). Changes in serum bile acid concentrations during normal pregnancy, in patients with intrahepatic cholestasis of pregnancy and in pregnant women with itching. Br. J. Obstet. Gynaecol. 88, 240–245. 10.1111/j.1471-0528.1981.tb00975.x PubMed DOI

Igreja Sa I. C., Tripska K., Hroch M., Hyspler R., Ticha A., Lastuvkova H., et al. (2020). Soluble endoglin as a potential biomarker of nonalcoholic steatohepatitis (NASH) development, participating in aggravation of NASH-related changes in mouse liver. Int. J. Mol. Sci. 21, 9021. 10.3390/ijms21239021 PubMed DOI PMC

Jebbink J., Veenboer G., Boussata S., Keijser R., Kremer A. E., Elferink R. O., et al. (2015). Total bile acids in the maternal and fetal compartment in relation to placental ABCG2 expression in preeclamptic pregnancies complicated by HELLP syndrome. Biochim. Biophys. Acta 1852, 131–136. 10.1016/j.bbadis.2014.11.008 PubMed DOI

Keitel V., Burdelski M., Warskulat U., Kühlkamp T., Keppler D., Häussinger D., et al. (2005). Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 41, 1160–1172. 10.1002/hep.20682 PubMed DOI

Kim M. J., Kang Y. J., Kwon M., Choi Y. A., Choi M. K., Chi H. Y., et al. (2018). Ursodeoxycholate restores biliary excretion of methotrexate in rats with ethinyl estradiol induced-cholestasis by restoring canalicular Mrp2 expression. Int. J. Mol. Sci. 19, 1120. 10.3390/ijms19041120 PubMed DOI PMC

Kubota T., Yamazaki N., Sudo J., Monma Y., Kaku T., Okuyama T., et al. (1990). Protective effects of adrenoceptor-blocking agents on myocardial injury induced by epinephrine in mice. J. Toxicol. Sci. 15, 1–13. 10.2131/jts.15.1 PubMed DOI

Lin Y., Wen-Jie Z., Chang-Qing L., Sheng-Xiang A., Yue Z. (2020). mir-22-3p/KLF6/MMP14 axis in fibro-adipogenic progenitors regulates fatty infiltration in muscle degeneration. Faseb J. 34, 12691–12701. 10.1096/fj.202000506R PubMed DOI

Liu C., Gao J., Liu J., Wang X., He J., Sun J., et al. (2020). Intrahepatic cholestasis of pregnancy is associated with an increased risk of gestational diabetes and preeclampsia. Ann. Transl. Med. 8, 1574. 10.21037/atm-20-4879 PubMed DOI PMC

Lopez-Novoa J. M., Bernabeu C. (2010). The physiological role of endoglin in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 299, H959–H974. 10.1152/ajpheart.01251.2009 PubMed DOI

Lu Y., Chen R., Cai J., Huang Z., Yuan H. (2018). The management of hypertension in women planning for pregnancy. Br. Med. Bull. 128, 75–84. 10.1093/bmb/ldy035 PubMed DOI PMC

Marathe J. A., Lim W. H., Metz M. P., Scheil W., Dekker G. A., Hague W. M. (2017). A retrospective cohort review of intrahepatic cholestasis of pregnancy in a South Australian population. Eur. J. Obstet. Gynecol. Reprod. Biol. 218, 33–38. 10.1016/j.ejogrb.2017.09.012 PubMed DOI

Meng Q., Chen X., Wang C., Liu Q., Sun H., Sun P., et al. (2015). Protective effects of alisol B 23-acetate via farnesoid X receptor-mediated regulation of transporters and enzymes in estrogen-induced cholestatic liver injury in mice. Pharm. Res. 32, 3688–3698. 10.1007/s11095-015-1727-x PubMed DOI

Mennone A., Soroka C. J., Cai S. Y., Harry K., Adachi M., Hagey L., et al. (2006). Mrp4-/- mice have an impaired cytoprotective response in obstructive cholestasis. Hepatology 43, 1013–1021. 10.1002/hep.21158 PubMed DOI

Meurer S. K., Tihaa L., Borkham-Kamphorst E., Weiskirchen R. (2011). Expression and functional analysis of endoglin in isolated liver cells and its involvement in fibrogenic Smad signalling. Cell Signal 23, 683–699. 10.1016/j.cellsig.2010.12.002 PubMed DOI

Mishra P., Pandey C. M., Singh U., Gupta A., Sahu C., Keshri A. (2019). Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 22, 67–72. 10.4103/aca.ACA_157_18 PubMed DOI PMC

Miura T., Kimura N., Yamada T., Shimizu T., Nanashima N., Yamana D., et al. (2011). Sustained repression and translocation of Ntcp and expression of Mrp4 for cholestasis after rat 90% partial hepatectomy. J. Hepatology 55, 407–414. 10.1016/j.jhep.2010.11.023 PubMed DOI

Mor M., Shmueli A., Krispin E., Bardin R., Sneh-Arbib O., Braun M., et al. (2020). Intrahepatic cholestasis of pregnancy as a risk factor for preeclampsia. Arch. Gynecol. Obstet. 301, 655–664. 10.1007/s00404-020-05456-y PubMed DOI

Muchova L., Vanova K., Suk J., Micuda S., Dolezelova E., Fuksa L., et al. (2015). Protective effect of heme oxygenase induction in ethinylestradiol-induced cholestasis. J. Cell Mol. Med. 19, 924–933. 10.1111/jcmm.12401 PubMed DOI PMC

Pascual M. J., Serrano M. A., El-Mir M. Y., Macias R. I., Jimenez F., Marin J. J. (2002). Relationship between asymptomatic hypercholanaemia of pregnancy and progesterone metabolism. Clin. Sci. (Lond) 102, 587–593. 10.1042/cs20010258 PubMed DOI

Peres G. M., Mariana M., Cairrão E. (2018). Pre-eclampsia and eclampsia: An update on the pharmacological treatment applied in Portugal. J. Cardiovasc Dev. Dis. 5, 3. 10.3390/jcdd5010003 PubMed DOI PMC

Pérez-Roque L., Núñez-Gómez E., Rodríguez-Barbero A., Bernabéu C., López-Novoa J. M., Pericacho M. (2020). Pregnancy-induced high plasma levels of soluble endoglin in mice lead to preeclampsia symptoms and placental abnormalities. Int. J. Mol. Sci. 22, 165. 10.3390/ijms22010165 PubMed DOI PMC

Prasnicka A., Cermanova J., Hroch M., Dolezelova E., Rozkydalova L., Smutny T., et al. (2017). Iron depletion induces hepatic secretion of biliary lipids and glutathione in rats. Biochimica Biophysica Acta (BBA)-Molecular Cell Biol. Lipids 1862, 1469–1480. 10.1016/j.bbalip.2017.09.003 PubMed DOI

Raz Y., Lavie A., Vered Y., Goldiner I., Skornick-Rapaport A., Landsberg Asher Y., et al. (2015). Severe intrahepatic cholestasis of pregnancy is a risk factor for preeclampsia in singleton and twin pregnancies. Am. J. Obstet. Gynecol. 213, 395.e391–e8. 10.1016/j.ajog.2015.05.011 PubMed DOI

Ropponen A., Sund R., Riikonen S., Ylikorkala O., Aittomäki K. (2006). Intrahepatic cholestasis of pregnancy as an indicator of liver and biliary diseases: A population-based study. Hepatology 43, 723–728. 10.1002/hep.21111 PubMed DOI

St-Jacques S., Cymerman U., Pece N., Letarte M. (1994). Molecular characterization and in situ localization of murine endoglin reveal that it is a transforming growth factor-beta binding protein of endothelial and stromal cells. Endocrinology 134, 2645–2657. 10.1210/endo.134.6.8194490 PubMed DOI

Ticho A. L., Malhotra P., Dudeja P. K., Gill R. K., Alrefai W. A. (2019). Intestinal absorption of bile acids in health and disease. Compr. Physiol. 10, 21–56. 10.1002/cphy.c190007 PubMed DOI PMC

Trauner M., Boyer J. L. (2003). Bile salt transporters: Molecular characterization, function, and regulation. Physiol. Rev. 83, 633–671. 10.1152/physrev.00027.2002 PubMed DOI

Tritapepe R., Di Padova C., Chiesara E., Cova D. (1980). Effects of ethinyl estradiol on bile secretion and liver microsomal mixed function oxidase system in the mouse. Biochem. Pharmacol. 29, 677–680. 10.1016/0006-2952(80)90537-7 PubMed DOI

Valbuena-Diez A. C., Blanco F. J., Oujo B., Langa C., Gonzalez-Nunez M., Llano E., et al. (2012). Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation 126, 2612–2624. 10.1161/CIRCULATIONAHA.112.101261 PubMed DOI

Venkatesha S., Toporsian M., Lam C., Hanai J., Mammoto T., Kim Y. M., et al. (2006). Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12, 642–649. 10.1038/nm1429 PubMed DOI

Vicen M., Igreja Sá I. C., Tripská K., Vitverová B., Najmanová I., Eissazadeh S., et al. (2021). Membrane and soluble endoglin role in cardiovascular and metabolic disorders related to metabolic syndrome. Cell Mol. Life Sci. 78, 2405–2418. 10.1007/s00018-020-03701-w PubMed DOI PMC

Vitverova B., Blazickova K., Najmanova I., Vicen M., Hyspler R., Dolezelova E., et al. (2018). Soluble endoglin and hypercholesterolemia aggravate endothelial and vessel wall dysfunction in mouse aorta. Atherosclerosis 271, 15–25. 10.1016/j.atherosclerosis.2018.02.008 PubMed DOI

Whelan A., Izewski J., Berkelhammer C., Walloch J., Kay H. H. (2020). Labetalol-induced hepatotoxicity during pregnancy: A case report. AJP Rep. 10, e210–e212. 10.1055/s-0040-1713789 PubMed DOI PMC

Williamson C., Geenes V. (2014). Intrahepatic cholestasis of pregnancy. Obstet. Gynecol. 124, 120–133. 10.1097/AOG.0000000000000346 PubMed DOI

Yang N., Dong Y.-Q., Jia G.-X., Fan S.-M., Li S.-Z., Yang S.-S., et al. (2020). ASBT(SLC10A2): A promising target for treatment of diseases and drug discovery. Biomed. Pharmacother. 132, 110835. 10.1016/j.biopha.2020.110835 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...