Soluble Endoglin as a Potential Biomarker of Nonalcoholic Steatohepatitis (NASH) Development, Participating in Aggravation of NASH-Related Changes in Mouse Liver
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-31754A
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841
Univerzita Karlova v Praze
1166119
Grantová Agentura, Univerzita Karlova
SVV 260 549
Univerzita Karlova v Praze
PubMed
33261044
PubMed Central
PMC7731045
DOI
10.3390/ijms21239021
PII: ijms21239021
Knihovny.cz E-zdroje
- Klíčová slova
- FFC diet, NASH, bile acids, bile production, cholesterol, endoglin,
- MeSH
- alkalická fosfatasa metabolismus MeSH
- aspartátaminotransferasy metabolismus MeSH
- biologické markery krev metabolismus MeSH
- biologické modely MeSH
- cholesterol krev metabolismus MeSH
- dieta s vysokým obsahem tuků MeSH
- endoglin krev metabolismus MeSH
- fruktosa MeSH
- jaterní cirhóza krev komplikace patologie MeSH
- játra metabolismus patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nealkoholová steatóza jater krev komplikace metabolismus MeSH
- oxidační stres MeSH
- rozpustnost MeSH
- triglyceridy metabolismus MeSH
- zánět patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkalická fosfatasa MeSH
- aspartátaminotransferasy MeSH
- biologické markery MeSH
- cholesterol MeSH
- endoglin MeSH
- fruktosa MeSH
- triglyceridy MeSH
Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis with inflammation and fibrosis. Membrane endoglin (Eng) expression is shown to participate in fibrosis, and plasma concentrations of soluble endoglin (sEng) are increased in patients with hypercholesterolemia and type 2 diabetes mellitus. We hypothesize that NASH increases both hepatic Eng expression and sEng in blood and that high levels of sEng modulate cholesterol and bile acid (BA) metabolism and affect NASH progression. Three-month-old transgenic male mice overexpressing human sEng and their wild type littermates are fed for six months with either a high-saturated fat, high-fructose high-cholesterol (FFC) diet or a chow diet. Evaluation of NASH, Liquid chromatography-mass spectrometry (LC/MS) analysis of BA, hepatic expression of Eng, inflammation, fibrosis markers, enzymes and transporters involved in hepatic cholesterol and BA metabolism are assessed using Real-Time Quantitative Reverse Transcription Polymerase Chain reaction (qRT-PCR) and Western blot. The FFC diet significantly increases mouse sEng levels and increases hepatic expression of Eng. High levels of human sEng results in increased hepatic deposition of cholesterol due to reduced conversion into BA, as well as redirects the metabolism of triglycerides (TAG) to its accumulation in the liver, via reduced TAG elimination by β-oxidation combined with reduced hepatic efflux. We propose that sEng might be a biomarker of NASH development, and the presence of high levels of sEng might support NASH aggravation by impairing the essential defensive mechanism protecting NASH liver against excessive TAG and cholesterol accumulation, suggesting the importance of high sEng levels in patients prone to develop NASH.
Zobrazit více v PubMed
Bernabeu C., Lopez-Novoa J.M., Quintanilla M. The emerging role of TGF-β superfamily coreceptors in cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2009;1792:954–973. doi: 10.1016/j.bbadis.2009.07.003. PubMed DOI
Meurer S.K., Tihaa L., Borkham-Kamphorst E., Weiskirchen R. Expression and functional analysis of endoglin in isolated liver cells and its involvement in fibrogenic Smad signalling. Cell. Signal. 2011;23:683–699. doi: 10.1016/j.cellsig.2010.12.002. PubMed DOI
Blázquez-Medela A.M., García-Ortiz L., Gómez-Marcos M.A., Recio-Rodríguez J.I., Sánchez-Rodríguez A., López-Novoa J.M., Martínez-Salgado C. Increased plasma soluble endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic patients. BMC Med. 2010;8:86. doi: 10.1186/1741-7015-8-86. PubMed DOI PMC
Bot P.T., Hoefer I.E., Sluijter J.P., van Vliet P., Smits A.M., Lebrin F., Moll F., de Vries J.P., Doevendans P., Piek J.J., et al. Increased expression of the transforming growth factor-beta signaling pathway, endoglin, and early growth response-1 in stable plaques. Stroke. 2009;40:439–447. doi: 10.1161/STROKEAHA.108.522284. PubMed DOI
St-Jacques S., Forte M., Lye S.J., Letarte M. Localization of endoglin, a transforming growth factor-beta binding protein, and of CD44 and integrins in placenta during the first trimester of pregnancy. Biol. Reprod. 1994;51:405–413. doi: 10.1095/biolreprod51.3.405. PubMed DOI
Meurer S., Wimmer A.E., Leur E.V., Weiskirchen R. Endoglin trafficking/exosomal targeting in liver cells depends on N-glycosylation. Cells. 2019;8:997. doi: 10.3390/cells8090997. PubMed DOI PMC
Lastres P., Bellon T., Cabañas C., Sanchez-Madrid F., Acevedo A., Gougos A., Letarte M., Bernabeu C. Regulated expression on human macrophages of endoglin, an Arg-Gly-Asp-containing surface antigen. Eur. J. Immunol. 1992;22:393–397. doi: 10.1002/eji.1830220216. PubMed DOI
Aristorena M., Gallardo-Vara E., Vicen M., de Las Casas-Engel M., Ojeda-Fernandez L., Nieto C., Blanco F.J., Valbuena-Diez A.C., Botella L.M., Nachtigal P. MMP-12, secreted by pro-inflammatory macrophages, targets endoglin in human macrophages and endothelial cells. Int. J. Mol. Sci. 2019;20:3107. doi: 10.3390/ijms20123107. PubMed DOI PMC
Hawinkels L.J., Kuiper P., Wiercinska E., Verspaget H.W., Liu Z., Pardali E., Sier C.F., ten Dijke P. Matrix metalloproteinase-14 (MT1-MMP)–mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res. 2010;70:4141–4150. doi: 10.1158/0008-5472.CAN-09-4466. PubMed DOI
Valbuena-Diez A.C., Blanco F.J., Oujo B., Langa C., Gonzalez-Nuñez M., Llano E., Pendas A.M., Díaz M., Castrillo A., Lopez-Novoa J.M. Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation. 2012;126:2612–2624. doi: 10.1161/CIRCULATIONAHA.112.101261. PubMed DOI
Blaha M., Cermanova M., Blaha V., Jarolim P., Andrys C., Blazek M., Maly J., Smolej L., Zajic J., Masin V., et al. Elevated serum soluble endoglin (sCD105) decreased during extracorporeal elimination therapy for familial hypercholesterolemia. Atherosclerosis. 2008;197:264–270. doi: 10.1016/j.atherosclerosis.2007.04.022. PubMed DOI
Blann A.D., Wang J.M., Wilson P.B., Kumar S. Serum levels of the TGF-beta receptor are increased in atherosclerosis. Atherosclerosis. 1996;120:221–226. doi: 10.1016/0021-9150(95)05713-7. PubMed DOI
Malhotra R., Paskin-Flerlage S., Zamanian R.T., Zimmerman P., Schmidt J.W., Deng D.Y., Southwood M., Spencer R., Lai C.S., Parker W., et al. Circulating angiogenic modulatory factors predict survival and functional class in pulmonary arterial hypertension. Pulm. Circ. 2013;3:369–380. doi: 10.4103/2045-8932.110445. PubMed DOI PMC
Leaños-Miranda A., Navarro-Romero C.S., Sillas-Pardo L.J., Ramírez-Valenzuela K.L., Isordia-Salas I., Jiménez-Trejo L.M. Soluble endoglin as a marker for preeclampsia, its severity, and the occurrence of adverse outcomes. Hypertension. 2019;74:991–997. doi: 10.1161/HYPERTENSIONAHA.119.13348. PubMed DOI
Doghish A.S., Bassyouni A.A., Mahfouz M.H., Abd El-Aziz H.G., Zakaria R.Y. Plasma endoglin in Type2 diabetic patients with nephropathy. Diabetes Metab. Syndr. 2019;13:764–768. doi: 10.1016/j.dsx.2018.11.058. PubMed DOI
Finnson K.W., Philip A. Endoglin in liver fibrosis. J. Cell Commun. Signal. 2012;6:1–4. doi: 10.1007/s12079-011-0154-y. PubMed DOI PMC
García-Pozo L., Miquilena-Colina M.E., Lozano-Rodríguez T., García-Monzón C. Endoglin: Structure, biological functions, and role in fibrogenesis. Rev. Esp. Enferm. Dig. 2008;100:355–360. doi: 10.4321/S1130-01082008000600008. PubMed DOI
Ioannou G.N. The Role of Cholesterol in the Pathogenesis of NASH. Trends Endocrinol. Metab. 2016;27:84–95. doi: 10.1016/j.tem.2015.11.008. PubMed DOI
Alsamman M., Sterzer V., Meurer S.K., Sahin H., Schaeper U., Kuscuoglu D., Strnad P., Weiskirchen R., Trautwein C., Scholten D. Endoglin in human liver disease and murine models of liver fibrosis—A protective factor against liver fibrosis. Liver Int. 2018;38:858–867. doi: 10.1111/liv.13595. PubMed DOI PMC
Clemente M., Nunez O., Lorente R., Rincon D., Matilla A., Salcedo M., Catalina M., Ripoll C., Iacono O., Banares R. Increased intrahepatic and circulating levels of endoglin, a TGF-β1 co-receptor, in patients with chronic hepatitis C virus infection: Relationship to histological and serum markers of hepatic fibrosis. J. Viral Hepat. 2006;13:625–632. doi: 10.1111/j.1365-2893.2006.00733.x. PubMed DOI
Preativatanyou K., Honsawek S., Chongsrisawat V., Vejchapipat P., Theamboonlers A., Poovorawan Y. Correlation of circulating endoglin with clinical outcome in biliary atresia. Eur. J. Pediatric Surg. 2010;20:237–241. doi: 10.1055/s-0030-1249695. PubMed DOI
Ibrahim S.H., Hirsova P., Gores G.J. Non-alcoholic steatohepatitis pathogenesis: Sublethal hepatocyte injury as a driver of liver inflammation. Gut. 2018;67:963–972. doi: 10.1136/gutjnl-2017-315691. PubMed DOI PMC
Manne V., Handa P., Kowdley K.V. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin. Liver Dis. 2018;22:23–37. doi: 10.1016/j.cld.2017.08.007. PubMed DOI
Kleiner D.E., Brunt E.M., Van Natta M., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.C., Torbenson M.S., Unalp-Arida A. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701. PubMed DOI
Hirsova P., Weng P., Salim W., Bronk S.F., Griffith T.S., Ibrahim S.H., Gores G.J. TRAIL deletion prevents liver inflammation but not adipose tissue inflammation during murine diet-induced obesity. Hepatol. Commun. 2017;1:648–662. doi: 10.1002/hep4.1069. PubMed DOI PMC
Lonardo A., Leoni S., Alswat K.A., Fouad Y. History of nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2020;21:5888. doi: 10.3390/ijms21165888. PubMed DOI PMC
Ariz U., Mato J.M., Lu S.C., Chantar M.L.M. Bioinformatics Methods in Clinical Research. Springer; Berlin/Heidelberg, Germany: 2010. Nonalcoholic steatohepatitis, animal models, and biomarkers: What is new? pp. 109–136. PubMed
Vilar-Gomez E., Calzadilla-Bertot L., Wai-Sun Wong V., Castellanos M., Aller-de la Fuente R., Metwally M., Eslam M., Gonzalez-Fabian L., Alvarez-Quinones Sanz M., Conde-Martin A.F., et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: A multi-national cohort study. Gastroenterology. 2018;155:443–457.e17. doi: 10.1053/j.gastro.2018.04.034. PubMed DOI
Ampuero J., Aller R., Gallego-Duran R., Crespo J., Calleja J.L., Garcia-Monzon C., Gomez-Camarero J., Caballeria J., Lo Iacono O., Ibanez L., et al. Significant fibrosis predicts new-onset diabetes mellitus and arterial hypertension in patients with NASH. J. Hepatol. 2020;73:17–25. doi: 10.1016/j.jhep.2020.02.028. PubMed DOI
García-Monzón C., Martín-Pérez E., Iacono O.L., Fernández-Bermejo M., Majano P.L., Apolinario A., Larrañaga E., Moreno-Otero R. Characterization of pathogenic and prognostic factors of nonalcoholic steatohepatitis associated with obesity. J. Hepatol. 2000;33:716–724. doi: 10.1016/S0168-8278(00)80301-3. PubMed DOI
Gottlieb A., Canbay A. Why Bile acids are so important in Non-Alcoholic Fatty Liver Disease (NAFLD) progression. Cells. 2019;8:1358. doi: 10.3390/cells8111358. PubMed DOI PMC
Chiang J.Y. Targeting bile acids and lipotoxicity for NASH treatment. Hepatol. Commun. 2017;1:1002. doi: 10.1002/hep4.1127. PubMed DOI PMC
Serviddio G., Bellanti F., Villani R., Tamborra R., Zerbinati C., Blonda M., Ciacciarelli M., Poli G., Vendemiale G., Iuliano L. Effects of dietary fatty acids and cholesterol excess on liver injury: A lipidomic approach. Redox Biol. 2016;9:296–305. doi: 10.1016/j.redox.2016.09.002. PubMed DOI PMC
Vicen M., Vitverova B., Havelek R., Blazickova K., Machacek M., Rathouska J., Najmanová I., Dolezelova E., Prasnicka A., Sternak M. Regulation and role of endoglin in cholesterol-induced endothelial and vascular dysfunction in vivo and in vitro. FASEB J. 2019;33:6099–6114. doi: 10.1096/fj.201802245R. PubMed DOI
Charlton M., Krishnan A., Viker K., Sanderson S., Cazanave S., McConico A., Masuoko H., Gores G. Fast food diet mouse: Novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;301:G825–G834. doi: 10.1152/ajpgi.00145.2011. PubMed DOI PMC
Krishnan A., Abdullah T.S., Mounajjed T., Hartono S., McConico A., White T., LeBrasseur N., Lanza I., Nair S., Gores G. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;312:G666–G680. doi: 10.1152/ajpgi.00213.2016. PubMed DOI PMC
Chiappini F., Desterke C., Bertrand-Michel J., Guettier C., Le Naour F. Hepatic and serum lipid signatures specific to nonalcoholic steatohepatitis in murine models. Sci. Rep. 2016;6:31587. doi: 10.1038/srep31587. PubMed DOI PMC
Gallardo-Vara E., Blanco F.J., Roqué M., Friedman S.L., Suzuki T., Botella L.M., Bernabeu C. Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury. Angiogenesis. 2016;19:155–171. doi: 10.1007/s10456-016-9495-8. PubMed DOI PMC
Miele L., Beale G., Patman G., Nobili V., Leathart J., Grieco A., Abate M., Friedman S.L., Narla G., Bugianesi E., et al. The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology. 2008;135:282–291.e1. doi: 10.1053/j.gastro.2008.04.004. PubMed DOI PMC
Hayashi M., Nomoto S., Hishida M., Inokawa Y., Kanda M., Okamura Y., Nishikawa Y., Tanaka C., Kobayashi D., Yamada S. Identification of the collagen type 1 alpha 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma. BMC Cancer. 2014;14:108. doi: 10.1186/1471-2407-14-108. PubMed DOI PMC
Zhu H.-J., Burgess A.W. Regulation of transforming growth factor-β signaling. Mol. Cell Biol. Res. Commun. 2001;4:321–330. doi: 10.1006/mcbr.2001.0301. PubMed DOI
Meurer S.K., Alsamman M., Scholten D., Weiskirchen R. Endoglin in liver fibrogenesis: Bridging basic science and clinical practice. World J. Biol. Chem. 2014;5:180–203. doi: 10.4331/wjbc.v5.i2.180. PubMed DOI PMC
Medina J., Sanz-Cameno P., García-Buey L., Martín-Vílchez S., López-Cabrera M., Moreno-Otero R. Evidence of angiogenesis in primary biliary cirrhosis: An immunohistochemical descriptive study. J. Hepatol. 2005;42:124–131. doi: 10.1016/j.jhep.2004.09.024. PubMed DOI
Rath T., Hage L., Kügler M., Menendez Menendez K., Zachoval R., Naehrlich L., Schulz R., Roderfeld M., Roeb E. Serum proteome profiling identifies novel and powerful markers of cystic fibrosis liver disease. PLoS ONE. 2013;8:e58955. doi: 10.1371/journal.pone.0058955. PubMed DOI PMC
Yagmur E., Rizk M., Stanzel S., Hellerbrand C., Lammert F., Trautwein C., Wasmuth H.E., Gressner A.M. Elevation of endoglin (CD105) concentrations in serum of patients with liver cirrhosis and carcinoma. Eur. J. Gastroenterol. Hepatol. 2007;19:755–761. doi: 10.1097/MEG.0b013e3282202bea. PubMed DOI
Vitverova B., Blazickova K., Najmanova I., Vicen M., Hyšpler R., Dolezelova E., Nemeckova I., Tebbens J.D., Bernabeu C., Pericacho M., et al. Soluble endoglin and hypercholesterolemia aggravate endothelial and vessel wall dysfunction in mouse aorta. Atherosclerosis. 2018;271:15–25. doi: 10.1016/j.atherosclerosis.2018.02.008. PubMed DOI
Tobar N., Avalos M.C., Méndez N., Smith P.C., Bernabeu C., Quintanilla M., Martínez J. Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells. Carcinogenesis. 2014;35:1770–1779. doi: 10.1093/carcin/bgu061. PubMed DOI
Vitverova B., Najmanova I., Vicen M., Tripska K., Sa I.C.I., Hyspler R., Pericacho M., Nachtigal P. Long term effects of soluble endoglin and mild hypercholesterolemia in mice hearts. PLoS ONE. 2020;15:e0233725. doi: 10.1371/journal.pone.0233725. PubMed DOI PMC
Gallardo-Vara E., Gamella-Pozuelo L., Perez-Roque L., Bartha J.L., Garcia-Palmero I., Casal J.I., López-Novoa J.M., Pericacho M., Bernabeu C. Potential role of circulating endoglin in hypertension via the upregulated expression of BMP4. Cells. 2020;9:988. doi: 10.3390/cells9040988. PubMed DOI PMC
Lau J.K.C., Zhang X., Yu J. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. J. Pathol. 2017;241:36–44. doi: 10.1002/path.4829. PubMed DOI PMC
Cohen J.C., Horton J.D., Hobbs H.H. Human fatty liver disease: Old questions and new insights. Science. 2011;332:1519–1523. doi: 10.1126/science.1204265. PubMed DOI PMC
Abu-Elheiga L., Jayakumar A., Baldini A., Chirala S.S., Wakil S.J. Human acetyl-CoA carboxylase: Characterization, molecular cloning, and evidence for two isoforms. Proc. Natl. Acad. Sci. USA. 1995;92:4011–4015. doi: 10.1073/pnas.92.9.4011. PubMed DOI PMC
Munday M. Regulation of Mammalian Acetyl-CoA Carboxylase. Portland Press Ltd.; London, UK: 2002. PubMed
Ipsen D.H., Lykkesfeldt J., Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 2018;75:3313–3327. doi: 10.1007/s00018-018-2860-6. PubMed DOI PMC
Nagle C.A., Klett E.L., Coleman R.A. Hepatic triacylglycerol accumulation and insulin resistance. J. Lipid Res. 2009;50:S74–S79. doi: 10.1194/jlr.R800053-JLR200. PubMed DOI PMC
Haagsman H., Van Golde L. Regulation of hepatic triacylglycerol synthesis and secretion. Vet. Res. Commun. 1984;8:157–171. doi: 10.1007/BF02214708. PubMed DOI
Niwa H., Iizuka K., Kato T., Wu W., Tsuchida H., Takao K., Horikawa Y., Takeda J. ChREBP rather than SHP regulates hepatic VLDL secretion. Nutrients. 2018;10:321. doi: 10.3390/nu10030321. PubMed DOI PMC
Bakillah A., El A.A. The role of microsomal triglyceride transfer protein in lipoprotein assembly: An update. Front. Biosci. J. Virtual Libr. 2003;8:d294–d305. doi: 10.2741/1000. PubMed DOI
Hussain M.M., Shi J., Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J. Lipid Res. 2003;44:22–32. doi: 10.1194/jlr.R200014-JLR200. PubMed DOI
Hussain M., Nijstad N., Franceschini L. Regulation of microsomal triglyceride transfer protein. Clin. Lipidol. 2011;6:293–303. doi: 10.2217/clp.11.21. PubMed DOI PMC
Musso G., Gambino R., Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog. Lipid Res. 2013;52:175–191. doi: 10.1016/j.plipres.2012.11.002. PubMed DOI
Dolezelova E., Sa I.C.I., Prasnicka A., Hroch M., Hyspler R., Ticha A., Lastuvkova H., Cermanova J., Pericacho M., Visek J., et al. High soluble endoglin levels regulate cholesterol homeostasis and bile acids turnover in the liver of transgenic mice. Life Sci. 2019;232:116643. doi: 10.1016/j.lfs.2019.116643. PubMed DOI
Li T., Ma H., Chiang J.Y. TGFbeta1, TNFalpha, and insulin signaling crosstalk in regulation of the rat cholesterol 7alpha-hydroxylase gene expression. J. Lipid Res. 2008;49:1981–1989. doi: 10.1194/jlr.M800140-JLR200. PubMed DOI PMC
Bourdeau A., Dumont D.J., Letarte M. A murine model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 1999;104:1343–1351. doi: 10.1172/JCI8088. PubMed DOI PMC
Hirsova P., Karlasova G., Dolezelova E., Cermanova J., Zagorova M., Kadova Z., Hroch M., Sispera L., Tomsik P., Lenicek M. Cholestatic effect of epigallocatechin gallate in rats is mediated via decreased expression of Mrp2. Toxicology. 2013;303:9–15. doi: 10.1016/j.tox.2012.10.018. PubMed DOI
Prasnicka A., Cermanova J., Hroch M., Dolezelova E., Rozkydalova L., Smutny T., Carazo A., Chladek J., Lenicek M., Nachtigal P. Iron depletion induces hepatic secretion of biliary lipids and glutathione in rats. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:1469–1480. doi: 10.1016/j.bbalip.2017.09.003. PubMed DOI
Carvedilol impairs bile acid homeostasis in mice: implication for nonalcoholic steatohepatitis
High Soluble Endoglin Levels Affect Aortic Vascular Function during Mice Aging
Atorvastatin Modulates Bile Acid Homeostasis in Mice with Diet-Induced Nonalcoholic Steatohepatitis