Soluble Endoglin as a Potential Biomarker of Nonalcoholic Steatohepatitis (NASH) Development, Participating in Aggravation of NASH-Related Changes in Mouse Liver

. 2020 Nov 27 ; 21 (23) : . [epub] 20201127

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33261044

Grantová podpora
17-31754A Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/16_019/0000841 Univerzita Karlova v Praze
1166119 Grantová Agentura, Univerzita Karlova
SVV 260 549 Univerzita Karlova v Praze

Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis with inflammation and fibrosis. Membrane endoglin (Eng) expression is shown to participate in fibrosis, and plasma concentrations of soluble endoglin (sEng) are increased in patients with hypercholesterolemia and type 2 diabetes mellitus. We hypothesize that NASH increases both hepatic Eng expression and sEng in blood and that high levels of sEng modulate cholesterol and bile acid (BA) metabolism and affect NASH progression. Three-month-old transgenic male mice overexpressing human sEng and their wild type littermates are fed for six months with either a high-saturated fat, high-fructose high-cholesterol (FFC) diet or a chow diet. Evaluation of NASH, Liquid chromatography-mass spectrometry (LC/MS) analysis of BA, hepatic expression of Eng, inflammation, fibrosis markers, enzymes and transporters involved in hepatic cholesterol and BA metabolism are assessed using Real-Time Quantitative Reverse Transcription Polymerase Chain reaction (qRT-PCR) and Western blot. The FFC diet significantly increases mouse sEng levels and increases hepatic expression of Eng. High levels of human sEng results in increased hepatic deposition of cholesterol due to reduced conversion into BA, as well as redirects the metabolism of triglycerides (TAG) to its accumulation in the liver, via reduced TAG elimination by β-oxidation combined with reduced hepatic efflux. We propose that sEng might be a biomarker of NASH development, and the presence of high levels of sEng might support NASH aggravation by impairing the essential defensive mechanism protecting NASH liver against excessive TAG and cholesterol accumulation, suggesting the importance of high sEng levels in patients prone to develop NASH.

Zobrazit více v PubMed

Bernabeu C., Lopez-Novoa J.M., Quintanilla M. The emerging role of TGF-β superfamily coreceptors in cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2009;1792:954–973. doi: 10.1016/j.bbadis.2009.07.003. PubMed DOI

Meurer S.K., Tihaa L., Borkham-Kamphorst E., Weiskirchen R. Expression and functional analysis of endoglin in isolated liver cells and its involvement in fibrogenic Smad signalling. Cell. Signal. 2011;23:683–699. doi: 10.1016/j.cellsig.2010.12.002. PubMed DOI

Blázquez-Medela A.M., García-Ortiz L., Gómez-Marcos M.A., Recio-Rodríguez J.I., Sánchez-Rodríguez A., López-Novoa J.M., Martínez-Salgado C. Increased plasma soluble endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic patients. BMC Med. 2010;8:86. doi: 10.1186/1741-7015-8-86. PubMed DOI PMC

Bot P.T., Hoefer I.E., Sluijter J.P., van Vliet P., Smits A.M., Lebrin F., Moll F., de Vries J.P., Doevendans P., Piek J.J., et al. Increased expression of the transforming growth factor-beta signaling pathway, endoglin, and early growth response-1 in stable plaques. Stroke. 2009;40:439–447. doi: 10.1161/STROKEAHA.108.522284. PubMed DOI

St-Jacques S., Forte M., Lye S.J., Letarte M. Localization of endoglin, a transforming growth factor-beta binding protein, and of CD44 and integrins in placenta during the first trimester of pregnancy. Biol. Reprod. 1994;51:405–413. doi: 10.1095/biolreprod51.3.405. PubMed DOI

Meurer S., Wimmer A.E., Leur E.V., Weiskirchen R. Endoglin trafficking/exosomal targeting in liver cells depends on N-glycosylation. Cells. 2019;8:997. doi: 10.3390/cells8090997. PubMed DOI PMC

Lastres P., Bellon T., Cabañas C., Sanchez-Madrid F., Acevedo A., Gougos A., Letarte M., Bernabeu C. Regulated expression on human macrophages of endoglin, an Arg-Gly-Asp-containing surface antigen. Eur. J. Immunol. 1992;22:393–397. doi: 10.1002/eji.1830220216. PubMed DOI

Aristorena M., Gallardo-Vara E., Vicen M., de Las Casas-Engel M., Ojeda-Fernandez L., Nieto C., Blanco F.J., Valbuena-Diez A.C., Botella L.M., Nachtigal P. MMP-12, secreted by pro-inflammatory macrophages, targets endoglin in human macrophages and endothelial cells. Int. J. Mol. Sci. 2019;20:3107. doi: 10.3390/ijms20123107. PubMed DOI PMC

Hawinkels L.J., Kuiper P., Wiercinska E., Verspaget H.W., Liu Z., Pardali E., Sier C.F., ten Dijke P. Matrix metalloproteinase-14 (MT1-MMP)–mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res. 2010;70:4141–4150. doi: 10.1158/0008-5472.CAN-09-4466. PubMed DOI

Valbuena-Diez A.C., Blanco F.J., Oujo B., Langa C., Gonzalez-Nuñez M., Llano E., Pendas A.M., Díaz M., Castrillo A., Lopez-Novoa J.M. Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation. 2012;126:2612–2624. doi: 10.1161/CIRCULATIONAHA.112.101261. PubMed DOI

Blaha M., Cermanova M., Blaha V., Jarolim P., Andrys C., Blazek M., Maly J., Smolej L., Zajic J., Masin V., et al. Elevated serum soluble endoglin (sCD105) decreased during extracorporeal elimination therapy for familial hypercholesterolemia. Atherosclerosis. 2008;197:264–270. doi: 10.1016/j.atherosclerosis.2007.04.022. PubMed DOI

Blann A.D., Wang J.M., Wilson P.B., Kumar S. Serum levels of the TGF-beta receptor are increased in atherosclerosis. Atherosclerosis. 1996;120:221–226. doi: 10.1016/0021-9150(95)05713-7. PubMed DOI

Malhotra R., Paskin-Flerlage S., Zamanian R.T., Zimmerman P., Schmidt J.W., Deng D.Y., Southwood M., Spencer R., Lai C.S., Parker W., et al. Circulating angiogenic modulatory factors predict survival and functional class in pulmonary arterial hypertension. Pulm. Circ. 2013;3:369–380. doi: 10.4103/2045-8932.110445. PubMed DOI PMC

Leaños-Miranda A., Navarro-Romero C.S., Sillas-Pardo L.J., Ramírez-Valenzuela K.L., Isordia-Salas I., Jiménez-Trejo L.M. Soluble endoglin as a marker for preeclampsia, its severity, and the occurrence of adverse outcomes. Hypertension. 2019;74:991–997. doi: 10.1161/HYPERTENSIONAHA.119.13348. PubMed DOI

Doghish A.S., Bassyouni A.A., Mahfouz M.H., Abd El-Aziz H.G., Zakaria R.Y. Plasma endoglin in Type2 diabetic patients with nephropathy. Diabetes Metab. Syndr. 2019;13:764–768. doi: 10.1016/j.dsx.2018.11.058. PubMed DOI

Finnson K.W., Philip A. Endoglin in liver fibrosis. J. Cell Commun. Signal. 2012;6:1–4. doi: 10.1007/s12079-011-0154-y. PubMed DOI PMC

García-Pozo L., Miquilena-Colina M.E., Lozano-Rodríguez T., García-Monzón C. Endoglin: Structure, biological functions, and role in fibrogenesis. Rev. Esp. Enferm. Dig. 2008;100:355–360. doi: 10.4321/S1130-01082008000600008. PubMed DOI

Ioannou G.N. The Role of Cholesterol in the Pathogenesis of NASH. Trends Endocrinol. Metab. 2016;27:84–95. doi: 10.1016/j.tem.2015.11.008. PubMed DOI

Alsamman M., Sterzer V., Meurer S.K., Sahin H., Schaeper U., Kuscuoglu D., Strnad P., Weiskirchen R., Trautwein C., Scholten D. Endoglin in human liver disease and murine models of liver fibrosis—A protective factor against liver fibrosis. Liver Int. 2018;38:858–867. doi: 10.1111/liv.13595. PubMed DOI PMC

Clemente M., Nunez O., Lorente R., Rincon D., Matilla A., Salcedo M., Catalina M., Ripoll C., Iacono O., Banares R. Increased intrahepatic and circulating levels of endoglin, a TGF-β1 co-receptor, in patients with chronic hepatitis C virus infection: Relationship to histological and serum markers of hepatic fibrosis. J. Viral Hepat. 2006;13:625–632. doi: 10.1111/j.1365-2893.2006.00733.x. PubMed DOI

Preativatanyou K., Honsawek S., Chongsrisawat V., Vejchapipat P., Theamboonlers A., Poovorawan Y. Correlation of circulating endoglin with clinical outcome in biliary atresia. Eur. J. Pediatric Surg. 2010;20:237–241. doi: 10.1055/s-0030-1249695. PubMed DOI

Ibrahim S.H., Hirsova P., Gores G.J. Non-alcoholic steatohepatitis pathogenesis: Sublethal hepatocyte injury as a driver of liver inflammation. Gut. 2018;67:963–972. doi: 10.1136/gutjnl-2017-315691. PubMed DOI PMC

Manne V., Handa P., Kowdley K.V. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin. Liver Dis. 2018;22:23–37. doi: 10.1016/j.cld.2017.08.007. PubMed DOI

Kleiner D.E., Brunt E.M., Van Natta M., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.C., Torbenson M.S., Unalp-Arida A. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701. PubMed DOI

Hirsova P., Weng P., Salim W., Bronk S.F., Griffith T.S., Ibrahim S.H., Gores G.J. TRAIL deletion prevents liver inflammation but not adipose tissue inflammation during murine diet-induced obesity. Hepatol. Commun. 2017;1:648–662. doi: 10.1002/hep4.1069. PubMed DOI PMC

Lonardo A., Leoni S., Alswat K.A., Fouad Y. History of nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2020;21:5888. doi: 10.3390/ijms21165888. PubMed DOI PMC

Ariz U., Mato J.M., Lu S.C., Chantar M.L.M. Bioinformatics Methods in Clinical Research. Springer; Berlin/Heidelberg, Germany: 2010. Nonalcoholic steatohepatitis, animal models, and biomarkers: What is new? pp. 109–136. PubMed

Vilar-Gomez E., Calzadilla-Bertot L., Wai-Sun Wong V., Castellanos M., Aller-de la Fuente R., Metwally M., Eslam M., Gonzalez-Fabian L., Alvarez-Quinones Sanz M., Conde-Martin A.F., et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: A multi-national cohort study. Gastroenterology. 2018;155:443–457.e17. doi: 10.1053/j.gastro.2018.04.034. PubMed DOI

Ampuero J., Aller R., Gallego-Duran R., Crespo J., Calleja J.L., Garcia-Monzon C., Gomez-Camarero J., Caballeria J., Lo Iacono O., Ibanez L., et al. Significant fibrosis predicts new-onset diabetes mellitus and arterial hypertension in patients with NASH. J. Hepatol. 2020;73:17–25. doi: 10.1016/j.jhep.2020.02.028. PubMed DOI

García-Monzón C., Martín-Pérez E., Iacono O.L., Fernández-Bermejo M., Majano P.L., Apolinario A., Larrañaga E., Moreno-Otero R. Characterization of pathogenic and prognostic factors of nonalcoholic steatohepatitis associated with obesity. J. Hepatol. 2000;33:716–724. doi: 10.1016/S0168-8278(00)80301-3. PubMed DOI

Gottlieb A., Canbay A. Why Bile acids are so important in Non-Alcoholic Fatty Liver Disease (NAFLD) progression. Cells. 2019;8:1358. doi: 10.3390/cells8111358. PubMed DOI PMC

Chiang J.Y. Targeting bile acids and lipotoxicity for NASH treatment. Hepatol. Commun. 2017;1:1002. doi: 10.1002/hep4.1127. PubMed DOI PMC

Serviddio G., Bellanti F., Villani R., Tamborra R., Zerbinati C., Blonda M., Ciacciarelli M., Poli G., Vendemiale G., Iuliano L. Effects of dietary fatty acids and cholesterol excess on liver injury: A lipidomic approach. Redox Biol. 2016;9:296–305. doi: 10.1016/j.redox.2016.09.002. PubMed DOI PMC

Vicen M., Vitverova B., Havelek R., Blazickova K., Machacek M., Rathouska J., Najmanová I., Dolezelova E., Prasnicka A., Sternak M. Regulation and role of endoglin in cholesterol-induced endothelial and vascular dysfunction in vivo and in vitro. FASEB J. 2019;33:6099–6114. doi: 10.1096/fj.201802245R. PubMed DOI

Charlton M., Krishnan A., Viker K., Sanderson S., Cazanave S., McConico A., Masuoko H., Gores G. Fast food diet mouse: Novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;301:G825–G834. doi: 10.1152/ajpgi.00145.2011. PubMed DOI PMC

Krishnan A., Abdullah T.S., Mounajjed T., Hartono S., McConico A., White T., LeBrasseur N., Lanza I., Nair S., Gores G. A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;312:G666–G680. doi: 10.1152/ajpgi.00213.2016. PubMed DOI PMC

Chiappini F., Desterke C., Bertrand-Michel J., Guettier C., Le Naour F. Hepatic and serum lipid signatures specific to nonalcoholic steatohepatitis in murine models. Sci. Rep. 2016;6:31587. doi: 10.1038/srep31587. PubMed DOI PMC

Gallardo-Vara E., Blanco F.J., Roqué M., Friedman S.L., Suzuki T., Botella L.M., Bernabeu C. Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury. Angiogenesis. 2016;19:155–171. doi: 10.1007/s10456-016-9495-8. PubMed DOI PMC

Miele L., Beale G., Patman G., Nobili V., Leathart J., Grieco A., Abate M., Friedman S.L., Narla G., Bugianesi E., et al. The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology. 2008;135:282–291.e1. doi: 10.1053/j.gastro.2008.04.004. PubMed DOI PMC

Hayashi M., Nomoto S., Hishida M., Inokawa Y., Kanda M., Okamura Y., Nishikawa Y., Tanaka C., Kobayashi D., Yamada S. Identification of the collagen type 1 alpha 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma. BMC Cancer. 2014;14:108. doi: 10.1186/1471-2407-14-108. PubMed DOI PMC

Zhu H.-J., Burgess A.W. Regulation of transforming growth factor-β signaling. Mol. Cell Biol. Res. Commun. 2001;4:321–330. doi: 10.1006/mcbr.2001.0301. PubMed DOI

Meurer S.K., Alsamman M., Scholten D., Weiskirchen R. Endoglin in liver fibrogenesis: Bridging basic science and clinical practice. World J. Biol. Chem. 2014;5:180–203. doi: 10.4331/wjbc.v5.i2.180. PubMed DOI PMC

Medina J., Sanz-Cameno P., García-Buey L., Martín-Vílchez S., López-Cabrera M., Moreno-Otero R. Evidence of angiogenesis in primary biliary cirrhosis: An immunohistochemical descriptive study. J. Hepatol. 2005;42:124–131. doi: 10.1016/j.jhep.2004.09.024. PubMed DOI

Rath T., Hage L., Kügler M., Menendez Menendez K., Zachoval R., Naehrlich L., Schulz R., Roderfeld M., Roeb E. Serum proteome profiling identifies novel and powerful markers of cystic fibrosis liver disease. PLoS ONE. 2013;8:e58955. doi: 10.1371/journal.pone.0058955. PubMed DOI PMC

Yagmur E., Rizk M., Stanzel S., Hellerbrand C., Lammert F., Trautwein C., Wasmuth H.E., Gressner A.M. Elevation of endoglin (CD105) concentrations in serum of patients with liver cirrhosis and carcinoma. Eur. J. Gastroenterol. Hepatol. 2007;19:755–761. doi: 10.1097/MEG.0b013e3282202bea. PubMed DOI

Vitverova B., Blazickova K., Najmanova I., Vicen M., Hyšpler R., Dolezelova E., Nemeckova I., Tebbens J.D., Bernabeu C., Pericacho M., et al. Soluble endoglin and hypercholesterolemia aggravate endothelial and vessel wall dysfunction in mouse aorta. Atherosclerosis. 2018;271:15–25. doi: 10.1016/j.atherosclerosis.2018.02.008. PubMed DOI

Tobar N., Avalos M.C., Méndez N., Smith P.C., Bernabeu C., Quintanilla M., Martínez J. Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells. Carcinogenesis. 2014;35:1770–1779. doi: 10.1093/carcin/bgu061. PubMed DOI

Vitverova B., Najmanova I., Vicen M., Tripska K., Sa I.C.I., Hyspler R., Pericacho M., Nachtigal P. Long term effects of soluble endoglin and mild hypercholesterolemia in mice hearts. PLoS ONE. 2020;15:e0233725. doi: 10.1371/journal.pone.0233725. PubMed DOI PMC

Gallardo-Vara E., Gamella-Pozuelo L., Perez-Roque L., Bartha J.L., Garcia-Palmero I., Casal J.I., López-Novoa J.M., Pericacho M., Bernabeu C. Potential role of circulating endoglin in hypertension via the upregulated expression of BMP4. Cells. 2020;9:988. doi: 10.3390/cells9040988. PubMed DOI PMC

Lau J.K.C., Zhang X., Yu J. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. J. Pathol. 2017;241:36–44. doi: 10.1002/path.4829. PubMed DOI PMC

Cohen J.C., Horton J.D., Hobbs H.H. Human fatty liver disease: Old questions and new insights. Science. 2011;332:1519–1523. doi: 10.1126/science.1204265. PubMed DOI PMC

Abu-Elheiga L., Jayakumar A., Baldini A., Chirala S.S., Wakil S.J. Human acetyl-CoA carboxylase: Characterization, molecular cloning, and evidence for two isoforms. Proc. Natl. Acad. Sci. USA. 1995;92:4011–4015. doi: 10.1073/pnas.92.9.4011. PubMed DOI PMC

Munday M. Regulation of Mammalian Acetyl-CoA Carboxylase. Portland Press Ltd.; London, UK: 2002. PubMed

Ipsen D.H., Lykkesfeldt J., Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 2018;75:3313–3327. doi: 10.1007/s00018-018-2860-6. PubMed DOI PMC

Nagle C.A., Klett E.L., Coleman R.A. Hepatic triacylglycerol accumulation and insulin resistance. J. Lipid Res. 2009;50:S74–S79. doi: 10.1194/jlr.R800053-JLR200. PubMed DOI PMC

Haagsman H., Van Golde L. Regulation of hepatic triacylglycerol synthesis and secretion. Vet. Res. Commun. 1984;8:157–171. doi: 10.1007/BF02214708. PubMed DOI

Niwa H., Iizuka K., Kato T., Wu W., Tsuchida H., Takao K., Horikawa Y., Takeda J. ChREBP rather than SHP regulates hepatic VLDL secretion. Nutrients. 2018;10:321. doi: 10.3390/nu10030321. PubMed DOI PMC

Bakillah A., El A.A. The role of microsomal triglyceride transfer protein in lipoprotein assembly: An update. Front. Biosci. J. Virtual Libr. 2003;8:d294–d305. doi: 10.2741/1000. PubMed DOI

Hussain M.M., Shi J., Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J. Lipid Res. 2003;44:22–32. doi: 10.1194/jlr.R200014-JLR200. PubMed DOI

Hussain M., Nijstad N., Franceschini L. Regulation of microsomal triglyceride transfer protein. Clin. Lipidol. 2011;6:293–303. doi: 10.2217/clp.11.21. PubMed DOI PMC

Musso G., Gambino R., Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog. Lipid Res. 2013;52:175–191. doi: 10.1016/j.plipres.2012.11.002. PubMed DOI

Dolezelova E., Sa I.C.I., Prasnicka A., Hroch M., Hyspler R., Ticha A., Lastuvkova H., Cermanova J., Pericacho M., Visek J., et al. High soluble endoglin levels regulate cholesterol homeostasis and bile acids turnover in the liver of transgenic mice. Life Sci. 2019;232:116643. doi: 10.1016/j.lfs.2019.116643. PubMed DOI

Li T., Ma H., Chiang J.Y. TGFbeta1, TNFalpha, and insulin signaling crosstalk in regulation of the rat cholesterol 7alpha-hydroxylase gene expression. J. Lipid Res. 2008;49:1981–1989. doi: 10.1194/jlr.M800140-JLR200. PubMed DOI PMC

Bourdeau A., Dumont D.J., Letarte M. A murine model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 1999;104:1343–1351. doi: 10.1172/JCI8088. PubMed DOI PMC

Hirsova P., Karlasova G., Dolezelova E., Cermanova J., Zagorova M., Kadova Z., Hroch M., Sispera L., Tomsik P., Lenicek M. Cholestatic effect of epigallocatechin gallate in rats is mediated via decreased expression of Mrp2. Toxicology. 2013;303:9–15. doi: 10.1016/j.tox.2012.10.018. PubMed DOI

Prasnicka A., Cermanova J., Hroch M., Dolezelova E., Rozkydalova L., Smutny T., Carazo A., Chladek J., Lenicek M., Nachtigal P. Iron depletion induces hepatic secretion of biliary lipids and glutathione in rats. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017;1862:1469–1480. doi: 10.1016/j.bbalip.2017.09.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace