Long term effects of soluble endoglin and mild hypercholesterolemia in mice hearts

. 2020 ; 15 (5) : e0233725. [epub] 20200529

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32470058

Soluble endoglin (sEng) released into the circulation was suggested to be related to cardiovascular based pathologies. It was demonstrated that a combination of high sEng levels and long-term exposure (six months) to high fat diet (HFD) resulted in aggravation of endothelial dysfunction in the aorta. Thus, in this study, we hypothesized that a similar experimental design would affect the heart morphology, TGFβ signaling, inflammation, fibrosis, oxidative stress and eNOS signaling in myocardium in transgenic mice overexpressing human sEng. Three-month-old female transgenic mice overexpressing human sEng in plasma (Sol-Eng+ high) and their age-matched littermates with low levels of human sEng (Sol-Eng+ low) were fed a high-fat diet containing 1.25% of cholesterol and 40% of fat for six months. A blood analysis was performed, and the heart samples were analyzed by qRT-PCR and Western blot. The results of this study showed no effects of sEng and HFD on myocardial morphology/hypertrophy/fibrosis. However, the expression of pSmad2/3 and p-eNOS was reduced in Sol-Eng+ high mice. On the other hand, sEng and HFD did not significantly affect the expression of selected members of TGFβ signaling (membrane endoglin, TGFβRII, ALK-5, ALK-1, Id-1, PAI-1), inflammation (VCAM-1, ICAM-1), oxidative stress (NQO1, HO-1) and heart remodeling (PDGFβ, COL1A1, β-MHC). In conclusion, the results of this study confirmed that sEng, even combined with a high-fat diet inducing hypercholesterolemia administered for six months, does not affect the structure of the heart with respect to hypertrophy, fibrosis, inflammation and oxidative stress. Interestingly, pSmad2/3/p-eNOS signaling was reduced in both the heart in this study and the aorta in the previous study, suggesting a possible alteration of NO metabolism caused by six months exposure to high sEng levels and HFD. Thus, we might conclude that sEng combined with a high-fat diet might be related to the alteration of NO production due to altered pSmad2/3/p-eNOS signaling in the heart and aorta.

Zobrazit více v PubMed

Nachtigal P, Zemankova Vecerova L, Rathouska J, Strasky Z. The role of endoglin in atherosclerosis. Atherosclerosis. 2012;224(1):4–11. 10.1016/j.atherosclerosis.2012.03.001 PubMed DOI

Hawinkels LJ, Kuiper P., Wiercinska E. et al. Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer research. 2010:4140–50. PubMed

Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9. 10.1038/nm1429 PubMed DOI

Blann AD, Wang JM, Wilson PB, Kumar S. Serum levels of the TGF-beta receptor are increased in atherosclerosis. Atherosclerosis. 1996;120(1–2):221–6. 10.1016/0021-9150(95)05713-7 PubMed DOI

Blazquez-Medela AM, Garcia-Ortiz L., Gomez-Marcos M.A. et al. Increased plasma soluble endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic patients. BMC Med. 2010:86. PubMed PMC

Cruz-Gonzalez I, Pabon P, Rodriguez-Barbero A, Martin-Moreiras J, Pericacho M, Sanchez PL, et al. Identification of serum endoglin as a novel prognostic marker after acute myocardial infarction. J Cell Mol Med. 2008;12(3):955–61. 10.1111/j.1582-4934.2008.00156.x PubMed DOI PMC

Kapur NK, Heffernan KS, Yunis AA, Parpos P, Kiernan MS, Sahasrabudhe NA, et al. Usefulness of soluble endoglin as a noninvasive measure of left ventricular filling pressure in heart failure. Am J Cardiol. 2010;106(12):1770–6. 10.1016/j.amjcard.2010.08.018 PubMed DOI PMC

Yanavitski M, Givertz MM. Novel biomarkers in acute heart failure. Curr Heart Fail Rep. 2011;8(3):206–11. 10.1007/s11897-011-0065-5 PubMed DOI

Vitverova B, Blazickova K, Najmanova I, Vicen M, Hyspler R, Dolezelova E, et al. Soluble endoglin and hypercholesterolemia aggravate endothelial and vessel wall dysfunction in mouse aorta. Atherosclerosis. 2018;271:15–25. 10.1016/j.atherosclerosis.2018.02.008 PubMed DOI

Valbuena-Diez AC, Blanco FJ, Oujo B, Langa C, Gonzalez-Nunez M, Llano E, et al. Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation. 2012;126(22):2612–24. 10.1161/CIRCULATIONAHA.112.101261 PubMed DOI

Rathouska J, Jezkova, K., Nemeckova, I., Nachtigal, P. Soluble endoglin, hypercholesterolemia and endothelial dysfunction. Atherosclerosis. 2015:383–8. PubMed

Van Le B, Franke D, Svergun DI, Han T, Hwang HY, Kim KK. Structural and functional characterization of soluble endoglin receptor. Biochem Biophys Res Commun. 2009;383(4):386–91. 10.1016/j.bbrc.2009.02.162 PubMed DOI

Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997;100(9):2153–7. 10.1172/JCI119751 PubMed DOI PMC

Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109–42. PubMed

Elnakish MT, Hassanain HH, Janssen PM. Vascular remodeling-associated hypertension leads to left ventricular hypertrophy and contractile dysfunction in profilin-1 transgenic mice. J Cardiovasc Pharmacol. 2012;60(6):544–52. 10.1097/FJC.0b013e318271225d PubMed DOI

Maron BJ. Cardiology patient pages. Hypertrophic cardiomyopathy. Circulation. 2002;106(19):2419–21. 10.1161/01.cir.0000034170.83171.0b PubMed DOI

Moreo A, Ambrosio G, De Chiara B, Pu M, Tran T, Mauri F, et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging. 2009;2(6):437–43. 10.1161/CIRCIMAGING.108.838367 PubMed DOI PMC

Nemeckova I, Serwadczak A., Oujo B. et al. High soluble endoglin levels do not induce endothelial dysfunction in mouse aorta. PLoS One. 2015:e0119665 10.1371/journal.pone.0119665 PubMed DOI PMC

Rathouska J, Fikrova P, Mrkvicova A, Blazickova K, Varejckova M, Dolezelova E, et al. High soluble endoglin levels do not induce changes in structural parameters of mouse heart. Heart Vessels. 2017. PubMed

Jezkova K, Rathouska J, Nemeckova I, Fikrova P, Dolezelova E, Varejckova M, et al. High Levels of Soluble Endoglin Induce a Proinflammatory and Oxidative-Stress Phenotype Associated with Preserved NO-Dependent Vasodilatation in Aortas from Mice Fed a High-Fat Diet. J Vasc Res. 2016;53(3–4):149–62. 10.1159/000448996 PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. 10.1006/meth.2001.1262 PubMed DOI

Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181–90. 10.1152/ajpheart.00554.2011 PubMed DOI

Streicher JM, Wang Y. The role of COX-2 in heart pathology. Cardiovasc Hematol Agents Med Chem. 2008;6(1):69–79. 10.2174/187152508783329948 PubMed DOI

Strasky Z, Vecerova L, Rathouska J, Slanarova M, Brcakova E, Kudlackova Z, et al. Cholesterol effects on endoglin and its downstream pathways in ApoE/LDLR double knockout mice. Circ J. 2011;75(7):1747–55. 10.1253/circj.cj-10-1285 PubMed DOI

Blaha M, Cermanova M., Blaha V., et al. Elevated serum soluble endoglin (sCD105) decreased during extracorporeal elimination therapy for familiar hypercholesterolemia. Atherosclerosis. 2008:264–70. PubMed

Leanos-Miranda A, Navarro-Romero CS, Sillas-Pardo LJ, Ramirez-Valenzuela KL, Isordia-Salas I, Jimenez-Trejo LM. Soluble Endoglin As a Marker for Preeclampsia, Its Severity, and the Occurrence of Adverse Outcomes. Hypertension. 2019;74(4):991–7. 10.1161/HYPERTENSIONAHA.119.13348 PubMed DOI

Ge AZ, Butcher EC. Cloning and expression of a cDNA encoding mouse endoglin, an endothelial cell TGF-beta ligand. Gene. 1994;138(1–2):201–6. 10.1016/0378-1119(94)90808-7 PubMed DOI

Duerr RL, Huang S, Miraliakbar HR, Clark R, Chien KR, Ross J Jr. Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. J Clin Invest. 1995;95(2):619–27. 10.1172/JCI117706 PubMed DOI PMC

Yin FC, Spurgeon HA, Rakusan K, Weisfeldt ML, Lakatta EG. Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am J Physiol. 1982;243(6):H941–7. 10.1152/ajpheart.1982.243.6.H941 PubMed DOI

Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127(3):526–37. 10.1038/sj.jid.5700613 PubMed DOI

Weber DS, Taniyama Y, Rocic P, Seshiah PN, Dechert MA, Gerthoffer WT, et al. Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circ Res. 2004;94(9):1219–26. 10.1161/01.RES.0000126848.54740.4A PubMed DOI

Frangogiannis NG. The role of transforming growth factor (TGF)-beta in the infarcted myocardium. J Thorac Dis. 2017;9(Suppl 1):S52–S63. 10.21037/jtd.2016.11.19 PubMed DOI PMC

Kane CJ, Hebda PA, Mansbridge JN, Hanawalt PC. Direct evidence for spatial and temporal regulation of transforming growth factor beta 1 expression during cutaneous wound healing. J Cell Physiol. 1991;148(1):157–73. 10.1002/jcp.1041480119 PubMed DOI

Shinde AV, Frangogiannis NG. Fibroblasts in myocardial infarction: a role in inflammation and repair. J Mol Cell Cardiol. 2014;70:74–82. 10.1016/j.yjmcc.2013.11.015 PubMed DOI PMC

Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell. 2003;12(4):817–28. 10.1016/s1097-2765(03)00386-1 PubMed DOI

Velasco S, Alvarez-Munoz P, Pericacho M, Dijke PT, Bernabeu C, Lopez-Novoa JM, et al. L- and S-endoglin differentially modulate TGFbeta1 signaling mediated by ALK1 and ALK5 in L6E9 myoblasts. J Cell Sci. 2008;121(Pt 6):913–9. 10.1242/jcs.023283 PubMed DOI

Lawera A, Tong Z, Thorikay M, Redgrave RE, Cai J, van Dinther M, et al. Role of soluble endoglin in BMP9 signaling. Proc Natl Acad Sci U S A. 2019;116(36):17800–8. 10.1073/pnas.1816661116 PubMed DOI PMC

Ross D, Siegel D. Functions of NQO1 in Cellular Protection and CoQ10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch. Front Physiol. 2017;8:595 10.3389/fphys.2017.00595 PubMed DOI PMC

Siegel D, Dehn DD, Bokatzian SS, Quinn K, Backos DS, Di Francesco A, et al. Redox modulation of NQO1. PLoS One. 2018;13(1):e0190717 10.1371/journal.pone.0190717 PubMed DOI PMC

Kamalvand G, Pinard G, Ali-Khan Z. Heme-oxygenase-1 response, a marker of oxidative stress, in a mouse model of AA amyloidosis. Amyloid. 2003;10(3):151–9. 10.3109/13506120308998997 PubMed DOI

Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M, et al. Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res. 2001;89(2):168–73. 10.1161/hh1401.093314 PubMed DOI

Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal. 2011;15(6):1607–38. 10.1089/ars.2010.3522 PubMed DOI PMC

Frank PG, Lisanti MP. ICAM-1: role in inflammation and in the regulation of vascular permeability. Am J Physiol Heart Circ Physiol. 2008;295(3):H926–H7. 10.1152/ajpheart.00779.2008 PubMed DOI PMC

Gallardo-Vara E, Tual-Chalot S, Botella LM, Arthur HM, Bernabeu C. Soluble endoglin regulates expression of angiogenesis-related proteins and induction of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia. Dis Model Mech. 2018;11(9). PubMed PMC

Jerkic M, Rivas-Elena JV, Prieto M, Carron R, Sanz-Rodriguez F, Perez-Barriocanal F, et al. Endoglin regulates nitric oxide-dependent vasodilatation. FASEB J. 2004;18(3):609–11. 10.1096/fj.03-0197fje PubMed DOI

Toporsian M, Gros R, Kabir MG, Vera S, Govindaraju K, Eidelman DH, et al. A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia. Circ Res. 2005;96(6):684–92. 10.1161/01.RES.0000159936.38601.22 PubMed DOI

Santibanez JF, Letamendia A, Perez-Barriocanal F, Silvestri C, Saura M, Vary CP, et al. Endoglin increases eNOS expression by modulating Smad2 protein levels and Smad2-dependent TGF-beta signaling. J Cell Physiol. 2007;210(2):456–68. 10.1002/jcp.20878 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...