Symptom-severity-related brain connectivity alterations in functional movement disorders
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35287089
PubMed Central
PMC8921488
DOI
10.1016/j.nicl.2022.102981
PII: S2213-1582(22)00046-8
Knihovny.cz E-zdroje
- Klíčová slova
- Brain connectivity, Functional connectivity, Functional magnetic resonance imaging, Functional movement disorders, Functional weakness, Motor conversion disorder, Precuneus, Temporoparietal junction,
- MeSH
- konverzní poruchy * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mozek * diagnostické zobrazování MeSH
- temenní lalok MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Functional movement disorders, a common cause of neurological disabilities, can occur with heterogeneous motor manifestations including functional weakness. However, the underlying mechanisms related to brain function and connectivity are unknown. OBJECTIVE: To identify brain connectivity alterations related to functional weakness we assessed network centrality changes in a group of patients with heterogeneous motor manifestations using task-free functional MRI in combination with different network centrality approaches. METHODS: Task-free functional MRI was performed in 48 patients with heterogeneous motor manifestations including 28 patients showing functional weakness and 65 age- and sex-matched healthy controls. Functional connectivity differences were assessed using different network centrality approaches, i.e. global correlation, eigenvector centrality, and intrinsic connectivity. Motor symptom severity was assessed using The Simplified Functional Movement Disorders Rating Scale and correlated with network centrality. RESULTS: Comparing patients with and without functional weakness showed significant network centrality differences in the left temporoparietal junction and precuneus. Patients with functional weakness showed increased centrality in the same anatomical regions when comparing functional weakness with healthy controls. Moreover, in the same regions, patients with functional weakness showed a positive correlation between motor symptom severity and network centrality. This correlation was shown to be specific to functional weakness with an interaction analysis, confirming a significant difference between patients with and without functional weakness. CONCLUSIONS: We identified the temporoparietal junction and precuneus as key regions involved in brain connectivity alterations related to functional weakness. We propose that both regions may be promising targets for phenotype-specific non-invasive brain stimulation.
Zobrazit více v PubMed
APA . American Psychiatric Publishing; Arlington, VA: 2013. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) p. 991.
Ashburner J., Friston K.J. Unified segmentation. Neuroimage. 2005;26:839–851. PubMed
Aybek S., Nicholson T.R., O'Daly O., Zelaya F., Kanaan R.A., David A.S. Emotion-motion interactions in conversion disorder: an FMRI study. PLoS ONE. 2015;10 PubMed PMC
Aybek S., Nicholson T.R., Zelaya F., O'Daly O.G., Craig T.J., David A.S., Kanaan R.A. Neural correlates of recall of life events in conversion disorder. JAMA Psychiatry. 2014;71:52–60. PubMed
Baek K., Donamayor N., Morris L.S., Strelchuk D., Mitchell S., Mikheenko Y., Yeoh S.Y., Phillips W., Zandi M., Jenaway A., Walsh C., Voon V. Impaired awareness of motor intention in functional neurological disorder: implications for voluntary and functional movement. Psychol. Med. 2017;47:1624–1636. PubMed PMC
Baizabal-Carvallo J.F., Hallett M., Jankovic J. Pathogenesis and pathophysiology of functional (psychogenic) movement disorders. Neurobiol. Dis. 2019;127:32–44. PubMed
Bao Z., Howidi B., Burhan A.M., Frewen P. Self-Referential Processing Effects of Non-invasive Brain Stimulation: A Systematic Review. Front. Neurosci. 2021;15 PubMed PMC
Bassett D.S., Bullmore E. Small-world brain networks. Neuroscientist. 2006;12:512–523. PubMed
Beck A.T., Ward C.H., Mendelson M., Mock J., Erbaugh J. An inventory for measuring depression. Arch. Gen. Psychiatry. 1961;4:561–571. PubMed
Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995;34:537–541. PubMed
Buckner R.L., DiNicola L.M. The brain's default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 2019;20:593–608. PubMed
Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10:186–198. PubMed
Canu, E., Agosta, F., Tomic, A., Sarasso, E., Petrovic, I., Piramide, N., Svetel, M., Inuggi, A., N, D.M., Kostic, V.S., Filippi, M., 2020. Breakdown of the affective-cognitive network in functional dystonia. Hum Brain Mapp 41, 3059-3076. PubMed PMC
Chen R., Gerloff C., Classen J., Wassermann E.M., Hallett M., Cohen L.G. Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electroencephalogr. Clin. Neurophysiol. 1997;105:415–421. PubMed
Colenbier N., Van de Steen F., Uddin L.Q., Poldrack R.A., Calhoun V.D., Marinazzo D. Disambiguating the role of blood flow and global signal with partial information decomposition. Neuroimage. 2020;213 PubMed
Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002;3:201–215. PubMed
Dalong G., Jiyuan L., Yubin Z., Yufei Q., Jinghua Y., Cong W., Hongbo J. Cathodal Transcranial Direct Current Stimulation Over the Right Temporoparietal Junction Suppresses Its Functional Connectivity and Reduces Contralateral Spatial and Temporal Perception. Front. Neurosci. 2021;15 PubMed PMC
Daum C., Hubschmid M., Aybek S. The value of 'positive' clinical signs for weakness, sensory and gait disorders in conversion disorder: a systematic and narrative review. J. Neurol. Neurosurg. Psychiatry. 2014;85:180–190. PubMed
de Lange F.P., Roelofs K., Toni I. Increased self-monitoring during imagined movements in conversion paralysis. Neuropsychologia. 2007;45:2051–2058. PubMed
de Lange F.P., Toni I., Roelofs K. Altered connectivity between prefrontal and sensorimotor cortex in conversion paralysis. Neuropsychologia. 2010;48:1782–1788. PubMed
Dennis E.L., Thompson P.M. Functional brain connectivity using fMRI in aging and Alzheimer's disease. Neuropsychol. Rev. 2014;24:49–62. PubMed PMC
Diez I., Ortiz-Teran L., Williams B., Jalilianhasanpour R., Ospina J.P., Dickerson B.C., Keshavan M.S., LaFrance W.C., Jr., Sepulcre J., Perez D.L. Corticolimbic fast-tracking: enhanced multimodal integration in functional neurological disorder. J. Neurol. Neurosurg. Psychiatry. 2019;90:929–938. PubMed PMC
Donaldson P.H., Rinehart N.J., Enticott P.G. Noninvasive stimulation of the temporoparietal junction: A systematic review. Neurosci. Biobehav. Rev. 2015;55:547–572. PubMed
Edwards M.J., Adams R.A., Brown H., Parees I., Friston K.J. A Bayesian account of 'hysteria'. Brain. 2012;135:3495–3512. PubMed PMC
Edwards M.J., Bhatia K.P. Functional (psychogenic) movement disorders: merging mind and brain. Lancet Neurol. 2012;11:250–260. PubMed
Espay A.J., Aybek S., Carson A., Edwards M.J., Goldstein L.H., Hallett M., LaFaver K., LaFrance W.C., Jr., Lang A.E., Nicholson T., Nielsen G., Reuber M., Voon V., Stone J., Morgante F. Current Concepts in Diagnosis and Treatment of Functional Neurological Disorders. JAMA Neurol. 2018;75:1132–1141. PubMed PMC
Espay A.J., Lang A.E. Phenotype-specific diagnosis of functional (psychogenic) movement disorders. Curr Neurol Neurosci Rep. 2015;15:32. PubMed
Espay A.J., Maloney T., Vannest J., Norris M.M., Eliassen J.C., Neefus E., Allendorfer J.B., Chen R., Szaflarski J.P. Dysfunction in emotion processing underlies functional (psychogenic) dystonia. Mov. Disord. 2018;33:136–145. PubMed PMC
Faul L., Knight L.K., Espay A.J., Depue B.E., LaFaver K. Neural activity in functional movement disorders after inpatient rehabilitation. Psychiatry Res. Neuroimaging. 2020;303 PubMed
Ferreira L.K., Busatto G.F. Resting-state functional connectivity in normal brain aging. Neurosci. Biobehav. Rev. 2013;37:384–400. PubMed
Flandin G., Friston K.J. Analysis of family-wise error rates in statistical parametric mapping using random field theory. Hum. Brain Mapp. 2019;40:2052–2054. PubMed PMC
Friston K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 2010;11:127–138. PubMed
Friston K.J., Buechel C., Fink G.R., Morris J., Rolls E., Dolan R.J. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage. 1997;6:218–229. PubMed
Friston K.J., Worsley K.J., Frackowiak R.S., Mazziotta J.C., Evans A.C. Assessing the significance of focal activations using their spatial extent. Hum. Brain Mapp. 1994;1:210–220. PubMed
Geng J.J., Vossel S. Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci. Biobehav. Rev. 2013;37:2608–2620. PubMed PMC
Gupta A., Lang A.E. Psychogenic movement disorders. Curr. Opin. Neurol. 2009;22:430–436. PubMed
Hallett M. Physiology of psychogenic movement disorders. J. Clin. Neurosci. 2010;17:959–965. PubMed PMC
Hassa T., de Jel E., Tuescher O., Schmidt R., Schoenfeld M.A. Functional networks of motor inhibition in conversion disorder patients and feigning subjects. Neuroimage Clin. 2016;11:719–727. PubMed PMC
Hassa T., Sebastian A., Liepert J., Weiller C., Schmidt R., Tuscher O. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder. Neuroimage Clin. 2017;15:143–150. PubMed PMC
Holiga S., Sambataro F., Luzy C., Greig G., Sarkar N., Renken R.J., Marsman J.C., Schobel S.A., Bertolino A., Dukart J. Test-retest reliability of task-based and resting-state blood oxygen level dependence and cerebral blood flow measures. PLoS ONE. 2018;13 PubMed PMC
Igelstrom K.M., Graziano M.S.A. The inferior parietal lobule and temporoparietal junction: A network perspective. Neuropsychologia. 2017;105:70–83. PubMed
Inukai Y., Saito K., Sasaki R., Tsuiki S., Miyaguchi S., Kojima S., Masaki M., Otsuru N., Onishi H. Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability. Front. Hum. Neurosci. 2016;10:668. PubMed PMC
Kozlowska K., Griffiths K.R., Foster S.L., Linton J., Williams L.M., Korgaonkar M.S. Grey matter abnormalities in children and adolescents with functional neurological symptom disorder. Neuroimage Clin. 2017;15:306–314. PubMed PMC
Li J.Y., Suo X.L., Li N.N., Lei D., Lu Z.J., Wang L., Peng J.X., Duan L.R., Jing X., Yi J., Gong Q.Y., Peng R. Altered spontaneous brain activity in essential tremor with and without resting tremor: a resting-state fMRI study. MAGMA. 2021;34:201–212. PubMed
Liu T.T., Nalci A., Falahpour M. The global signal in fMRI: Nuisance or Information? Neuroimage. 2017;150:213–229. PubMed PMC
Lohmann, G., Loktyushin, A., Stelzer, J., Scheffler, K., 2018. Eigenvector centrality mapping for ultrahigh resolution fMRI data of the human brain. bioRxiv.
Lohmann G., Margulies D.S., Horstmann A., Pleger B., Lepsien J., Goldhahn D., Schloegl H., Stumvoll M., Villringer A., Turner R. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE. 2010;5 PubMed PMC
Lohmann G., Muller K., Bosch V., Mentzel H., Hessler S., Chen L., Zysset S., von Cramon D.Y. LIPSIA–a new software system for the evaluation of functional magnetic resonance images of the human brain. Comput. Med. Imaging Graph. 2001;25:449–457. PubMed
Lou Y., Huang P., Li D., Cen Z., Wang B., Gao J., Xuan M., Yu H., Zhang M., Luo W. Altered brain network centrality in depressed Parkinson's disease patients. Mov. Disord. 2015;30:1777–1784. PubMed
Marapin R.S., Gelauff J.M., Marsman J.B.C., de Jong B.M., Dreissen Y.E.M., Koelman J., van der Horn H.J., Tijssen M.A.J. Altered Posterior Midline Activity in Patients with Jerky and Tremulous Functional Movement Disorders. Brain Connect. 2021;11:584–593. PubMed
Marapin R.S., van der Stouwe A.M.M., de Jong B.M., Gelauff J.M., Vergara V.M., Calhoun V.D., Dalenberg J.R., Dreissen Y.E.M., Koelman J., Tijssen M.A.J., van der Horn H.J. The chronnectome as a model for Charcot's 'dynamic lesion' in functional movement disorders. Neuroimage Clin. 2020;28 PubMed PMC
Margulies D.S., Bottger J., Long X., Lv Y., Kelly C., Schafer A., Goldhahn D., Abbushi A., Milham M.P., Lohmann G., Villringer A. Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. MAGMA. 2010;23:289–307. PubMed
Martuzzi R., Ramani R., Qiu M., Shen X., Papademetris X., Constable R.T. A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. Neuroimage. 2011;58:1044–1050. PubMed PMC
Maurer C.W., LaFaver K., Ameli R., Epstein S.A., Hallett M., Horovitz S.G. Impaired self-agency in functional movement disorders: A resting-state fMRI study. Neurology. 2016;87:564–570. PubMed PMC
McCabe C., Mishor Z. Antidepressant medications reduce subcortical-cortical resting-state functional connectivity in healthy volunteers. Neuroimage. 2011;57:1317–1323. PubMed PMC
Mengotti P., Kasbauer A.S., Fink G.R., Vossel S. Lateralization, functional specialization, and dysfunction of attentional networks. Cortex. 2020;132:206–222. PubMed
Monsa R., Peer M., Arzy S. Self-reference, emotion inhibition and somatosensory disturbance: preliminary investigation of network perturbations in conversion disorder. Eur. J. Neurol. 2018;25:888–e862. PubMed
Mueller K., Jech R., Ballarini T., Holiga S., Ruzicka F., Piecha F.A., Moller H.E., Vymazal J., Ruzicka E., Schroeter M.L. Modulatory Effects of Levodopa on Cerebellar Connectivity in Parkinson's Disease. Cerebellum. 2019;18:212–224. PubMed PMC
Mueller K., Jech R., Hoskovcova M., Ulmanova O., Urgosik D., Vymazal J., Ruzicka E. General and selective brain connectivity alterations in essential tremor: A resting state fMRI study. Neuroimage Clin. 2017;16:468–476. PubMed PMC
Mueller K., Jech R., Ruzicka F., Holiga S., Ballarini T., Bezdicek O., Moller H.E., Vymazal J., Ruzicka E., Schroeter M.L., Urgosik D. Brain connectivity changes when comparing effects of subthalamic deep brain stimulation with levodopa treatment in Parkinson's disease. Neuroimage. Clin. 2018;19:1025–1035. PubMed PMC
Mueller K., Ruzicka F., Slovak M., Forejtova Z., Dusek P., Dusek P., Jech R., Serranova T. Centrality and seed-based correlation maps obtained with functional MRI. Mendeley Data. 2022;V1 doi: 10.17632/w35fvmtnf2.1. DOI
Nahab F.B., Kundu P., Gallea C., Kakareka J., Pursley R., Pohida T., Miletta N., Friedman J., Hallett M. The neural processes underlying self-agency. Cereb. Cortex. 2011;21:48–55. PubMed PMC
Nahab F.B., Kundu P., Maurer C., Shen Q., Hallett M. Impaired sense of agency in functional movement disorders: An fMRI study. PLoS ONE. 2017;12 PubMed PMC
Nair, V., Hinton, G., 2010. Rectified Linear Units improve Restricted Boltzmann Machines. International Conference on Machine Learning (ICML), Haifa, Israel, pp. 807-814.
Nielsen G., Ricciardi L., Meppelink A.M., Holt K., Teodoro T., Edwards M. A Simplified Version of the Psychogenic Movement Disorders Rating Scale: The Simplified Functional Movement Disorders Rating Scale (S-FMDRS) Movement Disorders Clinical Practice. 2017;4:710–716. PubMed PMC
Parkes L., Fulcher B., Yucel M., Fornito A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage. 2018;171:415–436. PubMed
Perez D.L., Matin N., Barsky A., Costumero-Ramos V., Makaretz S.J., Young S.S., Sepulcre J., LaFrance W.C., Jr., Keshavan M.S., Dickerson B.C. Cingulo-insular structural alterations associated with psychogenic symptoms, childhood abuse and PTSD in functional neurological disorders. J. Neurol. Neurosurg. Psychiatry. 2017;88:491–497. PubMed PMC
Perez D.L., Nicholson T.R., Asadi-Pooya A.A., Begue I., Butler M., Carson A.J., David A.S., Deeley Q., Diez I., Edwards M.J., Espay A.J., Gelauff J.M., Hallett M., Horovitz S.G., Jungilligens J., Kanaan R.A.A., Tijssen M.A.J., Kozlowska K., LaFaver K., LaFrance W.C., Jr., Lidstone S.C., Marapin R.S., Maurer C.W., Modirrousta M., Reinders A., Sojka P., Staab J.P., Stone J., Szaflarski J.P., Aybek S. Neuroimaging in Functional Neurological Disorder: State of the Field and Research Agenda. Neuroimage Clin. 2021;30 PubMed PMC
Pezzulo G., Zorzi M., Corbetta M. The secret life of predictive brains: what's spontaneous activity for? Trends Cogn. Sci. 2021;25:730–743. PubMed PMC
Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154. PubMed PMC
Satterthwaite T.D., Wolf D.H., Loughead J., Ruparel K., Elliott M.A., Hakonarson H., Gur R.C., Gur R.E. Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage. 2012;60:623–632. PubMed PMC
Schrag A.E., Mehta A.R., Bhatia K.P., Brown R.J., Frackowiak R.S., Trimble M.R., Ward N.S., Rowe J.B. The functional neuroimaging correlates of psychogenic versus organic dystonia. Brain. 2013;136:770–781. PubMed PMC
Sojka P., Diez I., Bares M., Perez D.L. Individual differences in interoceptive accuracy and prediction error in motor functional neurological disorders: A DTI study. Hum. Brain Mapp. 2021;42:1434–1445. PubMed PMC
Sojka P., Losak J., Lamos M., Bares M., Kasparek T., Brazdil M., Balaz M., Svetlak M., Kocvarova J., Fialova J. Processing of Emotions in Functional Movement Disorder: An Exploratory fMRI Study. Front. Neurol. 2019;10:861. PubMed PMC
Spielberger C.D. Consulting Psychologists Press; Palo Alto: 1983. STAI: Manual for the Stait-Trait Anxiety Inventory.
Stone J., Aybek S. Functional limb weakness and paralysis. Handb Clin Neurol. 2016;139:213–228. PubMed
Stone J., Warlow C., Sharpe M. The symptom of functional weakness: a controlled study of 107 patients. Brain. 2010;133:1537–1551. PubMed
Stone J., Zeman A., Simonotto E., Meyer M., Azuma R., Flett S., Sharpe M. FMRI in patients with motor conversion symptoms and controls with simulated weakness. Psychosom. Med. 2007;69:961–969. PubMed
Tahmasian M., Bettray L.M., van Eimeren T., Drzezga A., Timmermann L., Eickhoff C.R., Eickhoff S.B., Eggers C. A systematic review on the applications of resting-state fMRI in Parkinson's disease: Does dopamine replacement therapy play a role? Cortex. 2015;73:80–105. PubMed
Tomic A., Agosta F., Sarasso E., Petrovic I., Basaia S., Pesic D., Kostic M., Fontana A., Kostic V.S., Filippi M. Are there two different forms of functional dystonia? A multimodal brain structural MRI study. Mol. Psychiatry. 2020;25:3350–3359. PubMed
van Beilen M., de Jong B.M., Gieteling E.W., Renken R., Leenders K.L. Abnormal parietal function in conversion paresis. PLoS ONE. 2011;6 PubMed PMC
van Beilen M., Vogt B.A., Leenders K.L. Increased activation in cingulate cortex in conversion disorder: what does it mean? J. Neurol. Sci. 2010;289:155–158. PubMed
Van den Bergh O., Witthoft M., Petersen S., Brown R.J. Symptoms and the body: Taking the inferential leap. Neurosci. Biobehav. Rev. 2017;74:185–203. PubMed
van der Kruijs S.J., Bodde N.M., Vaessen M.J., Lazeron R.H., Vonck K., Boon P., Hofman P.A., Backes W.H., Aldenkamp A.P., Jansen J.F. Functional connectivity of dissociation in patients with psychogenic non-epileptic seizures. J. Neurol. Neurosurg. Psychiatry. 2012;83:239–247. PubMed
Voon V., Brezing C., Gallea C., Ameli R., Roelofs K., LaFrance W.C., Jr., Hallett M. Emotional stimuli and motor conversion disorder. Brain. 2010;133:1526–1536. PubMed PMC
Voon V., Brezing C., Gallea C., Hallett M. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder. Mov. Disord. 2011;26:2396–2403. PubMed PMC
Voon V., Gallea C., Hattori N., Bruno M., Ekanayake V., Hallett M. The involuntary nature of conversion disorder. Neurology. 2010;74:223–228. PubMed PMC
Wang P., Luo X., Zhong C., Yang L., Guo F., Yu N. Resting state fMRI reveals the altered synchronization of BOLD signals in essential tremor. J. Neurol. Sci. 2018;392:69–76. PubMed
Wegrzyk J., Kebets V., Richiardi J., Galli S., de Ville D.V., Aybek S. Identifying motor functional neurological disorder using resting-state functional connectivity. Neuroimage Clin. 2018;17:163–168. PubMed PMC
Whitfield-Gabrieli S., Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–141. PubMed
Wink A.M., de Munck J.C., van der Werf Y.D., van den Heuvel O.A., Barkhof F. Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connect. 2012;2:265–274. PubMed
Wolters A.F., van de Weijer S.C.F., Leentjens A.F.G., Duits A.A., Jacobs H.I.L., Kuijf M.L. Resting-state fMRI in Parkinson's disease patients with cognitive impairment: A meta-analysis. Parkinsonism Relat Disord. 2019;62:16–27. PubMed
Worsley K.J., Marrett S., Neelin P., Vandal A.C., Friston K.J., Evans A.C. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 1996;4:58–73. PubMed
Yeshurun Y., Nguyen M., Hasson U. The default mode network: where the idiosyncratic self meets the shared social world. Nat. Rev. Neurosci. 2021;22:181–192. PubMed PMC
Zito G.A., Anderegg L.B., Apazoglou K., Muri R.M., Wiest R., Holtforth M.G., Aybek S. Transcranial magnetic stimulation over the right temporoparietal junction influences the sense of agency in healthy humans. J. Psychiatry Neurosci. 2020;45:271–278. PubMed PMC