Brain connectivity changes when comparing effects of subthalamic deep brain stimulation with levodopa treatment in Parkinson's disease
Language English Country Netherlands Media electronic-ecollection
Document type Comparative Study, Journal Article, Research Support, N.I.H., Intramural
PubMed
30035027
PubMed Central
PMC6051673
DOI
10.1016/j.nicl.2018.05.006
PII: S2213-1582(18)30152-9
Knihovny.cz E-resources
- Keywords
- Brain connectivity, Deep brain stimulation, Eigenvector centrality, Functional connectivity, Levodopa, Nexopathy, Parkinson's disease, Resting state magnetic resonance imaging, STN, Subthalamic nucleus,
- MeSH
- Antiparkinson Agents therapeutic use MeSH
- Deep Brain Stimulation * MeSH
- Levodopa therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Nerve Net physiopathology MeSH
- Subthalamic Nucleus physiopathology MeSH
- Parkinson Disease drug therapy physiopathology therapy MeSH
- Severity of Illness Index MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, N.I.H., Intramural MeSH
- Comparative Study MeSH
- Names of Substances
- Antiparkinson Agents MeSH
- Levodopa MeSH
Levodopa and, later, deep brain stimulation (DBS) have become the mainstays of therapy for motor symptoms associated with Parkinson's disease (PD). Although these therapeutic options lead to similar clinical outcomes, the neural mechanisms underlying their efficacy are different. Therefore, investigating the differential effects of DBS and levodopa on functional brain architecture and associated motor improvement is of paramount interest. Namely, we expected changes in functional brain connectivity patterns when comparing levodopa treatment with DBS. Clinical assessment and functional magnetic resonance imaging (fMRI) was performed before and after implanting electrodes for DBS in the subthalamic nucleus (STN) in 13 PD patients suffering from severe levodopa-induced motor fluctuations and peak-of-dose dyskinesia. All measurements were acquired in a within subject-design with and without levodopa treatment, and with and without DBS. Brain connectivity changes were computed using eigenvector centrality (EC) that offers a data-driven and parameter-free approach-similarly to Google's PageRank algorithm-revealing brain regions that have an increased connectivity to other regions that are highly connected, too. Both levodopa and DBS led to comparable improvement of motor symptoms as measured with the Unified Parkinson's Disease Rating Scale motor score (UPDRS-III). However, this similar therapeutic effect was underpinned by different connectivity modulations within the motor system. In particular, EC revealed a major increase of interconnectedness in the left and right motor cortex when comparing DBS to levodopa. This was accompanied by an increase of connectivity of these motor hubs with the thalamus and cerebellum. We observed, for the first time, significant functional connectivity changes when comparing the effects of STN DBS and oral levodopa administration, revealing different treatment-specific mechanisms linked to clinical benefit in PD. Specifically, in contrast to levodopa treatment, STN DBS was associated with increased connectivity within the cortico-thalamo-cerebellar network. Moreover, given the favorable effects of STN DBS on motor complications, the changes in the patients' clinical profile might also contribute to connectivity changes associated with STN-DBS. Understanding the observed connectivity changes may be essential for enhancing the effectiveness of DBS treatment, and for better defining the pathophysiology of the disrupted motor network in PD.
Department of Stereotactic and Radiation Neurosurgery Na Homolce Hospital Prague Czech Republic
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
See more in PubMed
Arai N., Yokochi F., Ohnishi T., Momose T., Okiyama R., Taniguchi M., Takahashi H., Matsuda H., Ugawa Y. Mechanisms of unilateral STN-DBS in patients with Parkinson's disease: a PET study. J. Neurol. 2008;255:1236–1243. PubMed
Ashburner J., Friston K.J. Unified segmentation. NeuroImage. 2005;26:839–851. PubMed
Ashkan K., Rogers P., Bergman H., Ughratdar I. Insights into the mechanisms of deep brain stimulation. Nat. Rev. Neurol. 2017;13:548–554. PubMed
Benabid A.L., Pollak P., Hoffmann D., Gervason C., Hommel M., Perret J.E., de Rougemont J., Gao D.M. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–406. PubMed
Birkmayer W., Hornykiewicz O. The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien. Klin. Wochenschr. 1961;10:787–788. PubMed
Brin S., Page L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. Isdn Syst. 1998;30:107–117.
Bronstein J.M., Tagliati M., Alterman R.L., Lozano A.M., Volkmann J., Stefani A., Horak F.B., Okun M.S., Foote K.D., Krack P. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 2011;68:165–171. PubMed PMC
Brunenberg E.J., Moeskops P., Backes W.H., Pollo C., Cammoun L., Vilanova A., Janssen M.L., Visser-Vandewalle V.E., ter Haar Romeny B.M., Thiran J.P., Platel B. Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PLoS One. 2012;7 PubMed PMC
Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10:186–198. PubMed
Bullmore E., Sporns O. The economy of brain network organization. Nat. Rev. Neurosci. 2012;13:336–349. PubMed
Carmichael D.W., Pinto S., Limousin-Dowsey P., Thobois S., Allen P.J., Lemieux L., Yousry T., Thornton J.S. Functional MRI with active, fully implanted, deep brain stimulation systems: safety and experimental confounds. NeuroImage. 2007;37:508–517. PubMed
Ceballos-Baumann A.O. Functional imaging in Parkinson's disease: activation studies with PET, fMRI and SPECT. J. Neurol. 2003;250(Suppl. 1):I15–23. PubMed
Chiken S., Nambu A. Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist. 2016;22:313–322. PubMed PMC
Chung S.J., Jeon S.R., Kim S.R., Sung Y.H., Lee M.C. Bilateral effects of unilateral subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Eur. Neurol. 2006;56:127–132. PubMed
Fling B.W., Benson B.L., Seidler R.D. Transcallosal sensorimotor fiber tract structure-function relationships. Hum. Brain Mapp. 2013;34:384–395. PubMed PMC
Fox M.D., Buckner R.L., Liu H., Chakravarty M.M., Lozano A.M., Pascual-Leone A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc. Natl. Acad. Sci. U. S. A. 2014;111:E4367–4375. PubMed PMC
Friston K.J., Buechel C., Fink G.R., Morris J., Rolls E., Dolan R.J. Psychophysiological and modulatory interactions in neuroimaging. NeuroImage. 1997;6:218–229. PubMed
Friston K.J., Harrison L., Penny W. Dynamic causal modelling. NeuroImage. 2003;19:1273–1302. PubMed
Frobenius G. Sitzungsberichte Der Koniglich Preussischen Akademie Der Wissenschaften. 1912. On matrices from non-negative elements; pp. 456–477.
Hamani C., Saint-Cyr J.A., Fraser J., Kaplitt M., Lozano A.M. The subthalamic nucleus in the context of movement disorders. Brain. 2004;127:4–20. PubMed
Herz D.M., Haagensen B.N., Nielsen S.H., Madsen K.H., Lokkegaard A., Siebner H.R. Resting-state connectivity predicts levodopa-induced dyskinesias in Parkinson's disease. Mov. Disord. 2016;31:521–529. PubMed PMC
Holiga S., Mueller K., Moller H.E., Urgosik D., Ruzicka E., Schroeter M.L., Jech R. Resting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson's disease: indications of a principal role of the brainstem. Neuroimage Clin. 2015;9:264–274. PubMed PMC
Horn A., Reich M., Vorwerk J., Li N., Wenzel G., Fang Q., Schmitz-Hubsch T., Nickl R., Kupsch A., Volkmann J., Kuhn A.A., Fox M.D. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 2017;82:67–78. PubMed PMC
Jahanshahi M., Obeso I., Rothwell J.C., Obeso J.A. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition. Nat. Rev. Neurosci. 2015;16:719. PubMed
Jech R., Urgosik D., Tintera J., Nebuzelsky A., Krasensky J., Liscak R., Roth J., Ruzicka E. Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson's disease. Mov. Disord. 2001;16:1126–1132. PubMed
Jech R., Ruzicka E., Urgosik D., Serranova T., Volfova M., Novakova O., Roth J., Dusek P., Mecir P. Deep brain stimulation of the subthalamic nucleus affects resting EEG and visual evoked potentials in Parkinson's disease. Clin. Neurophysiol. 2006;117:1017–1028. PubMed
Jech R., Mueller K., Urgosik D., Sieger T., Holiga S., Ruzicka F., Dusek P., Havrankova P., Vymazal J., Ruzicka E. The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI. PLoS One. 2012;7 PubMed PMC
Jech R., Mueller K., Schroeter M.L., Ruzicka E. Levodopa increases functional connectivity in the cerebellum and brainstem in Parkinson's disease. Brain. 2013;136 PubMed
Kahan J., Urner M., Moran R., Flandin G., Marreiros A., Mancini L., White M., Thornton J., Yousry T., Zrinzo L., Hariz M., Limousin P., Friston K., Foltynie T. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity. Brain. 2014;137:1130–1144. PubMed PMC
Kelly C., de Zubicaray G., Di Martino A., Copland D.A., Reiss P.T., Klein D.F., Castellanos F.X., Milham M.P., McMahon K. l-Dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J. Neurosci. 2009;29:7364–7378. PubMed PMC
Knight E.J., Testini P., Min H.K., Gibson W.S., Gorny K.R., Favazza C.P., Felmlee J.P., Kim I., Welker K.M., Clayton D.A., Klassen B.T., Chang S.Y., Lee K.H. Motor and nonmotor circuitry activation induced by subthalamic nucleus deep brain stimulation in patients with Parkinson disease: intraoperative functional magnetic resonance imaging for deep brain stimulation. Mayo Clin. Proc. 2015;90:773–785. PubMed PMC
Kumar R., Lozano A., Sime E., Halket E., Lang A. Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation. Neurology. 1999;53:561–566. PubMed
LeWitt P.A. Levodopa therapy for Parkinson's disease: pharmacokinetics and pharmacodynamics. Mov. Disord. 2015;30:64–72. PubMed
Li Q., Ke Y., Chan Danny C.W., Qian Z.-M., Yung Ken K.L., Ko H., Arbuthnott Gordon W., Yung W.-H. Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex. Neuron. 2012;76:1030–1041. PubMed
Linazasoro G., Van Blercom N., Lasa A. Unilateral subthalamic deep brain stimulation in advanced Parkinson's disease. Mov. Disord. 2003;18:713–716. PubMed
Lizarraga K.J., Jagid J.R., Luca C.C. Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation on gait kinematics in Parkinson's disease: a randomized, blinded study. J. Neurol. 2016;263:1652–1656. PubMed
Lohmann G., Muller K., Bosch V., Mentzel H., Hessler S., Chen L., Zysset S., von Cramon D.Y. LIPSIA—a new software system for the evaluation of functional magnetic resonance images of the human brain. Comput. Med. Imaging Graph. 2001;25:449–457. PubMed
Lohmann G., Margulies D.S., Horstmann A., Pleger B., Lepsien J., Goldhahn D., Schloegl H., Stumvoll M., Villringer A., Turner R. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One. 2010;5 PubMed PMC
Lozano A.M., Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. 2013;77:406–424. PubMed
Lozano A.M., Dostrovsky J., Chen R., Ashby P. Deep brain stimulation for Parkinson's disease: disrupting the disruption. Lancet Neurol. 2002;1:225–231. PubMed
McIntyre C.C., Hahn P.J. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol. Dis. 2010;38:329–337. PubMed PMC
McIntyre C.C., Mori S., Sherman D.L., Thakor N.V., Vitek J.L. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin. Neurophysiol. 2004;115:589–595. PubMed
Mueller K., Jech R., Schroeter M.L. Deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 2013;368:482–483. PubMed
Odekerken V.J., van Laar T., Staal M.J., Mosch A., Hoffmann C.F., Nijssen P.C., Beute G.N., van Vugt J.P., Lenders M.W., Contarino M.F., Mink M.S., Bour L.J., van den Munckhof P., Schmand B.A., de Haan R.J., Schuurman P.R., de Bie R.M. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12:37–44. PubMed
Perron O. On the theory of matrices. Math. Ann. 1907;64:248–263.
Poewe W., Antonini A., Zijlmans J.C., Burkhard P.R., Vingerhoets F. Levodopa in the treatment of Parkinson's disease: an old drug still going strong. Clin. Interv. Aging. 2010;5:229–238. PubMed PMC
Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59:2142–2154. PubMed PMC
Rezai A.R., Phillips M., Baker K.B., Sharan A.D., Nyenhuis J., Tkach J., Henderson J., Shellock F.G. Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Investig. Radiol. 2004;39:300–303. PubMed
Ruzicka F., Jech R., Novakova L., Urgosik D., Vymazal J., Ruzicka E. Weight gain is associated with medial contact site of subthalamic stimulation in Parkinson's disease. PLoS One. 2012;7 PubMed PMC
Smith Y., Wichmann T., Factor S.A., DeLong M.R. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology. 2012;37:213–246. PubMed PMC
Strafella A.P., Sadikot A.F., Dagher A. Subthalamic deep brain stimulation does not induce striatal dopamine release in Parkinson's disease. Neuroreport. 2003;14:1287–1289. PubMed
Tahmasian M., Bettray L.M., van Eimeren T., Drzezga A., Timmermann L., Eickhoff C.R., Eickhoff S.B., Eggers C. A systematic review on the applications of resting-state fMRI in Parkinson's disease: does dopamine replacement therapy play a role? Cortex. 2015;73:80–105. PubMed
Taubert M., Lohmann G., Margulies D.S., Villringer A., Ragert P. Long-term effects of motor training on resting-state networks and underlying brain structure. NeuroImage. 2011;57:1492–1498. PubMed
Tomlinson C.L., Stowe R., Patel S., Rick C., Gray R., Clarke C.E. Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Mov. Disord. 2010;25:2649–2653. PubMed
Warren J.D., Rohrer J.D., Hardy J. Disintegrating brain networks: from syndromes to molecular nexopathies. Neuron. 2012;73:1060–1062. PubMed PMC
Wink A.M., de Munck J.C., van der Werf Y.D., van den Heuvel O.A., Barkhof F. Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connect. 2012;2:265–274. PubMed