Identification and characterization of transition metal-binding proteins and metabolites in the phloem sap of Brassica napus

. 2024 Oct ; 300 (10) : 107741. [epub] 20240831

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39222686
Odkazy

PubMed 39222686
PubMed Central PMC11497405
DOI 10.1016/j.jbc.2024.107741
PII: S0021-9258(24)02242-7
Knihovny.cz E-zdroje

Transition metal (TM) distribution through the phloem is an essential part of plant metabolism and is required for systemic signaling and balancing source-to-sink relationships. Due to their reactivity, TMs are expected to occur in complexes within the phloem sap; however, metal speciation in the phloem sap remains largely unexplored. Here, we isolated phloem sap from Brassica napus and analyzed it via size exclusion chromatography coupled online to sector-field ICP-MS. Our data identified known TM-binding proteins and molecules including metallothioneins (MT), glutathione, and nicotianamine. While the main peak of all metals was low MW (∼1.5 kD), additional peaks ∼10 to 15 kD containing Cu, Fe, S, and Zn were also found. Further physicochemical analyses of MTs with and without affinity tags corroborated that MTs can form complexes of diverse molecular weights. We also identified and characterized potential artifacts in the TM-biding ability of B. napus MTs between tagged and non-tagged MTs. That is, the native BnMT2 binds Zn, Cu, and Fe, while MT3a and MT3b only bind Cu and Zn. In contrast, his-tagged MTs bind less Cu and were found to bind Co and Mn and aggregated to oligomeric forms to a greater extent compared to the phloem sap. Our data indicates that TM chemistry in the phloem sap is more complex than previously anticipated and that more systematic analyses are needed to establish the precise speciation of TM and TM-ligand complexes within the phloem sap.

Zobrazit více v PubMed

Andresen E., Peiter E., Kupper H. Trace metal metabolism in plants. J. Exp. Bot. 2018;69:909–954. PubMed

Mendoza-Cozatl D.G., Gokul A., Carelse M.F., Jobe T.O., Long T.A., Keyster M. Keep talking: crosstalk between iron and sulfur networks fine-tunes growth and development to promote survival under iron limitation. J. Exp. Bot. 2019;70:4197–4210. PubMed

Connorton J.M., Balk J., Rodriguez-Celma J. Iron homeostasis in plants - a brief overview. Metallomics. 2017;9:813–823. PubMed PMC

Andresen E., Kappel S., Stark H.J., Riegger U., Borovec J., Mattusch J., et al. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum. New Phytol. 2016;210:1244–1258. PubMed

Kupper H., Andresen E. Mechanisms of metal toxicity in plants. Metallomics. 2016;8:269–285. PubMed

Mendoza-Cozatl D.G., Jobe T.O., Hauser F., Schroeder J.I. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr. Opin. Plant Biol. 2011;14:554–562. PubMed PMC

Holbrook N.M., Knoblauch M. Editorial overview: physiology and metabolism: phloem: a supracellular highway for the transport of sugars, signals, and pathogens. Curr. Opin. Plant Biol. 2018;43:iii–vii. PubMed

Barberon M. The endodermis as a checkpoint for nutrients. New Phytol. 2017;213:1604–1610. PubMed

Leitenmaier B., Kupper H. Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci. 2013;4:374. PubMed PMC

Knoblauch M., Peters W.S. Munch, morphology, microfluidics - our structural problem with the phloem. Plant Cell Environ. 2010;33:1439–1452. PubMed

Mendoza-Cozatl D.G., Butko E., Springer F., Torpey J.W., Komives E.A., Kehr J., et al. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 2008;54:249–259. PubMed PMC

Froelich D.R., Mullendore D.L., Jensen K.H., Ross-Elliott T.J., Anstead J.A., Thompson G.A., et al. Phloem ultrastructure and pressure flow: sieve-Element-Occlusion-Related agglomerations do not affect translocation. Plant Cell. 2011;23:4428–4445. PubMed PMC

Chiatante D., Rost T., Bryant J., Scippa G.S. Regulatory networks controlling the development of the root system and the formation of lateral roots: a comparative analysis of the roles of pericycle and vascular cambium. Ann. Bot. 2018;122:697–710. PubMed PMC

Nguyen N.T., Khan M.A., Castro-Guerrero N.A., Chia J.C., Vatamaniuk O.K., Mari S., et al. Iron availability within the leaf vasculature determines the magnitude of iron deficiency responses in source and sink tissues in Arabidopsis. Plant Cell Physiol. 2022;63:829–841. PubMed

Zhang M., Su H., Gresshoff P.M., Ferguson B.J. Shoot-derived miR2111 controls legume root and nodule development. Plant Cell Environ. 2021;44:1627–1641. PubMed

Roy S., Liu W., Nandety R.S., Crook A., Mysore K.S., Pislariu C.I., et al. Celebrating 20 Years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell. 2020;32:15–41. PubMed PMC

Khan M.A., Castro-Guerrero N.A., McInturf S.A., Nguyen N.T., Dame A.N., Wang J., et al. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. Plant Cell Environ. 2018;41:2263–2276. PubMed

McInturf S.A., Khan M.A., Gokul A., Castro-Guerrero N.A., Hohner R., Li J., et al. Cadmium interference with iron sensing reveals transcriptional programs sensitive and insensitive to reactive oxygen species. J. Exp. Bot. 2022;73:324–338. PubMed

Garcia M.J., Romera F.J., Stacey M.G., Stacey G., Villar E., Alcantara E., et al. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. Planta. 2013;237:65–75. PubMed

Mendoza-Cozatl D.G., Xie Q., Akmakjian G.Z., Jobe T.O., Patel A., Stacey M.G., et al. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mol. Plant. 2014;7:1455–1469. PubMed PMC

Seregin I.V., Kozhevnikova A.D. Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. Photosynth Res. 2021;150:51–96. PubMed

Mendoza-Cozatl D.G., Rodriguez-Zavala J.S., Rodriguez-Enriquez S., Mendoza-Hernandez G., Briones-Gallardo R., Moreno-Sanchez R. Phytochelatin-cadmium-sulfide high-molecular-mass complexes of Euglena gracilis. FEBS J. 2006;273:5703–5713. PubMed

Alvarez-Fernandez A., Diaz-Benito P., Abadia A., Lopez-Millan A.F., Abadia J. Metal species involved in long distance metal transport in plants. Front Plant Sci. 2014;5:105. PubMed PMC

Giavalisco P., Kapitza K., Kolasa A., Buhtz A., Kehr J. Towards the proteome of Brassica napus phloem sap. Proteomics. 2006;6:896–909. PubMed

Sun J., Li Q., Xu H., Zhang W. Analysis of metabolomic changes in xylem and phloem sap of cucumber under phosphorus stresses. Metabolites. 2022;12:361. PubMed PMC

Lalonde S., Weise A., Walsh R.P., Ward J.M., Frommer W.B. Fusion to GFP blocks intercellular trafficking of the sucrose transporter SUT1 leading to accumulation in companion cells. BMC Plant Biol. 2003;3:8. PubMed PMC

Stadler R., Wright K.M., Lauterbach C., Amon G., Gahrtz M., Feuerstein A., et al. Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J. 2005;41:319–331. PubMed

Cobbett C., Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 2002;53:159–182. PubMed

Leszczyszyn O.I., Imam H.T., Blindauer C.A. Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics. 2013;5:1146–1169. PubMed

M R.B., Yookongkaew N., Meetam M., Guo W.J., Punyasuk N., AbuQamar S., et al. Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. New Phytol. 2014;202:940–951. PubMed

Saavedra E., Encalada R., Pineda E., Jasso-Chavez R., Moreno-Sanchez R. Glycolysis in Entamoeba histolytica. Biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J. 2005;272:1767–1783. PubMed

Kruger C., Berkowitz O., Stephan U.W., Hell R. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J. Biol. Chem. 2002;277:25062–25069. PubMed

Gayomba S.R., Zhai Z., Jung H.I., Vatamaniuk O.K. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. Front Plant Sci. 2015;6:716. PubMed PMC

Ullah R., Shah M.A., Tufail S., Ismat F., Imran M., Iqbal M., et al. Activity of the human rhinovirus 3C protease studied in various buffers, additives and detergents solutions for recombinant protein production. PLoS One. 2016;11 PubMed PMC

Leach K.A., Braun D.M. Soluble sugar and starch extraction and quantification from maize (Zea mays) leaves. Curr. Protoc. Plant Biol. 2016;1:139–161. PubMed

Kupper H., Bokhari S.N.H., Jaime-Perez N., Lyubenova L., Ashraf N., Andresen E. Ultratrace metal speciation analysis by coupling of sector-field ICP-MS to high-resolution size exclusion and reversed-phase liquid chromatography. Anal Chem. 2019;91:10961–10969. PubMed

Pomorski A., Drozd A., Kocyła A., Krężel A. From methodological limitations to the function of metallothioneins - a guide to approaches for determining weak, moderate, and tight affinity zinc sites. Metallomics. 2023;15 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...