Resting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson's disease: Indications of a principal role of the brainstem

. 2015 ; 9 () : 264-74. [epub] 20150821

Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26509113
Odkazy

PubMed 26509113
PubMed Central PMC4576412
DOI 10.1016/j.nicl.2015.08.008
PII: S2213-1582(15)00146-1
Knihovny.cz E-zdroje

During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a "microlesion effect" (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC), to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis.

Zobrazit více v PubMed

Abbott A. Neuroscience: while you were sleeping. Nature. 2005;437(7063):1220–1222. 16251920 PubMed

Alvarez L., Macias R., Lopez G., Alvarez E., Pavon N., Rodriguez-Oroz M.C., Juncos J.L., Maragoto C., Guridi J., Litvan I., Tolosa E.S., Koller W., Vitek J., DeLong M.R., Obeso J.A. Bilateral subthalamotomy in Parkinson's disease: initial and long-term response. Brain. 2005;128(3):570–583. 15689366 PubMed

Ballanger B., Jahanshahi M., Broussolle E., Thobois S. PET functional imaging of deep brain stimulation in movement disorders and psychiatry. J. Cereb. Blood Flow Metab. 2009;29(11):1743–1754. 19654584 PubMed

Bostan A.C., Dum R.P., Strick P.L. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn. Sci. (Regul. Ed.) 2013;17(5):241–254. 23579055 PubMed PMC

Braak H., Del Tredici K., Rüb U., de Vos R.A., Jansen Steur E.N., Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging. 2003;24(2):197–211. 12498954 PubMed

Brunenberg E.J., Moeskops P., Backes W.H., Pollo C., Cammoun L., Vilanova A., Janssen M.L., Visser-Vandewalle V.E., ter Haar Romeny B.M., Thiran J.P., Platel B. Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PLOS One. 2012;7(6):e39061. 22768059 PubMed PMC

Buckner R.L., Krienen F.M., Yeo B.T. Opportunities and limitations of intrinsic functional connectivity MRI. Nat. Neurosci. 2013;16(7):832–837. 23799476 PubMed

Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10(3):186–198. 19190637 PubMed

Bullmore E., Sporns O. The economy of brain network organization. Nat. Rev. Neurosci. 2012;13(5):336–349. 22498897 PubMed

DeLong M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13(7):281–285. 1695404 PubMed

Derrey S., Lefaucheur R., Chastan N., Gérardin E., Hannequin D., Desbordes M., Maltête D. Alleviation of off-period dystonia in Parkinson disease by a microlesion following subthalamic implantation. J. Neurosurg. 2010;112(6):1263–1266. 19877801 PubMed

Eadie M.J. The pathology of certain medullary nuclei in parkinsonism. Brain. 1963;86:781–792. 14090529 PubMed

Fox M.D., Raichle M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007;8(9):700–711. 17704812 PubMed

Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 2005;102(27):9673–9678. 15976020 PubMed PMC

Franceschet M. PageRank: standing on the shoulders of giants. Commun. A.C.M. 2011;54(6):92–101.

Goedert M., Spillantini M.G., Del Tredici K., Braak H. 100 years of Lewy pathology. Nat. Rev. Neurol. 2013;9(1):13–24. 23183883 PubMed

Greenfield J.G., Bosanquet F.D. The brain-stem lesions in Parkinsonism. J. Neurol. Neurosurg. Psychiatry. 1953;16(4):213–226. 13109537 PubMed PMC

Grinberg L.T., Rueb U., Alho A.T., Heinsen H. Brainstem pathology and non-motor symptoms in PD. J. Neurol. Sci. 2010;289(1–2):81–88. 19758601 PubMed

Haberler C., Alesch F., Mazal P.R., Pilz P., Jellinger K., Pinter M.M., Hainfellner J.A., Budka H. No tissue damage by chronic deep brain stimulation in Parkinson's disease. Ann. Neurol. 2000;48(3):372–376. 10976644 PubMed

Hacker C.D., Perlmutter J.S., Criswell S.R., Ances B.M., Snyder A.Z. Resting state functional connectivity of the striatum in Parkinson's disease. Brain. 2012;135(12):3699–3711. 23195207 PubMed PMC

Hariz M., Blomstedt P., Zrinzo L. Future of brain stimulation: new targets, new indications, new technology. Mov. Disord. 2013;28(13):1784–1792. 24123327 PubMed

Helmich R.C., Janssen M.J., Oyen W.J., Bloem B.R., Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann. Neurol. 2011;69(2):269–281. 21387372 PubMed

Holiga Š, Mueller K., Möller H.E., Sieger T., Schroeter M.L., Vymazal J., Růžička E., Jech R. Motor matters: tackling heterogeneity of Parkinson's disease in functional MRI studies. PLOS One. 2013;8(2):e56133. 23418522 PubMed PMC

Jech R., Mueller K., Schroeter M.L., Růžička E. Levodopa increases functional connectivity in the cerebellum and brainstem in Parkinson's disease. Brain. 2013;136(7):e234. 23370091 PubMed

Jech R., Mueller K., Urgošík D., Sieger T., Holiga Š, Růžička F., Dušek P., Havránková P., Vymazal J., Růžička E. The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI. PLOS One. 2012;7(11):e49056. 23145068 PubMed PMC

Kahan J., Urner M., Moran R., Flandin G., Marreiros A., Mancini L., White M., Thornton J., Yousry T., Zrinzo L., Hariz M., Limousin P., Friston K., Foltynie T. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on ‘effective’ connectivity. Brain. 2014;137(4):1130–1144. 24566670 PubMed PMC

Kelly C., de Zubicaray G., Di Martino A., Copland D.A., Reiss P.T., Klein D.F., Castellanos F.X., Milham M.P., McMahon K. L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J. Neurosci. 2009;29(22):7364–7378. 19494158 PubMed PMC

Kondziolka D., Lee J.Y. Long-lasting microthalamotomy effect after temporary placement of a thalamic stimulating electrode. Stereotact. Funct. Neurosurg. 2004;82(2–3):127–130. 15305085 PubMed

Koop M.M., Andrzejewski A., Hill B.C., Heit G., Bronte-Stewart H.M. Improvement in a quantitative measure of bradykinesia after microelectrode recording in patients with Parkinson's disease during deep brain stimulation surgery. Mov. Disord. 2006;21(5):673–678. 16440333 PubMed

Lohmann G., Margulies D.S., Horstmann A., Pleger B., Lepsien J., Goldhahn D., Schloegl H., Stumvoll M., Villringer A., Turner R. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLOS One. 2010;5(4):e10232. 20436911 PubMed PMC

Lohmann G., Müller K., Bosch V., Mentzel H., Hessler S., Chen L., Zysset S., von Cramon D.Y. LIPSIA — a new software system for the evaluation of functional magnetic resonance images of the human brain. Comput. Med. Imaging Graph. 2001;25(6):449–457. 11679206 PubMed

Maldjian J.A., Laurienti P.J., Kraft R.A., Burdette J.H. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19(3):1233–1239. 12880848 PubMed

Maltête D., Derrey S., Chastan N., Debono B., Gérardin E., Fréger P., Mihout B., Menard J.F., Hannequin D. Microsubthalamotomy: an immediate predictor of long-term subthalamic stimulation efficacy in Parkinson disease. Mov. Disord. 2008;23(7):1047–1050. 18412281 PubMed

Mann J.M., Foote K.D., Garvan C.W., Fernandez H.H., Jacobson C.E.t., Rodriguez R.L., Haq I.U., Siddiqui M.S., Malaty I.A., Morishita T., Hass C.J., Okun M.S. Brain penetration effects of microelectrodes and DBS leads in STN or GPi. J. Neurol. Neurosurg. Psychiatry. 2009;80(7):794–797. 19237386 PubMed PMC

McHaffie J.G., Stanford T.R., Stein B.E., Coizet V., Redgrave P. Subcortical loops through the basal ganglia. Trends Neurosci. 2005;28(8):401–407. 15982753 PubMed

Miocinovic S., Somayajula S., Chitnis S., Vitek J.L. History, applications, and mechanisms of deep brain stimulation. J.A.M.A. Neurol. 2013;70(2):163–171. 23407652 PubMed

Mueller K., Jech R., Schroeter M.L. Deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 2013;368(5):482–483. 23363513 PubMed

Pahapill P.A., Lozano A.M. The pedunculopontine nucleus and Parkinson's disease. Brain. 2000;123(9):1767–1783. 10960043 PubMed

Pourfar M., Tang C., Lin T., Dhawan V., Kaplitt M.G., Eidelberg D. Assessing the microlesion effect of subthalamic deep brain stimulation surgery with FDG PET. J. Neurosurg. 2009;110(6):1278–1282. 19301972 PubMed

Rolland A.S., Tandé D., Herrero M.T., Luquin M.R., Vazquez-Claverie M., Karachi C., Hirsch E.C., François C. Evidence for a dopaminergic innervation of the pedunculopontine nucleus in monkeys, and its drastic reduction after MPTP intoxication. J. Neurochem. 2009;110(4):1321–1329. 19527435 PubMed

Ryczko D., Grätsch S., Auclair F., Dubé C., Bergeron S., Alpert M.H., Cone J.J., Roitman M.F., Alford S., Dubuc R. Forebrain dopamine neurons project down to a brainstem region controlling locomotion. Proc. Natl. Acad. Sci. U. S. A. 2013;110(34):E3235–E3242. 23918379 PubMed PMC

Schiess M.C., Zheng H., Soukup V.M., Bonnen J.G., Nauta H.J. Parkinson's disease subtypes: clinical classification and ventricular cerebrospinal fluid analysis. Parkinsonism Relat. Disord. 2000;6(2):69–76. 10699387 PubMed

Singh A., Kammermeier S., Mehrkens J.H., Bötzel K. Movement kinematic after deep brain stimulation associated microlesions. J. Neurol. Neurosurg. Psychiatry. 2012;83(10):1022–1026. 22869922 PubMed

Smith S.M., Fox P.T., Miller K.L., Glahn D.C., Fox P.M., Mackay C.E., Filippini N., Watkins K.E., Toro R., Laird A.R., Beckmann C.F. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. U. S. A. 2009;106(31):13040–13045. 19620724 PubMed PMC

Snyder A.Z., Perlmutter J.S., Hacker C.D. Reply: levodopa increases functional connectivity in the cerebellum and brainstem in Parkinson's disease. Brain. 2013;136(7):e235. 23650223 PubMed PMC

Tison F., Meissner W.G. Movement disorders in 2013: diagnosing and treating PD—the earlier the better? Nat. Rev. Neurol. 2014;10(2):65–66. 24394288 PubMed

Tomasi D., Wang G.J., Volkow N.D. Energetic cost of brain functional connectivity. Proc. Natl. Acad. Sci. U. S. A. 2013;110(33):13642–13647. 23898179 PubMed PMC

Wu T., Hallett M. The cerebellum in Parkinson's disease. Brain. 2013;136(3):696–709. 23404337 PubMed PMC

Zhang D., Raichle M.E. Disease and the brain's dark energy. Nat. Rev. Neurol. 2010;6(1):15–28. 20057496 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...