The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI
Language English Country United States Media print-electronic
Document type Journal Article, Randomized Controlled Trial, Research Support, Non-U.S. Gov't
Grant support
RP-DG-0610-10055
Department of Health - United Kingdom
PubMed
23145068
PubMed Central
PMC3492182
DOI
10.1371/journal.pone.0049056
PII: PONE-D-11-19194
Knihovny.cz E-resources
- MeSH
- Edema pathology MeSH
- Electric Stimulation Therapy methods MeSH
- Globus Pallidus drug effects pathology surgery MeSH
- Deep Brain Stimulation methods MeSH
- Electrodes, Implanted MeSH
- Levodopa therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Motor Cortex drug effects pathology surgery MeSH
- Subthalamic Nucleus drug effects pathology surgery MeSH
- Parkinson Disease drug therapy pathology surgery MeSH
- Thalamus drug effects pathology surgery MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Levodopa MeSH
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9-15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4).In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.
See more in PubMed
Tarsy DT, Vitek JV, Starr PA, Okun MS (2008) Deep Brain Stimulation in Neurological and Psychiatric Disorders. In: Tarsy DT, Vitek JV, Starr PA, Okun MS, editors. Totowa, NJ: Humana Press, Springer Science+Business Media, LLC.
Granziera C, Pollo C, Russmann H, Staedler C, Ghika J, et al. (2008) Sub-acute delayed failure of subthalamic DBS in Parkinson's disease: the role of micro-lesion effect. Parkinsonism Relat Disord 14: 109–113. PubMed
Maltete D, Derrey S, Chastan N, Debono B, Gerardin E, et al. (2008) Microsubthalamotomy: an immediate predictor of long-term subthalamic stimulation efficacy in Parkinson disease. Mov Disord 23: 1047–1050. PubMed
Kondziolka D, Lee JY (2004) Long-lasting microthalamotomy effect after temporary placement of a thalamic stimulating electrode. Stereotact Funct Neurosurg 82: 127–130. PubMed
Su PC, Tseng HM, Liu HM, Yen RF, Liou HH (2002) Subthalamotomy for advanced Parkinson disease. J Neurosurg 97: 598–606. PubMed
Alvarez L, Macias R, Pavon N, Lopez G, Rodriguez-Oroz MC, et al. (2009) Therapeutic efficacy of unilateral subthalamotomy in Parkinson's disease: results in 89 patients followed for up to 36 months. J Neurol Neurosurg Psychiatry 80: 979–985. PubMed
Mann JM, Foote KD, Garvan CW, Fernandez HH, Jacobson CEt, et al. (2009) Brain penetration effects of microelectrodes and DBS leads in STN or GPi. J Neurol Neurosurg Psychiatry 80: 794–797. PubMed PMC
Derrey S, Lefaucheur R, Chastan N, Gerardin E, Hannequin D, et al. (2010) Alleviation of off-period dystonia in Parkinson disease by a microlesion following subthalamic implantation. J Neurosurg 112: 1263–1266. PubMed
Lefaucheur R, Derrey S, Martinaud O, Wallon D, Chastan N, et al. (2012) Early verbal fluency decline after STN implantation: Is it a cognitive microlesion effect? J Neurol Sci PubMed
Maltete D, Chastan N, Derrey S, Debono B, Gerardin E, et al. (2009) Microsubthalamotomy effect at day 3: screening for determinants. Mov Disord 24: 286–289. PubMed
Hilker R, Voges J, Weber T, Kracht LW, Roggendorf J, et al. (2008) STN-DBS activates the target area in Parkinson disease: an FDG-PET study. Neurology 71: 708–713. PubMed
Pourfar M, Tang C, Lin T, Dhawan V, Kaplitt MG, et al. (2009) Assessing the microlesion effect of subthalamic deep brain stimulation surgery with FDG PET. J Neurosurg 110: 1278–1282. PubMed
Su PC, Ma Y, Fukuda M, Mentis MJ, Tseng HM, et al. (2001) Metabolic changes following subthalamotomy for advanced Parkinson's disease. Ann Neurol 50: 514–520. PubMed
Trost M, Su PC, Barnes A, Su SL, Yen RF, et al. (2003) Evolving metabolic changes during the first postoperative year after subthalamotomy. J Neurosurg 99: 872–878. PubMed
Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, et al. (2003) Pharmacologically modulated fMRI–cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 126: 451–461. PubMed
Ng B, Palmer S, Abugharbieh R, McKeown MJ (2010) Focusing effects of L-dopa in Parkinson's disease. Hum Brain Mapp 31: 88–97. PubMed PMC
Ballanger B, Jahanshahi M, Broussolle E, Thobois S (2009) PET functional imaging of deep brain stimulation in movement disorders and psychiatry. J Cereb Blood Flow Metab 29: 1743–1754. PubMed
Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, et al. (2001) Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain 124: 558–570. PubMed
Baker KB, Tkach JA, Nyenhuis JA, Phillips M, Shellock FG, et al. (2004) Evaluation of specific absorption rate as a dosimeter of MRI-related implant heating. J Magn Reson Imaging 20: 315–320. PubMed
Rezai AR, Baker KB, Tkach JA, Phillips M, Hrdlicka G, et al. (2005) Is magnetic resonance imaging safe for patients with neurostimulation systems used for deep brain stimulation? Neurosurgery 57: 1056–1062; discussion 1056–1062. PubMed
Tagliati M, Jankovic J, Pagan F, Susatia F, Isaias IU, et al. (2009) Safety of MRI in patients with implanted deep brain stimulation devices. Neuroimage 47 Suppl 2: T53–57. PubMed
Nazzaro JM, Lyons KE, Wetzel LH, Pahwa R (2010) Use of brain MRI after deep brain stimulation hardware implantation. Int J Neurosci 120: 176–183. PubMed
Larson PS, Richardson RM, Starr PA, Martin AJ (2008) Magnetic resonance imaging of implanted deep brain stimulators: experience in a large series. Stereotact Funct Neurosurg 86: 92–100. PubMed
Rezai AR, Phillips M, Baker KB, Sharan AD, Nyenhuis J, et al. (2004) Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Invest Radiol 39: 300–303. PubMed
Baker KB, Tkach JA, Phillips MD, Rezai AR (2006) Variability in RF-induced heating of a deep brain stimulation implant across MR systems. J Magn Reson Imaging 24: 1236–1242. PubMed
Carmichael DW, Pinto S, Limousin-Dowsey P, Thobois S, Allen PJ, et al. (2007) Functional MRI with active, fully implanted, deep brain stimulation systems: safety and experimental confounds. Neuroimage 37: 508–517. PubMed
Rezai AR, Lozano AM, Crawley AP, Joy ML, Davis KD, et al. (1999) Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. Technical note. J Neurosurg 90: 583–590. PubMed
Jech R, Urgosik D, Tintera J, Nebuzelsky A, Krasensky J, et al. (2001) Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson's disease. Mov Disord 16: 1126–1132. PubMed
Stefurak T, Mikulis D, Mayberg H, Lang AE, Hevenor S, et al. (2003) Deep brain stimulation for Parkinson's disease dissociates mood and motor circuits: a functional MRI case study. Mov Disord 18: 1508–1516. PubMed
Hesselmann V, Sorger B, Girnus R, Lasek K, Maarouf M, et al. (2004) Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson's disease. Eur Radiol 14: 686–690. PubMed
Arantes PR, Cardoso EF, Barreiros MA, Teixeira MJ, Goncalves MR, et al. (2006) Performing functional magnetic resonance imaging in patients with Parkinson's disease treated with deep brain stimulation. Mov Disord 21: 1154–1162. PubMed
Phillips MD, Baker KB, Lowe MJ, Tkach JA, Cooper SE, et al. (2006) Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus–initial experience. Radiology 239: 209–216. PubMed
Dodson RF, Chu LW, Ishihara N (1978) Cerebral tissue response to electrode implantation. Can J Neurol Sci 5: 443–446. PubMed
Hirashima Y, Ikeda H, Asahi T, Shibata T, Noguchi K, et al. (2005) Mechanical injury of the subthalamic area during stereotactic surgery followed by improvement of trunk, neck, and face tremor–case report. Neurol Med Chir (Tokyo) 45: 484–486. PubMed
Pollak P, Krack P, Fraix V, Mendes A, Moro E, et al. (2002) Intraoperative micro- and macrostimulation of the subthalamic nucleus in Parkinson's disease. Mov Disord 17 Suppl 3S155–161. PubMed
Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor. Mov Disord 21 Suppl 14S259–283. PubMed
Ruzicka F, Jech R, Novakova L, Urgosik D, Vymazal J, et al. (2012) Weight gain is associated with medial contact site of subthalamic stimulation in Parkinson's disease. PLoS One 7: e38020. PubMed PMC
Henderson JM, Tkach J, Phillips M, Baker K, Shellock FG, et al. (2005) Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson's disease: case report. Neurosurgery 57: E1063; discussion E1063. PubMed
Tessa C, Lucetti C, Diciotti S, Baldacci F, Paoli L, et al. (2010) Decreased and increased cortical activation coexist in de novo Parkinson's disease. Exp Neurol 224: 299–306. PubMed
Schlaug G, Sanes JN, Thangaraj V, Darby DG, Jancke L, et al. (1996) Cerebral activation covaries with movement rate. Neuroreport 7: 879–883. PubMed
Rao SM, Bandettini PA, Binder JR, Bobholz JA, Hammeke TA, et al. (1996) Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 16: 1250–1254. PubMed
Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H (2003) Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage 18: 731–739. PubMed
Espay AJ, Giuffrida JP, Chen R, Payne M, Mazzella F, et al. (2011) Differential response of speed, amplitude, and rhythm to dopaminergic medications in Parkinson's disease. Mov Disord 26: 2504–2508. PubMed PMC
Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35: 346–355. PubMed
Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26: 839–851. PubMed
Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, et al. (1998) Event-related fMRI: characterizing differential responses. Neuroimage 7: 30–40. PubMed
Penny W, Kiebel S, Friston K (2003) Variational Bayesian inference for fMRI time series. Neuroimage 19: 727–741. PubMed
Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, et al. (2006) Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 21 Suppl 14S290–304. PubMed
Groiss SJ, Wojtecki L, Sudmeyer M, Schnitzler A (2009) Deep brain stimulation in Parkinson's disease. Ther Adv Neurol Disord 2: 20–28. PubMed PMC
Henderson JM, Pell M, O'Sullivan DJ, McCusker EA, Fung VS, et al. (2002) Postmortem analysis of bilateral subthalamic electrode implants in Parkinson's disease. Mov Disord 17: 133–137. PubMed
Alvarez L, Macias R, Lopez G, Alvarez E, Pavon N, et al. (2005) Bilateral subthalamotomy in Parkinson's disease: initial and long-term response. Brain 128: 570–583. PubMed
Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127: 4–20. PubMed
Smith Y, Bolam JP, Von Krosigk M (1990) Topographical and Synaptic Organization of the GABA-Containing Pallidosubthalamic Projection in the Rat. Eur J Neurosci 2: 500–511. PubMed
Windels F, Bruet N, Poupard A, Urbain N, Chouvet G, et al. (2000) Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci 12: 4141–4146. PubMed
Lukaszewicz AC, Soyer B, Payen D (2011) Water, water, everywhere: sodium and water balance and the injured brain. Curr Opin Anaesthesiol 24: 138–143. PubMed
Wang J, Hamm RJ, Povlishock JT (2011) Traumatic axonal injury in the optic nerve: evidence for axonal swelling, disconnection, dieback, and reorganization. J Neurotrauma 28: 1185–1198. PubMed PMC
Jayakumar AR, Rao KV, Panickar KS, Moriyama M, Reddy PV, et al. (2008) Trauma-induced cell swelling in cultured astrocytes. J Neuropathol Exp Neurol 67: 417–427. PubMed
Welling LC, Figueiredo EG (2011) Is it solely aquaporins? The mechanisms of brain edema. World Neurosurg 75: 570–571. PubMed
Pasantes-Morales H, Cruz-Rangel S (2010) Brain volume regulation: osmolytes and aquaporin perspectives. Neuroscience 168: 871–884. PubMed
Merello M, Cammarota A, Leiguarda R, Pikielny R (2001) Delayed intracerebral electrode infection after bilateral STN implantation for Parkinson's disease. Case report. Mov Disord 16: 168–170. PubMed
Fountas KN, Smith JR (2007) Subdural electrode-associated complications: a 20-year experience. Stereotact Funct Neurosurg 85: 264–272. PubMed
Lee WS, Lee JK, Lee SA, Kang JK, Ko TS (2000) Complications and results of subdural grid electrode implantation in epilepsy surgery. Surg Neurol 54: 346–351. PubMed
Taskin B, Jungehulsing GJ, Ruben J, Brunecker P, Krause T, et al. (2006) Preserved responsiveness of secondary somatosensory cortex in patients with thalamic stroke. Cereb Cortex 16: 1431–1439. PubMed
Mallol R, Barros-Loscertales A, Lopez M, Belloch V, Parcet MA, et al. (2007) Compensatory cortical mechanisms in Parkinson's disease evidenced with fMRI during the performance of pre-learned sequential movements. Brain Res 1147: 265–271. PubMed
Holden A, Wilman A, Wieler M, Martin WR (2006) Basal ganglia activation in Parkinson's disease. Parkinsonism Relat Disord 12: 73–77. PubMed
Prodoehl J, Spraker M, Corcos D, Comella C, Vaillancourt D (2010) Blood oxygenation level-dependent activation in basal ganglia nuclei relates to specific symptoms in de novo Parkinson's disease. Mov Disord 25: 2035–2043. PubMed PMC
Pinto S, Mancini L, Jahanshahi M, Thornton JS, Tripoliti E, et al. (2011) Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease. Mov Disord 26: 2212–2219. PubMed PMC
Gonzalez-Garcia N, Armony JL, Soto J, Trejo D, Alegria MA, et al. (2011) Effects of rTMS on Parkinson's disease: a longitudinal fMRI study. J Neurol 258: 1268–1280. PubMed
Wu T, Wang L, Hallett M, Li K, Chan P (2010) Neural correlates of bimanual anti-phase and in-phase movements in Parkinson's disease. Brain 133: 2394–2409. PubMed PMC
Wu T, Hallett M (2005) A functional MRI study of automatic movements in patients with Parkinson's disease. Brain 128: 2250–2259. PubMed
Tessa C, Lucetti C, Diciotti S, Paoli L, Cecchi P, et al. (2012) Hypoactivation of the primary sensorimotor cortex in de novo Parkinson's disease : a motor fMRI study under controlled conditions. Neuroradiology 54: 261–268. PubMed
Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, et al. (2000) Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. Brain 123 Pt 2: 394–403. PubMed
Strafella AP, Dagher A, Sadikot AF (2003) Cerebral blood flow changes induced by subthalamic stimulation in Parkinson's disease. Neurology 60: 1039–1042. PubMed
Thobois S, Dominey P, Fraix V, Mertens P, Guenot M, et al. (2002) Effects of subthalamic nucleus stimulation on actual and imagined movement in Parkinson's disease : a PET study. J Neurol 249: 1689–1698. PubMed
Limousin P, Greene J, Pollak P, Rothwell J, Benabid AL, et al. (1997) Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Ann Neurol 42: 283–291. PubMed
Grafton ST, Turner RS, Desmurget M, Bakay R, Delong M, et al. (2006) Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease. Neurology 66: 1192–1199. PubMed
Payoux P, Remy P, Damier P, Miloudi M, Loubinoux I, et al. (2004) Subthalamic nucleus stimulation reduces abnormal motor cortical overactivity in Parkinson disease. Arch Neurol 61: 1307–1313. PubMed
Ceballos-Baumann AO, Boecker H, Bartenstein P, von Falkenhayn I, Riescher H, et al. (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 56: 997–1003. PubMed
Kraft E, Loichinger W, Diepers M, Lule D, Schwarz J, et al. (2009) Levodopa-induced striatal activation in Parkinson's disease: a functional MRI study. Parkinsonism Relat Disord 15: 558–563. PubMed
Martinu K, Degroot C, Madjar C, Strafella AP, Monchi O (2012) Levodopa influences striatal activity but does not affect cortical hyper-activity in Parkinson's disease. Eur J Neurosci 35: 572–583. PubMed
Eckert T, Peschel T, Heinze HJ, Rotte M (2006) Increased pre-SMA activation in early PD patients during simple self-initiated hand movements. J Neurol 253: 199–207. PubMed
Holiga S, Moller HE, Sieger T, Schroeter ML, Jech R, et al. (2012) Accounting for movement increases sensitivity in detecting brain activity in Parkinson's disease. PLoS One 7: e36271. PubMed PMC
Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266–271. PubMed
Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, et al. (2000) Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci 23: S8–19. PubMed
Kopell BH, Rezai AR, Chang JW, Vitek JL (2006) Anatomy and physiology of the basal ganglia: implications for deep brain stimulation for Parkinson's disease. Mov Disord 21 Suppl 14: S238–246. PubMed
DeYoe EA, Bandettini P, Neitz J, Miller D, Winans P (1994) Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods 54: 171–187. PubMed
Remple MS, Bradenham CH, Kao CC, Charles PD, Neimat JS, et al. (2011) Subthalamic nucleus neuronal firing rate increases with Parkinson's disease progression. Mov Disord 26: 1657–1662. PubMed PMC
Baudrexel S, Witte T, Seifried C, von Wegner F, Beissner F, et al. (2011) Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease. Neuroimage 55: 1728–1738. PubMed
Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16: 2671–2683. PubMed PMC
Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43: 111–117. PubMed
Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3: 655–666. PubMed
Wu T, Wang L, Hallett M, Chen Y, Li K, et al. (2011) Effective connectivity of brain networks during self-initiated movement in Parkinson's disease. Neuroimage 55: 204–215. PubMed
Spiegel J, Hellwig D, Samnick S, Jost W, Mollers MO, et al. (2007) Striatal FP-CIT uptake differs in the subtypes of early Parkinson's disease. J Neural Transm 114: 331–335. PubMed
Baker KB, Lee JY, Mavinkurve G, Russo GS, Walter B, et al. (2010) Somatotopic organization in the internal segment of the globus pallidus in Parkinson's disease. Exp Neurol 222: 219–225. PubMed PMC
Miyachi S, Lu X, Imanishi M, Sawada K, Nambu A, et al. (2006) Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex. Neurosci Res 56: 300–308. PubMed
Gerardin E, Lehericy S, Pochon JB, Tezenas du Montcel S, Mangin JF, et al. (2003) Foot, hand, face and eye representation in the human striatum. Cereb Cortex 13: 162–169. PubMed
Finelli DA, Rezai AR, Ruggieri PM, Tkach JA, Nyenhuis JA, et al. (2002) MR imaging-related heating of deep brain stimulation electrodes: in vitro study. AJNR Am J Neuroradiol 23: 1795–1802. PubMed PMC
Rezai AR, Finelli D, Nyenhuis JA, Hrdlicka G, Tkach J, et al. (2002) Neurostimulation systems for deep brain stimulation: in vitro evaluation of magnetic resonance imaging-related heating at 1.5 tesla. J Magn Reson Imaging 15: 241–250. PubMed
Georgi JC, Stippich C, Tronnier VM, Heiland S (2004) Active deep brain stimulation during MRI: a feasibility study. Magn Reson Med 51: 380–388. PubMed
Zhao Y, Boulant JA (2005) Temperature effects on neuronal membrane potentials and inward currents in rat hypothalamic tissue slices. J Physiol 564: 245–257. PubMed PMC
Differential effects of deep brain stimulation and levodopa on brain activity in Parkinson's disease
Effect of pallidal deep-brain stimulation on articulation rate in dystonia
Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease