Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease

. 2013 ; 8 (11) : e78581. [epub] 20131106

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24223158

Grantová podpora
MC_EX_G0701943 Medical Research Council - United Kingdom
MC_U130015185 Medical Research Council - United Kingdom
MC_U130059811 Medical Research Council - United Kingdom

The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

Zobrazit více v PubMed

Araujo C, Kowler E, Pavel M (2001) Eye movements during visual search: the costs of choosing the optimal path. Vision Res 41: 3613–3625. PubMed

Burman DD, Segraves MA (1994) Primate frontal eye field activity during natural scanning eye movements. J Neurophysiol 71: 1266–1271. PubMed

Wolfe JM, Vo ML, Evans KK, Greene MR (2011) Visual search in scenes involves selective and nonselective pathways. Trends Cogn Sci 15: 77–84. PubMed PMC

Mort DJ, Perry RJ, Mannan SK, Hodgson TL, Anderson E, et al. (2003) Differential cortical activation during voluntary and reflexive saccades in man. Neuroimage 18: 231–246. PubMed

Zihl J, Hebel N (1997) Patterns of oculomotor scanning in patients with unilateral posterior parietal or frontal lobe damage. Neuropsychologia 35: 893–906. PubMed

Toh WL, Rossell SL, Castle DJ (2011) Current visual scanpath research: a review of investigations into the psychotic, anxiety, and mood disorders. Compr Psychiatry 52: 567–579. PubMed

Tsunoda M, Kurachi M, Yuasa S, Kadono Y, Matsui M, et al. (1992) Scanning eye movements in schizophrenic patients. Relationship to clinical symptoms and regional cerebral blood flow using 123I-IMP SPECT. Schizophr Res 7: 159–168. PubMed

Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80: 953–978. PubMed

Isoda M, Hikosaka O (2008) Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J Neurosci 28: 7209–7218. PubMed PMC

Matsumura M, Kojima J, Gardiner TW, Hikosaka O (1992) Visual and oculomotor functions of monkey subthalamic nucleus. J Neurophysiol 67: 1615–1632. PubMed

Shin S, Sommer MA (2010) Activity of neurons in monkey globus pallidus during oculomotor behavior compared with that in substantia nigra pars reticulata. J Neurophysiol 103: 1874–1887. PubMed PMC

Sato M, Hikosaka O (2002) Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. J Neurosci 22: 2363–2373. PubMed PMC

Basso MA, Pokorny JJ, Liu P (2005) Activity of substantia nigra pars reticulata neurons during smooth pursuit eye movements in monkeys. Eur J Neurosci 22: 448–464. PubMed

Averbuch-Heller L, Stahl JS, Hlavin ML, Leigh RJ (1999) Square-wave jerks induced by pallidotomy in parkinsonian patients. Neurology 52: 185–188. PubMed

Blekher T, Siemers E, Abel LA, Yee RD (2000) Eye movements in Parkinson's disease: before and after pallidotomy. Invest Ophthalmol Vis Sci 41: 2177–2183. PubMed

Fawcett AP, Gonzalez EG, Moro E, Steinbach MJ, Lozano AM, et al. (2010) Subthalamic Nucleus Deep Brain Stimulation Improves Saccades in Parkinson's Disease. Neuromodulation 13: 17–25. PubMed

O'Sullivan JD, Maruff P, Tyler P, Peppard RF, McNeill P, et al. (2003) Unilateral pallidotomy for Parkinson's disease disrupts ocular fixation. J Clin Neurosci 10: 181–185. PubMed

Rivaud-Pechoux S, Vermersch AI, Gaymard B, Ploner CJ, Bejjani BP, et al. (2000) Improvement of memory guided saccades in parkinsonian patients by high frequency subthalamic nucleus stimulation. J Neurol Neurosurg Psychiatry 68: 381–384. PubMed PMC

Temel Y, Visser-Vandewalle V, Carpenter RH (2008) Saccadic latency during electrical stimulation of the human subthalamic nucleus. Curr Biol 18: R412–414. PubMed

Fawcett AP, Cunic D, Hamani C, Hodaie M, Lozano AM, et al. (2007) Saccade-related potentials recorded from human subthalamic nucleus. Clin Neurophysiol 118: 155–163. PubMed

Fawcett AP, Dostrovsky JO, Lozano AM, Hutchison WD (2005) Eye movement-related responses of neurons in human subthalamic nucleus. Exp Brain Res 162: 357–365. PubMed

Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, et al. (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann Neurol 44: 622–628. PubMed

Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297: 359–376. PubMed

Alahyane N, Fonteille V, Urquizar C, Salemme R, Nighoghossian N, et al. (2008) Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades. Cerebellum 7: 595–601. PubMed

Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55: 181–184. PubMed PMC

Pollak P, Krack P, Fraix V, Mendes A, Moro E, et al. (2002) Intraoperative micro- and macrostimulation of the subthalamic nucleus in Parkinson's disease. Mov Disord 17 Suppl 3S155–161. PubMed

Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor. Mov Disord 21 Suppl 14S259–283. PubMed

Lang PJ, Bradley MM, Cuthbert BN (2005) International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Gainesville, FL: Florida TRA-Uo.

Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16: 1661–1687. PubMed

Wild J, Prekopcsak Z, Sieger T, Novak D, Jech R (2012) Performance comparison of extracellular spike sorting algorithms for single-channel recordings. J Neurosci Methods 203: 369–376. PubMed

Kitama T, Omata T, Mizukoshi A, Ueno T, Sato Y (1999) Motor dynamics encoding in cat cerebellar flocculus middle zone during optokinetic eye movements. J Neurophysiol 82: 2235–2248. PubMed

Simpson DM, Infantosi AF, Rosas DA (2001) Estimation and significance testing of cross-correlation between cerebral blood flow velocity and background electro-encephalograph activity in signals with missing samples. Med Biol Eng Comput 39: 428–433. PubMed

Manly BEJ (1997) Randomization, bootstrap and Monte Carlo methods in biology. London: Chapman & Hall.

R-Core-Team (2012) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J Neurophysiol 49: 1230–1253. PubMed

Sauleau P, Pollak P, Krack P, Pelisson D, Vighetto A, et al. (2007) Contraversive eye deviation during stimulation of the subthalamic region. Mov Disord 22: 1810–1813. PubMed

Shields DC, Gorgulho A, Behnke E, Malkasian D, DeSalles AA (2007) Contralateral conjugate eye deviation during deep brain stimulation of the subthalamic nucleus. J Neurosurg 107: 37–42. PubMed

Baron MS, Wichmann T, Ma D, DeLong MR (2002) Effects of transient focal inactivation of the basal ganglia in parkinsonian primates. J Neurosci 22: 592–599. PubMed PMC

Bartanusz V, Daniel RT, Villemure JG (2005) Conjugate eye deviation due to traumatic striatal-subthalamic lesion. J Clin Neurosci 12: 92–94. PubMed

Jech R, Mueller K, Urgosik D, Sieger T, Holiga S, et al. (2012) The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI. PLoS One 7: e49056. PubMed PMC

Antoniades CA, Buttery P, FitzGerald JJ, Barker RA, Carpenter RH, et al. (2012) Deep brain stimulation: eye movements reveal anomalous effects of electrode placement and stimulation. PLoS One 7: e32830. PubMed PMC

Pinkhardt EH, Jurgens R, Lule D, Heimrath J, Ludolph AC, et al. (2012) Eye movement impairments in Parkinson's disease: possible role of extradopaminergic mechanisms. BMC Neurol 12: 5. PubMed PMC

Temel Y, Visser-Vandewalle V, Carpenter RH (2009) Saccadometry: a novel clinical tool for quantification of the motor effects of subthalamic nucleus stimulation in Parkinson's disease. Exp Neurol 216: 481–489. PubMed

Antoniades CA, Carpenter RH, Temel Y (2012) Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: similar improvements in saccadic and manual responses. Neuroreport 23: 179–183. PubMed

Sauleau P, Pollak P, Krack P, Courjon JH, Vighetto A, et al. (2008) Subthalamic stimulation improves orienting gaze movements in Parkinson's disease. Clin Neurophysiol 119: 1857–1863. PubMed

Yugeta A, Terao Y, Fukuda H, Hikosaka O, Yokochi F, et al. (2010) Effects of STN stimulation on the initiation and inhibition of saccade in Parkinson disease. Neurology 74: 743–748. PubMed

Wark HA, Garell PC, Walker AL, Basso MA (2008) A case report on fixation instability in Parkinson's disease with bilateral deep brain stimulation implants. J Neurol Neurosurg Psychiatry 79: 443–447. PubMed PMC

Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16: 2671–2683. PubMed PMC

Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci Res 43: 111–117. PubMed

Baudrexel S, Witte T, Seifried C, von Wegner F, Beissner F, et al. (2011) Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease. Neuroimage 55: 1728–1738. PubMed

Huerta MF, Kaas JH (1990) Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293: 299–330. PubMed

Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381. PubMed

Bauswein E, Fromm C, Preuss A (1989) Corticostriatal cells in comparison with pyramidal tract neurons: contrasting properties in the behaving monkey. Brain Res 493: 198–203. PubMed

Deniau JM, Hammond C, Chevalier G, Feger J (1978) Evidence for branched subthalamic nucleus projections to substantia nigra, entopeduncular nucleus and globus pallidus. Neurosci Lett 9: 117–121. PubMed

Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260: 435–452. PubMed

Windels F, Bruet N, Poupard A, Urbain N, Chouvet G, et al. (2000) Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci 12: 4141–4146. PubMed

Beckstead RM, Edwards SB, Frankfurter A (1981) A comparison of the intranigral distribution of nigrotectal neurons labeled with horseradish peroxidase in the monkey, cat, and rat. J Neurosci 1: 121–125. PubMed PMC

Yoshida A, Tanaka M (2009) Enhanced modulation of neuronal activity during antisaccades in the primate globus pallidus. Cereb Cortex 19: 206–217. PubMed

Noton D, Stark L (1971) Eye movements and visual perception. Sci Am 224: 35–43. PubMed

Trukenbrod HA, Engbert R (2012) Eye movements in a sequential scanning task: evidence for distributed processing. J Vis 12. PubMed

von Wartburg R, Wurtz P, Pflugshaupt T, Nyffeler T, Luthi M, et al. (2007) Size matters: saccades during scene perception. Perception 36: 355–365. PubMed

Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, et al. (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain 118 ( Pt 4): 913–933. PubMed

Wiese H, Stude P, Nebel K, de Greiff A, Forsting M, et al. (2004) Movement preparation in self-initiated versus externally triggered movements: an event-related fMRI-study. Neurosci Lett 371: 220–225. PubMed

Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, et al. (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci 11: 760–772. PubMed PMC

Cui DM, Yan YJ, Lynch JC (2003) Pursuit subregion of the frontal eye field projects to the caudate nucleus in monkeys. J Neurophysiol 89: 2678–2684. PubMed

Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78: 69–74. PubMed PMC

Filion M, Tremblay L, Matsumura M, Richard H (1994) [Dynamic focusing of informational convergence in basal ganglia]. Rev Neurol (Paris) 150: 627–633. PubMed

Ramanathan S, Hanley JJ, Deniau JM, Bolam JP (2002) Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci 22: 8158–8169. PubMed PMC

Yan YJ, Cui DM, Lynch JC (2001) Overlap of saccadic and pursuit eye movement systems in the brain stem reticular formation. J Neurophysiol 86: 3056–3060. PubMed

Lohnes CA, Earhart GM (2012) Effect of subthalamic deep brain stimulation on turning kinematics and related saccadic eye movements in Parkinson disease. Exp Neurol 236: 389–394. PubMed PMC

Corin MS, Elizan TS, Bender MB (1972) Oculomotor function in patients with Parkinson's disease. J Neurol Sci 15: 251–265. PubMed

DeJong JD, Jones GM (1971) Akinesia, hypokinesia, and bradykinesia in the oculomotor system of patients with Parkinson's disease. Exp Neurol 32: 58–68. PubMed

Shibasaki H, Tsuji S, Kuroiwa Y (1979) Oculomotor abnormalities in Parkinson's disease. Arch Neurol 36: 360–364. PubMed

Ventre J, Zee DS, Papageorgiou H, Reich S (1992) Abnormalities of predictive saccades in hemi-Parkinson's disease. Brain 115 ( Pt 4): 1147–1165. PubMed

Hodgson TL, Tiesman B, Owen AM, Kennard C (2002) Abnormal gaze strategies during problem solving in Parkinson's disease. Neuropsychologia 40: 411–422. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...