Topography of emotional valence and arousal within the motor part of the subthalamic nucleus in Parkinson's disease
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31882633
PubMed Central
PMC6934686
DOI
10.1038/s41598-019-56260-x
PII: 10.1038/s41598-019-56260-x
Knihovny.cz E-zdroje
- MeSH
- elektrody MeSH
- emoce fyziologie MeSH
- hluboká mozková stimulace metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- nucleus subthalamicus metabolismus fyziologie MeSH
- Parkinsonova nemoc metabolismus patofyziologie terapie MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Clinical motor and non-motor effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) seem to depend on the stimulation site within the STN. We analysed the effects of the position of the stimulation electrode within the motor STN on subjective emotional experience, expressed as emotional valence and arousal ratings to pictures representing primary rewards and aversive fearful stimuli in 20 PD patients. Patients' ratings from both aversive and erotic stimuli matched the mean ratings from a group of 20 control subjects at similar position within the STN. Patients with electrodes located more posteriorly reported both valence and arousal ratings from both the rewarding and aversive pictures as more extreme. Moreover, posterior electrode positions were associated with a higher occurrence of depression at a long-term follow-up. This brain-behavior relationship suggests a complex emotion topography in the motor part of the STN. Both valence and arousal representations overlapped and were uniformly arranged anterior-posteriorly in a gradient-like manner, suggesting a specific spatial organization needed for the coding of the motivational salience of the stimuli. This finding is relevant for our understanding of neuropsychiatric side effects in STN DBS and potentially for optimal electrode placement.
Zobrazit více v PubMed
Lindquist KA, Barrett LF. A functional architecture of the human brain: emerging insights from the science of emotion. Trends Cogn Sci. 2012;16:533–540. doi: 10.1016/j.tics.2012.09.005. PubMed DOI PMC
Tamietto M, de Gelder B. Neural bases of the non-conscious perception of emotional signals. Nat Rev Neurosci. 2010;11:697–709. doi: 10.1038/nrn2889. PubMed DOI
Limousin P, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med. 1998;339:1105–1111. doi: 10.1056/NEJM199810153391603. PubMed DOI
Schuepbach WM, et al. Neurostimulation for Parkinson's disease with early motor complications. N Engl J Med. 2013;368:610–622. doi: 10.1056/NEJMoa1205158. PubMed DOI
Eisinger RS, Urdaneta ME, Foote KD, Okun MS, Gunduz A. Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology. Front Neurosci. 2018;12:385. doi: 10.3389/fnins.2018.00385. PubMed DOI PMC
Haber SN, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006;26:8368–8376. doi: 10.1523/JNEUROSCI.0271-06.2006. PubMed DOI PMC
Heilbronner SR, Meyer MAA, Choi EY, Haber SN. How do cortico-striatal projections impact on downstream pallidal circuitry? Brain Struct Funct. 2018;223:2809–2821. doi: 10.1007/s00429-018-1662-9. PubMed DOI
Calzavara R, Mailly P, Haber SN. Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci. 2007;26:2005–2024. doi: 10.1111/j.1460-9568.2007.05825.x. PubMed DOI PMC
Draganski B, et al. Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci. 2008;28:7143–7152. doi: 10.1523/JNEUROSCI.1486-08.2008. PubMed DOI PMC
Averbeck BB, Lehman J, Jacobson M, Haber SN. Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J Neurosci. 2014;34:9497–9505. doi: 10.1523/JNEUROSCI.5806-12.2014. PubMed DOI PMC
Choi EY, Tanimura Y, Vage PR, Yates EH, Haber SN. Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum. Neuroimage. 2017;146:821–832. doi: 10.1016/j.neuroimage.2016.09.037. PubMed DOI PMC
Mailly P, Aliane V, Groenewegen HJ, Haber SN, Deniau JM. The rat prefrontostriatal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci. 2013;33:5718–5727. doi: 10.1523/JNEUROSCI.5248-12.2013. PubMed DOI PMC
Yeterian EH, Van Hoesen GW. Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res. 1978;139:43–63. doi: 10.1016/0006-8993(78)90059-8. PubMed DOI
Haynes WI, Haber SN. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci. 2013;33:4804–4814. doi: 10.1523/JNEUROSCI.4674-12.2013. PubMed DOI PMC
Sieger T, et al. Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus. Proc Natl Acad Sci USA. 2015;112:3116–3121. doi: 10.1073/pnas.1410709112. PubMed DOI PMC
Herzog J, et al. Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease. Mov Disord. 2004;19:1050–1054. doi: 10.1002/mds.20056. PubMed DOI
Ruzicka F, et al. Chronic stress-like syndrome as a consequence of medial site subthalamic stimulation in Parkinson's disease. Psychoneuroendocrinology. 2015;52:302–310. doi: 10.1016/j.psyneuen.2014.12.001. PubMed DOI
Ruzicka F, et al. Weight gain is associated with medial contact site of subthalamic stimulation in Parkinson's disease. PLoS One. 2012;7:e38020. doi: 10.1371/journal.pone.0038020. PubMed DOI PMC
Welter ML, et al. Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology. 2014;82:1352–1361. doi: 10.1212/WNL.0000000000000315. PubMed DOI PMC
Castrioto A, Lhommee E, Moro E, Krack P. Mood and behavioural effects of subthalamic stimulation in Parkinson's disease. Lancet Neurol. 2014;13:287–305. doi: 10.1016/S1474-4422(13)70294-1. PubMed DOI
Lang PJ, Greenwald MK, Bradley MM, Hamm AO. Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology. 1993;30:261–273. doi: 10.1111/j.1469-8986.1993.tb03352.x. PubMed DOI
Russell JA. Core affect and the psychological construction of emotion. Psychol Rev. 2003;110:145–172. doi: 10.1037/0033-295X.110.1.145. PubMed DOI
Serranova T, et al. Subthalamic nucleus stimulation affects incentive salience attribution in Parkinson's disease. Mov Disord. 2011;26:2260–2266. doi: 10.1002/mds.23880. PubMed DOI
Morel, A. Atlas of the Human Thalamus and Basal Ganglia. 160, Informa Helthcare (2007).
Serranová Tereza, Sieger Tomáš, Dušek Petr, Růžička Filip, Urgošík Dušan, Růžička Evžen, Valls-Solé Josep, Jech Robert. Sex, Food and Threat: Startling Changes after Subthalamic Stimulation in Parkinson's Disease. Brain Stimulation. 2013;6(5):740–745. doi: 10.1016/j.brs.2013.03.009. PubMed DOI
Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 2010;68:815–834. doi: 10.1016/j.neuron.2010.11.022. PubMed DOI PMC
Mallet L, et al. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci USA. 2007;104:10661–10666. doi: 10.1073/pnas.0610849104. PubMed DOI PMC
Ulla M, et al. Contact dependent reproducible hypomania induced by deep brain stimulation in Parkinson's disease: clinical, anatomical and functional imaging study. J. Neurol. Neurosurg. Psychiatry. 2011;82:607–614. doi: 10.1136/jnnp.2009.199323. PubMed DOI
Krack P, et al. Mirthful laughter induced by subthalamic nucleus stimulation. Mov. Disord. 2001;16:867–875. doi: 10.1002/mds.1174. PubMed DOI
Polosan M, et al. Affective modulation of the associative-limbic subthalamic nucleus: deep brain stimulation in obsessive–compulsive disorder. Translational Psychiatry. 2019;9:73. doi: 10.1038/s41398-019-0404-y. PubMed DOI PMC
Witt K, et al. Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial. Brain. 2013;136:2109–2119. doi: 10.1093/brain/awt151. PubMed DOI
Kronenbuerger M, et al. Brain alterations with deep brain stimulation: New insight from a neuropathological case series. Mov Disord. 2015;30:1125–1130. doi: 10.1002/mds.26247. PubMed DOI
DiLorenzo Daniel J., Jankovic Joseph, Simpson Richard K., Takei Hidehiro, Powell Suzanne Z. Neurohistopathological Findings at the Electrode-Tissue Interface in Long-Term Deep Brain Stimulation: Systematic Literature Review, Case Report, and Assessment of Stimulation Threshold Safety. Neuromodulation: Technology at the Neural Interface. 2014;17(5):405–418. doi: 10.1111/ner.12192. PubMed DOI
Jech R, et al. The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI. PLoS One. 2012;7:e49056. doi: 10.1371/journal.pone.0049056. PubMed DOI PMC
Agnesi F, Johnson MD, Vitek JL. Deep brain stimulation: how does it work? Handb Clin Neurol. 2013;116:39–54. doi: 10.1016/B978-0-444-53497-2.00004-8. PubMed DOI
Zhang Z, et al. Distributed neural representation of saliency controlled value and category during anticipation of rewards and punishments. Nat Commun. 2017;8:1907. doi: 10.1038/s41467-017-02080-4. PubMed DOI PMC
Uslaner JM, Dell’Orco JM, Pevzner A, Robinson TE. The influence of subthalamic nucleus lesions on sign-tracking to stimuli paired with food and drug rewards: facilitation of incentive salience attribution? Neuropsychopharmacology. 2008;33:2352–2361. doi: 10.1038/sj.npp.1301653. PubMed DOI
Baunez C, Yelnik J, Mallet L. Six questions on the subthalamic nucleus: lessons from animal models and from stimulated patients. Neuroscience. 2011;198:193–204. doi: 10.1016/j.neuroscience.2011.09.059. PubMed DOI
Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011;15:56–67. doi: 10.1016/j.tics.2010.12.004. PubMed DOI
Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005;6:691–702. doi: 10.1038/nrn1747. PubMed DOI
Parent A, Hazrati LN. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev. 1995;20:128–154. doi: 10.1016/0165-0173(94)00008-D. PubMed DOI
Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26. doi: 10.1038/npp.2009.129. PubMed DOI PMC
Hunt AJ, Jr., et al. Paraventricular hypothalamic and amygdalar CRF neurons synapse in the external globus pallidus. Brain Struct Funct. 2018;223:2685–2698. doi: 10.1007/s00429-018-1652-y. PubMed DOI PMC
Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28:309–369. doi: 10.1016/S0165-0173(98)00019-8. PubMed DOI
Sieger T, et al. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease. PLoS One. 2013;8:e78581. doi: 10.1371/journal.pone.0078581. PubMed DOI PMC
Rothschild G, Mizrahi A. Global order and local disorder in brain maps. Annu Rev Neurosci. 2015;38:247–268. doi: 10.1146/annurev-neuro-071013-014038. PubMed DOI
Thivierge JP, Marcus GF. The topographic brain: from neural connectivity to cognition. Trends Neurosci. 2007;30:251–259. doi: 10.1016/j.tins.2007.04.004. PubMed DOI
Braak H, et al. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages) J Neurol. 2002;249(Suppl 3):III/1-5. PubMed
Peron J, Dondaine T, Le Jeune F, Grandjean D, Verin M. Emotional processing in Parkinson's disease: a systematic review. Mov Disord. 2012;27:186–199. doi: 10.1002/mds.24025. PubMed DOI
Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev. 1995;20:91–127. doi: 10.1016/0165-0173(94)00007-C. PubMed DOI
Schaltenbrand, G., Wahren, W. & Hassler, R. Atlas for Stereotaxy of the HumanBrain. (Thieme, 1977).
Castrioto A., Funkiewiez A., Debu B., Cools R., Lhommee E., Ardouin C., Fraix V., Chabardes S., Robbins T. W., Pollak P., Krack P. Iowa gambling task impairment in Parkinson's disease can be normalised by reduction of dopaminergic medication after subthalamic stimulation. Journal of Neurology, Neurosurgery & Psychiatry. 2014;86(2):186–190. doi: 10.1136/jnnp-2013-307146. PubMed DOI
Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain. 2006;129:1732–1747. doi: 10.1093/brain/awl127. PubMed DOI
de Chazeron I, et al. Impact of localisation of deep brain stimulation electrodes on motor and neurobehavioural outcomes in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2016;87:758–766. doi: 10.1136/jnnp-2015-310953. PubMed DOI
Chou XL, et al. Inhibitory gain modulation of defense behaviors by zona incerta. Nat Commun. 2018;9:1151. doi: 10.1038/s41467-018-03581-6. PubMed DOI PMC
Hamani Clement, Florence Gerson, Heinsen Helmut, Plantinga Birgit R., Temel Yasin, Uludag Kamil, Alho Eduardo, Teixeira Manoel J., Amaro Edson, Fonoff Erich T. Subthalamic Nucleus Deep Brain Stimulation: Basic Concepts and Novel Perspectives. eneuro. 2017;4(5):ENEURO.0140-17.2017. doi: 10.1523/ENEURO.0140-17.2017. PubMed DOI PMC
Gallay MN, Jeanmonod D, Liu J, Morel A. Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct. 2008;212:443–463. doi: 10.1007/s00429-007-0170-0. PubMed DOI PMC
Bang Henriksen M, et al. Surviving 10 years with deep brain stimulation for Parkinson's disease—a follow-up of 79 patients. Eur. J. Neurol. 2016;23:53–61. doi: 10.1111/ene.12614. PubMed DOI
Thobois S, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson's disease: predictors and underlying mesolimbic denervation. Brain. 2010;133:1111–1127. doi: 10.1093/brain/awq032. PubMed DOI
Perriol MP, et al. Stimulation of the subthalamic nucleus in Parkinson's disease: cognitive and affective changes are not linked to the motor outcome. Parkinsonism Relat. Disord. 2006;12:205–210. doi: 10.1016/j.parkreldis.2005.11.009. PubMed DOI
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–184. doi: 10.1136/jnnp.55.3.181. PubMed DOI PMC
Folstein MF, Folstein SE, McHugh PR. Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6. PubMed DOI
Beck, A., Steer, R. & Brown, G. The Beck depression inventory-II. (Psychological Corporation, 1996).
Kleiner-Fisman G, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006;21(Suppl 14):S290–304. doi: 10.1002/mds.20962. PubMed DOI
Lang, P. J. & Bradley, M. M., & Cuthbert, B. N. International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. University of Florida, Florida, Gainesville, FL. (2008).
Fonov V, et al. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage. 2011;54:313–327. doi: 10.1016/j.neuroimage.2010.07.033. PubMed DOI PMC
Horn A, Kuhn AA. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage. 2015;107:127–135. doi: 10.1016/j.neuroimage.2014.12.002. PubMed DOI
Ewert S, et al. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage. 2017 doi: 10.1016/j.neuroimage.2017.05.015. PubMed DOI
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Viena, Austria, 2017).
Accolla EA, et al. Brain tissue properties differentiate between motor and limbic basal ganglia circuits. Hum. Brain Mapp. 2014;35:5083–5092. doi: 10.1002/hbm.22533. PubMed DOI PMC
Ewert S, et al. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage. 2018;170:271–282. doi: 10.1016/j.neuroimage.2017.05.015. PubMed DOI
Bradley MM, Lang PJ. Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. J. Behav. Ther. Exp. Psychiatry. 1994;25:49–59. doi: 10.1016/0005-7916(94)90063-9. PubMed DOI
Lang, P. J. Behavioral treatment and bio-behavioral assessment: Computer applications. In Technology in mental health care delivery systems (eds. Sidowski, J. B., Johnson, J. H. & Williams, T. A.), 119–137 (Norwood, N. J. Ablex, 1980).