Topography of emotional valence and arousal within the motor part of the subthalamic nucleus in Parkinson's disease

. 2019 Dec 27 ; 9 (1) : 19924. [epub] 20191227

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31882633
Odkazy

PubMed 31882633
PubMed Central PMC6934686
DOI 10.1038/s41598-019-56260-x
PII: 10.1038/s41598-019-56260-x
Knihovny.cz E-zdroje

Clinical motor and non-motor effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) seem to depend on the stimulation site within the STN. We analysed the effects of the position of the stimulation electrode within the motor STN on subjective emotional experience, expressed as emotional valence and arousal ratings to pictures representing primary rewards and aversive fearful stimuli in 20 PD patients. Patients' ratings from both aversive and erotic stimuli matched the mean ratings from a group of 20 control subjects at similar position within the STN. Patients with electrodes located more posteriorly reported both valence and arousal ratings from both the rewarding and aversive pictures as more extreme. Moreover, posterior electrode positions were associated with a higher occurrence of depression at a long-term follow-up. This brain-behavior relationship suggests a complex emotion topography in the motor part of the STN. Both valence and arousal representations overlapped and were uniformly arranged anterior-posteriorly in a gradient-like manner, suggesting a specific spatial organization needed for the coding of the motivational salience of the stimuli. This finding is relevant for our understanding of neuropsychiatric side effects in STN DBS and potentially for optimal electrode placement.

Zobrazit více v PubMed

Lindquist KA, Barrett LF. A functional architecture of the human brain: emerging insights from the science of emotion. Trends Cogn Sci. 2012;16:533–540. doi: 10.1016/j.tics.2012.09.005. PubMed DOI PMC

Tamietto M, de Gelder B. Neural bases of the non-conscious perception of emotional signals. Nat Rev Neurosci. 2010;11:697–709. doi: 10.1038/nrn2889. PubMed DOI

Limousin P, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med. 1998;339:1105–1111. doi: 10.1056/NEJM199810153391603. PubMed DOI

Schuepbach WM, et al. Neurostimulation for Parkinson's disease with early motor complications. N Engl J Med. 2013;368:610–622. doi: 10.1056/NEJMoa1205158. PubMed DOI

Eisinger RS, Urdaneta ME, Foote KD, Okun MS, Gunduz A. Non-motor Characterization of the Basal Ganglia: Evidence From Human and Non-human Primate Electrophysiology. Front Neurosci. 2018;12:385. doi: 10.3389/fnins.2018.00385. PubMed DOI PMC

Haber SN, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006;26:8368–8376. doi: 10.1523/JNEUROSCI.0271-06.2006. PubMed DOI PMC

Heilbronner SR, Meyer MAA, Choi EY, Haber SN. How do cortico-striatal projections impact on downstream pallidal circuitry? Brain Struct Funct. 2018;223:2809–2821. doi: 10.1007/s00429-018-1662-9. PubMed DOI

Calzavara R, Mailly P, Haber SN. Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci. 2007;26:2005–2024. doi: 10.1111/j.1460-9568.2007.05825.x. PubMed DOI PMC

Draganski B, et al. Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci. 2008;28:7143–7152. doi: 10.1523/JNEUROSCI.1486-08.2008. PubMed DOI PMC

Averbeck BB, Lehman J, Jacobson M, Haber SN. Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J Neurosci. 2014;34:9497–9505. doi: 10.1523/JNEUROSCI.5806-12.2014. PubMed DOI PMC

Choi EY, Tanimura Y, Vage PR, Yates EH, Haber SN. Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum. Neuroimage. 2017;146:821–832. doi: 10.1016/j.neuroimage.2016.09.037. PubMed DOI PMC

Mailly P, Aliane V, Groenewegen HJ, Haber SN, Deniau JM. The rat prefrontostriatal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci. 2013;33:5718–5727. doi: 10.1523/JNEUROSCI.5248-12.2013. PubMed DOI PMC

Yeterian EH, Van Hoesen GW. Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res. 1978;139:43–63. doi: 10.1016/0006-8993(78)90059-8. PubMed DOI

Haynes WI, Haber SN. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci. 2013;33:4804–4814. doi: 10.1523/JNEUROSCI.4674-12.2013. PubMed DOI PMC

Sieger T, et al. Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus. Proc Natl Acad Sci USA. 2015;112:3116–3121. doi: 10.1073/pnas.1410709112. PubMed DOI PMC

Herzog J, et al. Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease. Mov Disord. 2004;19:1050–1054. doi: 10.1002/mds.20056. PubMed DOI

Ruzicka F, et al. Chronic stress-like syndrome as a consequence of medial site subthalamic stimulation in Parkinson's disease. Psychoneuroendocrinology. 2015;52:302–310. doi: 10.1016/j.psyneuen.2014.12.001. PubMed DOI

Ruzicka F, et al. Weight gain is associated with medial contact site of subthalamic stimulation in Parkinson's disease. PLoS One. 2012;7:e38020. doi: 10.1371/journal.pone.0038020. PubMed DOI PMC

Welter ML, et al. Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology. 2014;82:1352–1361. doi: 10.1212/WNL.0000000000000315. PubMed DOI PMC

Castrioto A, Lhommee E, Moro E, Krack P. Mood and behavioural effects of subthalamic stimulation in Parkinson's disease. Lancet Neurol. 2014;13:287–305. doi: 10.1016/S1474-4422(13)70294-1. PubMed DOI

Lang PJ, Greenwald MK, Bradley MM, Hamm AO. Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology. 1993;30:261–273. doi: 10.1111/j.1469-8986.1993.tb03352.x. PubMed DOI

Russell JA. Core affect and the psychological construction of emotion. Psychol Rev. 2003;110:145–172. doi: 10.1037/0033-295X.110.1.145. PubMed DOI

Serranova T, et al. Subthalamic nucleus stimulation affects incentive salience attribution in Parkinson's disease. Mov Disord. 2011;26:2260–2266. doi: 10.1002/mds.23880. PubMed DOI

Morel, A. Atlas of the Human Thalamus and Basal Ganglia. 160, Informa Helthcare (2007).

Serranová Tereza, Sieger Tomáš, Dušek Petr, Růžička Filip, Urgošík Dušan, Růžička Evžen, Valls-Solé Josep, Jech Robert. Sex, Food and Threat: Startling Changes after Subthalamic Stimulation in Parkinson's Disease. Brain Stimulation. 2013;6(5):740–745. doi: 10.1016/j.brs.2013.03.009. PubMed DOI

Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 2010;68:815–834. doi: 10.1016/j.neuron.2010.11.022. PubMed DOI PMC

Mallet L, et al. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci USA. 2007;104:10661–10666. doi: 10.1073/pnas.0610849104. PubMed DOI PMC

Ulla M, et al. Contact dependent reproducible hypomania induced by deep brain stimulation in Parkinson's disease: clinical, anatomical and functional imaging study. J. Neurol. Neurosurg. Psychiatry. 2011;82:607–614. doi: 10.1136/jnnp.2009.199323. PubMed DOI

Krack P, et al. Mirthful laughter induced by subthalamic nucleus stimulation. Mov. Disord. 2001;16:867–875. doi: 10.1002/mds.1174. PubMed DOI

Polosan M, et al. Affective modulation of the associative-limbic subthalamic nucleus: deep brain stimulation in obsessive–compulsive disorder. Translational Psychiatry. 2019;9:73. doi: 10.1038/s41398-019-0404-y. PubMed DOI PMC

Witt K, et al. Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial. Brain. 2013;136:2109–2119. doi: 10.1093/brain/awt151. PubMed DOI

Kronenbuerger M, et al. Brain alterations with deep brain stimulation: New insight from a neuropathological case series. Mov Disord. 2015;30:1125–1130. doi: 10.1002/mds.26247. PubMed DOI

DiLorenzo Daniel J., Jankovic Joseph, Simpson Richard K., Takei Hidehiro, Powell Suzanne Z. Neurohistopathological Findings at the Electrode-Tissue Interface in Long-Term Deep Brain Stimulation: Systematic Literature Review, Case Report, and Assessment of Stimulation Threshold Safety. Neuromodulation: Technology at the Neural Interface. 2014;17(5):405–418. doi: 10.1111/ner.12192. PubMed DOI

Jech R, et al. The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI. PLoS One. 2012;7:e49056. doi: 10.1371/journal.pone.0049056. PubMed DOI PMC

Agnesi F, Johnson MD, Vitek JL. Deep brain stimulation: how does it work? Handb Clin Neurol. 2013;116:39–54. doi: 10.1016/B978-0-444-53497-2.00004-8. PubMed DOI

Zhang Z, et al. Distributed neural representation of saliency controlled value and category during anticipation of rewards and punishments. Nat Commun. 2017;8:1907. doi: 10.1038/s41467-017-02080-4. PubMed DOI PMC

Uslaner JM, Dell’Orco JM, Pevzner A, Robinson TE. The influence of subthalamic nucleus lesions on sign-tracking to stimuli paired with food and drug rewards: facilitation of incentive salience attribution? Neuropsychopharmacology. 2008;33:2352–2361. doi: 10.1038/sj.npp.1301653. PubMed DOI

Baunez C, Yelnik J, Mallet L. Six questions on the subthalamic nucleus: lessons from animal models and from stimulated patients. Neuroscience. 2011;198:193–204. doi: 10.1016/j.neuroscience.2011.09.059. PubMed DOI

Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011;15:56–67. doi: 10.1016/j.tics.2010.12.004. PubMed DOI

Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005;6:691–702. doi: 10.1038/nrn1747. PubMed DOI

Parent A, Hazrati LN. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev. 1995;20:128–154. doi: 10.1016/0165-0173(94)00008-D. PubMed DOI

Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26. doi: 10.1038/npp.2009.129. PubMed DOI PMC

Hunt AJ, Jr., et al. Paraventricular hypothalamic and amygdalar CRF neurons synapse in the external globus pallidus. Brain Struct Funct. 2018;223:2685–2698. doi: 10.1007/s00429-018-1652-y. PubMed DOI PMC

Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28:309–369. doi: 10.1016/S0165-0173(98)00019-8. PubMed DOI

Sieger T, et al. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease. PLoS One. 2013;8:e78581. doi: 10.1371/journal.pone.0078581. PubMed DOI PMC

Rothschild G, Mizrahi A. Global order and local disorder in brain maps. Annu Rev Neurosci. 2015;38:247–268. doi: 10.1146/annurev-neuro-071013-014038. PubMed DOI

Thivierge JP, Marcus GF. The topographic brain: from neural connectivity to cognition. Trends Neurosci. 2007;30:251–259. doi: 10.1016/j.tins.2007.04.004. PubMed DOI

Braak H, et al. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson's disease (preclinical and clinical stages) J Neurol. 2002;249(Suppl 3):III/1-5. PubMed

Peron J, Dondaine T, Le Jeune F, Grandjean D, Verin M. Emotional processing in Parkinson's disease: a systematic review. Mov Disord. 2012;27:186–199. doi: 10.1002/mds.24025. PubMed DOI

Parent A, Hazrati LN. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev. 1995;20:91–127. doi: 10.1016/0165-0173(94)00007-C. PubMed DOI

Schaltenbrand, G., Wahren, W. & Hassler, R. Atlas for Stereotaxy of the HumanBrain. (Thieme, 1977).

Castrioto A., Funkiewiez A., Debu B., Cools R., Lhommee E., Ardouin C., Fraix V., Chabardes S., Robbins T. W., Pollak P., Krack P. Iowa gambling task impairment in Parkinson's disease can be normalised by reduction of dopaminergic medication after subthalamic stimulation. Journal of Neurology, Neurosurgery & Psychiatry. 2014;86(2):186–190. doi: 10.1136/jnnp-2013-307146. PubMed DOI

Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain. 2006;129:1732–1747. doi: 10.1093/brain/awl127. PubMed DOI

de Chazeron I, et al. Impact of localisation of deep brain stimulation electrodes on motor and neurobehavioural outcomes in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2016;87:758–766. doi: 10.1136/jnnp-2015-310953. PubMed DOI

Chou XL, et al. Inhibitory gain modulation of defense behaviors by zona incerta. Nat Commun. 2018;9:1151. doi: 10.1038/s41467-018-03581-6. PubMed DOI PMC

Hamani Clement, Florence Gerson, Heinsen Helmut, Plantinga Birgit R., Temel Yasin, Uludag Kamil, Alho Eduardo, Teixeira Manoel J., Amaro Edson, Fonoff Erich T. Subthalamic Nucleus Deep Brain Stimulation: Basic Concepts and Novel Perspectives. eneuro. 2017;4(5):ENEURO.0140-17.2017. doi: 10.1523/ENEURO.0140-17.2017. PubMed DOI PMC

Gallay MN, Jeanmonod D, Liu J, Morel A. Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct. 2008;212:443–463. doi: 10.1007/s00429-007-0170-0. PubMed DOI PMC

Bang Henriksen M, et al. Surviving 10 years with deep brain stimulation for Parkinson's disease—a follow-up of 79 patients. Eur. J. Neurol. 2016;23:53–61. doi: 10.1111/ene.12614. PubMed DOI

Thobois S, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson's disease: predictors and underlying mesolimbic denervation. Brain. 2010;133:1111–1127. doi: 10.1093/brain/awq032. PubMed DOI

Perriol MP, et al. Stimulation of the subthalamic nucleus in Parkinson's disease: cognitive and affective changes are not linked to the motor outcome. Parkinsonism Relat. Disord. 2006;12:205–210. doi: 10.1016/j.parkreldis.2005.11.009. PubMed DOI

Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–184. doi: 10.1136/jnnp.55.3.181. PubMed DOI PMC

Folstein MF, Folstein SE, McHugh PR. Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6. PubMed DOI

Beck, A., Steer, R. & Brown, G. The Beck depression inventory-II. (Psychological Corporation, 1996).

Kleiner-Fisman G, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006;21(Suppl 14):S290–304. doi: 10.1002/mds.20962. PubMed DOI

Lang, P. J. & Bradley, M. M., & Cuthbert, B. N. International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. University of Florida, Florida, Gainesville, FL. (2008).

Fonov V, et al. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage. 2011;54:313–327. doi: 10.1016/j.neuroimage.2010.07.033. PubMed DOI PMC

Horn A, Kuhn AA. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage. 2015;107:127–135. doi: 10.1016/j.neuroimage.2014.12.002. PubMed DOI

Ewert S, et al. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage. 2017 doi: 10.1016/j.neuroimage.2017.05.015. PubMed DOI

R: A language and environment for statistical computing (R Foundation for Statistical Computing, Viena, Austria, 2017).

Accolla EA, et al. Brain tissue properties differentiate between motor and limbic basal ganglia circuits. Hum. Brain Mapp. 2014;35:5083–5092. doi: 10.1002/hbm.22533. PubMed DOI PMC

Ewert S, et al. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage. 2018;170:271–282. doi: 10.1016/j.neuroimage.2017.05.015. PubMed DOI

Bradley MM, Lang PJ. Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. J. Behav. Ther. Exp. Psychiatry. 1994;25:49–59. doi: 10.1016/0005-7916(94)90063-9. PubMed DOI

Lang, P. J. Behavioral treatment and bio-behavioral assessment: Computer applications. In Technology in mental health care delivery systems (eds. Sidowski, J. B., Johnson, J. H. & Williams, T. A.), 119–137 (Norwood, N. J. Ablex, 1980).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...