Inactivation of Acanthamoeba Cysts in Suspension and on Contaminated Contact Lenses Using Non-Thermal Plasma

. 2021 Sep 05 ; 9 (9) : . [epub] 20210905

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34576774

Grantová podpora
Progress Q25 a Q26 Univerzita Karlova v Praze

Odkazy

PubMed 34576774
PubMed Central PMC8465664
DOI 10.3390/microorganisms9091879
PII: microorganisms9091879
Knihovny.cz E-zdroje

Water suspensions of cysts of a pathogenic clinical isolate of Acanthamoeba sp. were prepared, and the cysts were inactivated either in suspension or placed on the surface of contact lenses by the non-thermal plasma produced by the DC corona transient spark discharge. The efficacy of this treatment was determined by cultivation and the presence of vegetative trophozoites indicating non-inactivated cysts. The negative discharge appeared to be more effective than the positive one. The complete inactivation occurred in water suspension after 40 min and on contaminated lenses after 50 min of plasma exposure. The properties of lenses seem to not be affected by plasma exposure; that is, their optical power, diameter, curvature, water content and infrared and Raman spectra remain unchanged.

Zobrazit více v PubMed

Khan N.A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 2006;30:564–595. doi: 10.1111/j.1574-6976.2006.00023.x. PubMed DOI

Mazur T., Hadaś E., Iwanicka I. The duration of the cyst stage and the viability and virulence of Acanthamoeba isolates. Trop. Med. Parasitol. 1995;46:106–108. PubMed

Sriram R., Shoff M., Booton G., Fuerst P., Visvesvara G.S. Survival of Acanthamoeba cysts after desiccation for more than 20 years. J. Clin. Microbiol. 2008;46:4045–4048. doi: 10.1128/JCM.01903-08. PubMed DOI PMC

Coulon C., Collignon A., McDonnell G., Thomas V. Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J. Clin. Microbiol. 2010;48:2689–2697. doi: 10.1128/JCM.00309-10. PubMed DOI PMC

Niederkorn J.Y. The biology of Acanthamoeba keratitis. Exp. Eye Res. 2021;202:108365. doi: 10.1016/j.exer.2020.108365. PubMed DOI PMC

Marciano-Cabral F., Cabral G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003;16:273–307. doi: 10.1128/CMR.16.2.273-307.2003. PubMed DOI PMC

Lorenzo-Morales J., Khan N.A., Walochnik J. An update on Acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite. 2015;22:10. doi: 10.1051/parasite/2015010. PubMed DOI PMC

Fears A.C., Metzinger R.C., Killeen S.Z., Reimers R.S., Roy C.J. Comparative in vitro effectiveness of a novel contact lens multipurpose solution on Acanthamoeba castellanii. J. Ophthalmic. Inflamm. Infect. 2018;8:19. doi: 10.1186/s12348-018-0161-8. PubMed DOI PMC

Kobayashi T., Gibbon L., Mito T., Shiraishi A., Uno T., Ohashi Y. Efficacy of commercial soft contact lens disinfectant solutions against Acanthamoeba. Jpn. J. Ophthalmol. 2011;55:547–557. doi: 10.1007/s10384-011-0062-y. PubMed DOI

Lakhundi S., Khan N.A., Siddiqui R. Inefficacy of marketed contact lens disinfection solutions against keratitis-causing Acanthamoeba castellanii belonging to the T4 genotype. Exp. Parasitol. 2014;141:122–128. doi: 10.1016/j.exppara.2014.03.018. PubMed DOI

Gabriel M.M., McAnally C., Bartell J., Walters R., Clark L., Crary M., Shannon S. Biocidal Efficacy of a Hydrogen Peroxide Lens Care Solution Incorporating a Novel Wetting Agent. Eye Contact Lens. 2019;45:164–170. doi: 10.1097/ICL.0000000000000549. PubMed DOI

Padzik M., Hendiger E.B., Żochowska A., Szczepaniak J., Baltaza W., Pietruczuk-Padzik A., Olędzka G., Chomicz L. Evaluation of in vitro effect of selected contact lens solutions conjugated with nanoparticles in terms of preventive approach to public health risk generated by Acanthamoeba strains. Ann. Agric. Environ. Med. 2019;26:198–202. doi: 10.26444/aaem/105394. PubMed DOI

Hiti K., Walochnik J., Faschinger C., Haller-Schober E.M., Aspöck H. Microwave treatment of contact lens cases contaminated with Acanthamoeba. Cornea. 2001;20:467–470. doi: 10.1097/00003226-200107000-00005. PubMed DOI

Heaselgrave W., Patel N., Kilvington S., Kehoe S.C., McGuigan K.G. Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water—A laboratory study using simulated sunlight. Lett. Appl. Microbiol. 2006;43:125–130. doi: 10.1111/j.1472-765X.2006.01940.x. PubMed DOI

Heaselgrave W., Shama G., Andrew P.W., Kong M.G. Inactivation of Acanthamoeba spp. and Other Ocular Pathogens by Application of Cold Atmospheric Gas Plasma. Appl. Environ. Microbiol. 2016;82:3143–3148. doi: 10.1128/AEM.03863-15. PubMed DOI PMC

Ehlbeck J., Schnabel U., Polak M., Winter J., von Woedtke T., Brandenburg R., von dem Hagen T., Weltmann K.D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 2011;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI

Khun J., Scholtz V., Hozák P., Fitl P.E., Julák J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI

Laroussi M. Low-Temperature Plasmas for Medicine? IEEE Trans. Plasma Sci. 2009;37:714–726. doi: 10.1109/TPS.2009.2017267. DOI

Laroussi M., Akan T. Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Process. Polym. 2007;4:777–788. doi: 10.1002/ppap.200700066. DOI

Laroussi M., Lu X., Keidar M. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 2017;122:020901. doi: 10.1063/1.4993710. DOI

Šimončicová J., Kryštofová S., Medvecká V., Ďurišová K., Kaliňáková B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019;103:5117–5129. doi: 10.1007/s00253-019-09877-x. PubMed DOI

Yousfi M., Merbahi N., Sarrette J.-P., Eichwald O., Ricard A., Gardou J.-P., Ducasse O., Benhenni M. Non Thermal Plasma Sources of Production of Active Species for Biomedical Uses: Analyses, Optimization and Prospect. In: Fazel-Rezai R., editor. Biomedical Engineering—Frontiers and Challenges. IntechOpen; London, UK: 2011. pp. 99–124.

Bourke P., Ziuzina D., Han L., Cullen P.J., Gilmore B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017;123:308–324. doi: 10.1111/jam.13429. PubMed DOI

Julák J., Scholtz V. The potential for use of non-thermal plasma in microbiology and medicine. Epidemiol. Mikrobiol. Imunol. 2020;69:29–37. PubMed

Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B At. Spectrosc. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI

Weltmann K.D., von Woedtke T. Plasma medicine—Current state of research and medical application. Plasma Phys. Control. Fusion. 2016;59:014031. doi: 10.1088/0741-3335/59/1/014031. DOI

Woedtke T.V., Emmert S., Metelmann H.-R., Rupf S., Weltmann K.-D. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Phys. Plasmas. 2020;27:070601. doi: 10.1063/5.0008093. DOI

Metelmann H.-R., von Woedtke T., Weltmann K.-D., editors. Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application. Springer International Publishing; Cham, Switzerland: 2018. p. 526.

Gherardi M., Tonini R., Colombo V. Plasma in Dentistry: Brief History and Current Status. Trends Biotechnol. 2017;36:583–585. doi: 10.1016/j.tibtech.2017.06.009. PubMed DOI

Gweon B., Kim K., Choe W., Shin J.H. Therapeutic Uses of Atmospheric Pressure Plasma: Cancer and Wound. In: Jo H., Jun H.-W., Shin J., Lee S., editors. Biomedical Engineering: Frontier Research and Converging Technologies. Springer International Publishing; Cham, Switzerland: 2016. pp. 357–385.

Keidar M., Yan D., Beilis I.I., Trink B., Sherman J.H. Plasmas for Treating Cancer: Opportunities for Adaptive and Self-Adaptive Approaches. Trends Biotechnol. 2018;36:586–593. doi: 10.1016/j.tibtech.2017.06.013. PubMed DOI

Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI

Kelly S., Turner M. Atomic oxygen patterning from a biomedical needle-plasma source. J. Appl. Phys. 2013;114:123301. doi: 10.1063/1.4821241. DOI

Sysolyatina E., Mukhachev A., Yurova M., Grushin M., Karalnik V., Petryakov A., Trushkin N., Ermolaeva S., Akishev Y. Role of the Charged Particles in Bacteria Inactivation by Plasma of a Positive and Negative Corona in Ambient Air. Plasma Process. Polym. 2014;11:315–334. doi: 10.1002/ppap.201300041. DOI

Liu D.X., Liu Z.C., Chen C., Yang A.J., Li D., Rong M.Z., Chen H.L., Kong M.G. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737. PubMed DOI PMC

Al-sharify Z.T., Alsharify T.A., Al-Obaidy B., Al-Azawi A. Investigative Study on the Interaction and Applications of Plasma Activated Water(PAW) IOP Conf. Ser. Mater. Sci. Eng. 2020;870:012042. doi: 10.1088/1757-899X/870/1/012042. DOI

Julák J., Hujacová A., Scholtz V., Khun J., Holada K. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 2018;44:125–136. doi: 10.1134/S1063780X18010075. DOI

Zhou R., Zhou R., Wang P., Xian Y., Mai-Prochnow A., Lu X., Cullen P.J., Ostrikov K., Bazaka K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020;53:303001. doi: 10.1088/1361-6463/ab81cf. DOI

Terrier O., Essere B., Yver M., Barthélémy M., Bouscambert-Duchamp M., Kurtz P., VanMechelen D., Morfin F., Billaud G., Ferraris O., et al. Cold oxygen plasma technology efficiency against different airborne respiratory viruses. J. Clin. Virol. 2009;45:119–124. doi: 10.1016/j.jcv.2009.03.017. PubMed DOI

Xia T., Kleinheksel A., Lee E.M., Qiao Z., Wigginton K.R., Clack H.L. Inactivation of airborne viruses using a packed bed non-thermal plasma reactor. J. Phys. D Appl. Phys. 2019;52:255201. doi: 10.1088/1361-6463/ab1466. PubMed DOI PMC

Aman Mohammadi M., Ahangari H., Zabihzadeh Khajavi M., Yousefi M., Scholtz V., Hosseini S.M. Inactivation of viruses using nonthermal plasma in viral suspensions and foodstuff: A short review of recent studies. J. Food Saf. 2021:e12919. doi: 10.1111/jfs.12919. DOI

Julak J., Scholtz V., Vaňková E. Medically important biofilms and non-thermal plasma. World J. Microbiol. Biotechnol. 2018;34:1–15. doi: 10.1007/s11274-018-2560-2. PubMed DOI

Misra N.N., Yadav B., Roopesh M.S., Jo C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr. Rev. Food Sci. Food Saf. 2019;18:106–120. doi: 10.1111/1541-4337.12398. PubMed DOI

Julák J., Soušková H., Scholtz V., Kvasničková E., Savická D., Kříha V. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiol. 2018;63:63–68. doi: 10.1007/s12223-017-0535-6. PubMed DOI

Paldrychová M., Vaňková E., Scholtz V., Julák J., Sembolová E., Matátková O., Masák J. Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: Difference between non-hospital and clinical isolates. AIP Adv. 2019;9:055117. doi: 10.1063/1.5090451. DOI

Hayes J., Kirf D., Garvey M., Rowan N. Disinfection and toxicological assessments of pulsed UV and pulsed-plasma gas-discharge treated-water containing the waterborne protozoan enteroparasite Cryptosporidium parvum. J. Microbiol. Methods. 2013;94:325–337. doi: 10.1016/j.mimet.2013.07.012. PubMed DOI

Rowan N. Defining Established and Emerging Microbial Risks in the Aquatic Environment: Current Knowledge, Implications, and Outlooks. Int. J. Microbiol. 2011;2011:462832. doi: 10.1155/2011/462832. PubMed DOI PMC

Wang X.-Q., Wang F.-P., Chen W., Huang J., Bazaka K., Ostrikov K. Non-equilibrium plasma prevention of Schistosoma japonicum transmission. Sci. Rep. 2016;6:35353. doi: 10.1038/srep35353. PubMed DOI PMC

Hejzlarová S., Chanová M., Khun J., Julák J., Scholtz V. Inactivation of Schistosoma Using Low-Temperature Plasma. Microorganisms. 2021;9:32. doi: 10.3390/microorganisms9010032. PubMed DOI PMC

Cerva L. Some further characteristics of the growth of Naegleria fowleri and N. gruberi in axenic culture. Folia Parasitol. 1978;25:1–8. PubMed

Booton G.C., Kelly D.J., Chu Y.W., Seal D.V., Houang E., Lam D.S., Byers T.J., Fuerst P.A. 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. J. Clin. Microbiol. 2002;40:1621–1625. doi: 10.1128/JCM.40.5.1621-1625.2002. PubMed DOI PMC

De Jonckheere J.F. Growth characteristics, cytopathic effect in cell culture, and virulence in mice of 36 type strains belonging to 19 different Acanthamoeba spp. Appl. Environ. Microbiol. 1980;39:681–685. doi: 10.1128/aem.39.4.681-685.1980. PubMed DOI PMC

Johnston S.P., Sriram R., Qvarnstrom Y., Roy S., Verani J., Yoder J., Lorick S., Roberts J., Beach M.J., Visvesvara G. Resistance of Acanthamoeba cysts to disinfection in multiple contact lens solutions. J. Clin. Microbiol. 2009;47:2040–2045. doi: 10.1128/JCM.00575-09. PubMed DOI PMC

Scholtz V., Julák J., Kříha V. The Microbicidal Effect of Low-Temperature Plasma Generated by Corona Discharge: Comparison of Various Microorganisms on an Agar Surface or in Aqueous Suspension. Plasma Process. Polym. 2010;7:237–243. doi: 10.1002/ppap.200900072. DOI

Soušková H., Scholtz V., Julák J., Kommová L., Savická D., Pazlarová J. The survival of micromycetes and yeasts under the low-temperature plasma generated in electrical discharge. Folia Microbiol. 2011;56:77–79. doi: 10.1007/s12223-011-0005-5. PubMed DOI

Julák J., Scholtz V., Kotúčová S., Janoušková O. The persistent microbicidal effect in water exposed to the corona discharge. Phys. Med. 2012;28:230–239. doi: 10.1016/j.ejmp.2011.08.001. PubMed DOI

Scholtz V., Kommová L., Julák J. The Influence of Parameters of Stabilized Corona Discharge on its Microbicidal Effect. Acta Phys. Pol. A. 2011;119:803–806. doi: 10.12693/APhysPolA.119.803. DOI

Hughes R., Kilvington S. Comparison of hydrogen peroxide contact lens disinfection systems and solutions against Acanthamoeba polyphaga. Antimicrob. Agents Chemother. 2001;45:2038–2043. doi: 10.1128/AAC.45.7.2038-2043.2001. PubMed DOI PMC

Hughes R., Andrew P.W., Kilvington S. Enhanced killing of Acanthamoeba cysts with a plant peroxidase-hydrogen peroxide-halide antimicrobial system. Appl. Environ. Microbiol. 2003;69:2563–2567. doi: 10.1128/AEM.69.5.2563-2567.2003. PubMed DOI PMC

Kilvington S., Winterton L. Fibrous Catalyst-Enhanced Acanthamoeba Disinfection by Hydrogen Peroxide. Opt. Vis. Sci. 2017;94:1022–1028. doi: 10.1097/OPX.0000000000001126. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...