Inactivation of Acanthamoeba Cysts in Suspension and on Contaminated Contact Lenses Using Non-Thermal Plasma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Progress Q25 a Q26
Univerzita Karlova v Praze
PubMed
34576774
PubMed Central
PMC8465664
DOI
10.3390/microorganisms9091879
PII: microorganisms9091879
Knihovny.cz E-zdroje
- Klíčová slova
- Acanthamoeba, DC corona discharge, IR spectra, Raman spectra, contact lenses, cysts,
- Publikační typ
- časopisecké články MeSH
Water suspensions of cysts of a pathogenic clinical isolate of Acanthamoeba sp. were prepared, and the cysts were inactivated either in suspension or placed on the surface of contact lenses by the non-thermal plasma produced by the DC corona transient spark discharge. The efficacy of this treatment was determined by cultivation and the presence of vegetative trophozoites indicating non-inactivated cysts. The negative discharge appeared to be more effective than the positive one. The complete inactivation occurred in water suspension after 40 min and on contaminated lenses after 50 min of plasma exposure. The properties of lenses seem to not be affected by plasma exposure; that is, their optical power, diameter, curvature, water content and infrared and Raman spectra remain unchanged.
Zobrazit více v PubMed
Khan N.A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 2006;30:564–595. doi: 10.1111/j.1574-6976.2006.00023.x. PubMed DOI
Mazur T., Hadaś E., Iwanicka I. The duration of the cyst stage and the viability and virulence of Acanthamoeba isolates. Trop. Med. Parasitol. 1995;46:106–108. PubMed
Sriram R., Shoff M., Booton G., Fuerst P., Visvesvara G.S. Survival of Acanthamoeba cysts after desiccation for more than 20 years. J. Clin. Microbiol. 2008;46:4045–4048. doi: 10.1128/JCM.01903-08. PubMed DOI PMC
Coulon C., Collignon A., McDonnell G., Thomas V. Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J. Clin. Microbiol. 2010;48:2689–2697. doi: 10.1128/JCM.00309-10. PubMed DOI PMC
Niederkorn J.Y. The biology of Acanthamoeba keratitis. Exp. Eye Res. 2021;202:108365. doi: 10.1016/j.exer.2020.108365. PubMed DOI PMC
Marciano-Cabral F., Cabral G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003;16:273–307. doi: 10.1128/CMR.16.2.273-307.2003. PubMed DOI PMC
Lorenzo-Morales J., Khan N.A., Walochnik J. An update on Acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite. 2015;22:10. doi: 10.1051/parasite/2015010. PubMed DOI PMC
Fears A.C., Metzinger R.C., Killeen S.Z., Reimers R.S., Roy C.J. Comparative in vitro effectiveness of a novel contact lens multipurpose solution on Acanthamoeba castellanii. J. Ophthalmic. Inflamm. Infect. 2018;8:19. doi: 10.1186/s12348-018-0161-8. PubMed DOI PMC
Kobayashi T., Gibbon L., Mito T., Shiraishi A., Uno T., Ohashi Y. Efficacy of commercial soft contact lens disinfectant solutions against Acanthamoeba. Jpn. J. Ophthalmol. 2011;55:547–557. doi: 10.1007/s10384-011-0062-y. PubMed DOI
Lakhundi S., Khan N.A., Siddiqui R. Inefficacy of marketed contact lens disinfection solutions against keratitis-causing Acanthamoeba castellanii belonging to the T4 genotype. Exp. Parasitol. 2014;141:122–128. doi: 10.1016/j.exppara.2014.03.018. PubMed DOI
Gabriel M.M., McAnally C., Bartell J., Walters R., Clark L., Crary M., Shannon S. Biocidal Efficacy of a Hydrogen Peroxide Lens Care Solution Incorporating a Novel Wetting Agent. Eye Contact Lens. 2019;45:164–170. doi: 10.1097/ICL.0000000000000549. PubMed DOI
Padzik M., Hendiger E.B., Żochowska A., Szczepaniak J., Baltaza W., Pietruczuk-Padzik A., Olędzka G., Chomicz L. Evaluation of in vitro effect of selected contact lens solutions conjugated with nanoparticles in terms of preventive approach to public health risk generated by Acanthamoeba strains. Ann. Agric. Environ. Med. 2019;26:198–202. doi: 10.26444/aaem/105394. PubMed DOI
Hiti K., Walochnik J., Faschinger C., Haller-Schober E.M., Aspöck H. Microwave treatment of contact lens cases contaminated with Acanthamoeba. Cornea. 2001;20:467–470. doi: 10.1097/00003226-200107000-00005. PubMed DOI
Heaselgrave W., Patel N., Kilvington S., Kehoe S.C., McGuigan K.G. Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water—A laboratory study using simulated sunlight. Lett. Appl. Microbiol. 2006;43:125–130. doi: 10.1111/j.1472-765X.2006.01940.x. PubMed DOI
Heaselgrave W., Shama G., Andrew P.W., Kong M.G. Inactivation of Acanthamoeba spp. and Other Ocular Pathogens by Application of Cold Atmospheric Gas Plasma. Appl. Environ. Microbiol. 2016;82:3143–3148. doi: 10.1128/AEM.03863-15. PubMed DOI PMC
Ehlbeck J., Schnabel U., Polak M., Winter J., von Woedtke T., Brandenburg R., von dem Hagen T., Weltmann K.D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 2011;44:013002. doi: 10.1088/0022-3727/44/1/013002. DOI
Khun J., Scholtz V., Hozák P., Fitl P.E., Julák J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI
Laroussi M. Low-Temperature Plasmas for Medicine? IEEE Trans. Plasma Sci. 2009;37:714–726. doi: 10.1109/TPS.2009.2017267. DOI
Laroussi M., Akan T. Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Process. Polym. 2007;4:777–788. doi: 10.1002/ppap.200700066. DOI
Laroussi M., Lu X., Keidar M. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 2017;122:020901. doi: 10.1063/1.4993710. DOI
Šimončicová J., Kryštofová S., Medvecká V., Ďurišová K., Kaliňáková B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019;103:5117–5129. doi: 10.1007/s00253-019-09877-x. PubMed DOI
Yousfi M., Merbahi N., Sarrette J.-P., Eichwald O., Ricard A., Gardou J.-P., Ducasse O., Benhenni M. Non Thermal Plasma Sources of Production of Active Species for Biomedical Uses: Analyses, Optimization and Prospect. In: Fazel-Rezai R., editor. Biomedical Engineering—Frontiers and Challenges. IntechOpen; London, UK: 2011. pp. 99–124.
Bourke P., Ziuzina D., Han L., Cullen P.J., Gilmore B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017;123:308–324. doi: 10.1111/jam.13429. PubMed DOI
Julák J., Scholtz V. The potential for use of non-thermal plasma in microbiology and medicine. Epidemiol. Mikrobiol. Imunol. 2020;69:29–37. PubMed
Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B At. Spectrosc. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI
Weltmann K.D., von Woedtke T. Plasma medicine—Current state of research and medical application. Plasma Phys. Control. Fusion. 2016;59:014031. doi: 10.1088/0741-3335/59/1/014031. DOI
Woedtke T.V., Emmert S., Metelmann H.-R., Rupf S., Weltmann K.-D. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Phys. Plasmas. 2020;27:070601. doi: 10.1063/5.0008093. DOI
Metelmann H.-R., von Woedtke T., Weltmann K.-D., editors. Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application. Springer International Publishing; Cham, Switzerland: 2018. p. 526.
Gherardi M., Tonini R., Colombo V. Plasma in Dentistry: Brief History and Current Status. Trends Biotechnol. 2017;36:583–585. doi: 10.1016/j.tibtech.2017.06.009. PubMed DOI
Gweon B., Kim K., Choe W., Shin J.H. Therapeutic Uses of Atmospheric Pressure Plasma: Cancer and Wound. In: Jo H., Jun H.-W., Shin J., Lee S., editors. Biomedical Engineering: Frontier Research and Converging Technologies. Springer International Publishing; Cham, Switzerland: 2016. pp. 357–385.
Keidar M., Yan D., Beilis I.I., Trink B., Sherman J.H. Plasmas for Treating Cancer: Opportunities for Adaptive and Self-Adaptive Approaches. Trends Biotechnol. 2018;36:586–593. doi: 10.1016/j.tibtech.2017.06.013. PubMed DOI
Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI
Kelly S., Turner M. Atomic oxygen patterning from a biomedical needle-plasma source. J. Appl. Phys. 2013;114:123301. doi: 10.1063/1.4821241. DOI
Sysolyatina E., Mukhachev A., Yurova M., Grushin M., Karalnik V., Petryakov A., Trushkin N., Ermolaeva S., Akishev Y. Role of the Charged Particles in Bacteria Inactivation by Plasma of a Positive and Negative Corona in Ambient Air. Plasma Process. Polym. 2014;11:315–334. doi: 10.1002/ppap.201300041. DOI
Liu D.X., Liu Z.C., Chen C., Yang A.J., Li D., Rong M.Z., Chen H.L., Kong M.G. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737. PubMed DOI PMC
Al-sharify Z.T., Alsharify T.A., Al-Obaidy B., Al-Azawi A. Investigative Study on the Interaction and Applications of Plasma Activated Water(PAW) IOP Conf. Ser. Mater. Sci. Eng. 2020;870:012042. doi: 10.1088/1757-899X/870/1/012042. DOI
Julák J., Hujacová A., Scholtz V., Khun J., Holada K. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 2018;44:125–136. doi: 10.1134/S1063780X18010075. DOI
Zhou R., Zhou R., Wang P., Xian Y., Mai-Prochnow A., Lu X., Cullen P.J., Ostrikov K., Bazaka K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020;53:303001. doi: 10.1088/1361-6463/ab81cf. DOI
Terrier O., Essere B., Yver M., Barthélémy M., Bouscambert-Duchamp M., Kurtz P., VanMechelen D., Morfin F., Billaud G., Ferraris O., et al. Cold oxygen plasma technology efficiency against different airborne respiratory viruses. J. Clin. Virol. 2009;45:119–124. doi: 10.1016/j.jcv.2009.03.017. PubMed DOI
Xia T., Kleinheksel A., Lee E.M., Qiao Z., Wigginton K.R., Clack H.L. Inactivation of airborne viruses using a packed bed non-thermal plasma reactor. J. Phys. D Appl. Phys. 2019;52:255201. doi: 10.1088/1361-6463/ab1466. PubMed DOI PMC
Aman Mohammadi M., Ahangari H., Zabihzadeh Khajavi M., Yousefi M., Scholtz V., Hosseini S.M. Inactivation of viruses using nonthermal plasma in viral suspensions and foodstuff: A short review of recent studies. J. Food Saf. 2021:e12919. doi: 10.1111/jfs.12919. DOI
Julak J., Scholtz V., Vaňková E. Medically important biofilms and non-thermal plasma. World J. Microbiol. Biotechnol. 2018;34:1–15. doi: 10.1007/s11274-018-2560-2. PubMed DOI
Misra N.N., Yadav B., Roopesh M.S., Jo C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr. Rev. Food Sci. Food Saf. 2019;18:106–120. doi: 10.1111/1541-4337.12398. PubMed DOI
Julák J., Soušková H., Scholtz V., Kvasničková E., Savická D., Kříha V. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiol. 2018;63:63–68. doi: 10.1007/s12223-017-0535-6. PubMed DOI
Paldrychová M., Vaňková E., Scholtz V., Julák J., Sembolová E., Matátková O., Masák J. Effect of non-thermal plasma on AHL-dependent QS systems and biofilm formation in Pseudomonas aeruginosa: Difference between non-hospital and clinical isolates. AIP Adv. 2019;9:055117. doi: 10.1063/1.5090451. DOI
Hayes J., Kirf D., Garvey M., Rowan N. Disinfection and toxicological assessments of pulsed UV and pulsed-plasma gas-discharge treated-water containing the waterborne protozoan enteroparasite Cryptosporidium parvum. J. Microbiol. Methods. 2013;94:325–337. doi: 10.1016/j.mimet.2013.07.012. PubMed DOI
Rowan N. Defining Established and Emerging Microbial Risks in the Aquatic Environment: Current Knowledge, Implications, and Outlooks. Int. J. Microbiol. 2011;2011:462832. doi: 10.1155/2011/462832. PubMed DOI PMC
Wang X.-Q., Wang F.-P., Chen W., Huang J., Bazaka K., Ostrikov K. Non-equilibrium plasma prevention of Schistosoma japonicum transmission. Sci. Rep. 2016;6:35353. doi: 10.1038/srep35353. PubMed DOI PMC
Hejzlarová S., Chanová M., Khun J., Julák J., Scholtz V. Inactivation of Schistosoma Using Low-Temperature Plasma. Microorganisms. 2021;9:32. doi: 10.3390/microorganisms9010032. PubMed DOI PMC
Cerva L. Some further characteristics of the growth of Naegleria fowleri and N. gruberi in axenic culture. Folia Parasitol. 1978;25:1–8. PubMed
Booton G.C., Kelly D.J., Chu Y.W., Seal D.V., Houang E., Lam D.S., Byers T.J., Fuerst P.A. 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. J. Clin. Microbiol. 2002;40:1621–1625. doi: 10.1128/JCM.40.5.1621-1625.2002. PubMed DOI PMC
De Jonckheere J.F. Growth characteristics, cytopathic effect in cell culture, and virulence in mice of 36 type strains belonging to 19 different Acanthamoeba spp. Appl. Environ. Microbiol. 1980;39:681–685. doi: 10.1128/aem.39.4.681-685.1980. PubMed DOI PMC
Johnston S.P., Sriram R., Qvarnstrom Y., Roy S., Verani J., Yoder J., Lorick S., Roberts J., Beach M.J., Visvesvara G. Resistance of Acanthamoeba cysts to disinfection in multiple contact lens solutions. J. Clin. Microbiol. 2009;47:2040–2045. doi: 10.1128/JCM.00575-09. PubMed DOI PMC
Scholtz V., Julák J., Kříha V. The Microbicidal Effect of Low-Temperature Plasma Generated by Corona Discharge: Comparison of Various Microorganisms on an Agar Surface or in Aqueous Suspension. Plasma Process. Polym. 2010;7:237–243. doi: 10.1002/ppap.200900072. DOI
Soušková H., Scholtz V., Julák J., Kommová L., Savická D., Pazlarová J. The survival of micromycetes and yeasts under the low-temperature plasma generated in electrical discharge. Folia Microbiol. 2011;56:77–79. doi: 10.1007/s12223-011-0005-5. PubMed DOI
Julák J., Scholtz V., Kotúčová S., Janoušková O. The persistent microbicidal effect in water exposed to the corona discharge. Phys. Med. 2012;28:230–239. doi: 10.1016/j.ejmp.2011.08.001. PubMed DOI
Scholtz V., Kommová L., Julák J. The Influence of Parameters of Stabilized Corona Discharge on its Microbicidal Effect. Acta Phys. Pol. A. 2011;119:803–806. doi: 10.12693/APhysPolA.119.803. DOI
Hughes R., Kilvington S. Comparison of hydrogen peroxide contact lens disinfection systems and solutions against Acanthamoeba polyphaga. Antimicrob. Agents Chemother. 2001;45:2038–2043. doi: 10.1128/AAC.45.7.2038-2043.2001. PubMed DOI PMC
Hughes R., Andrew P.W., Kilvington S. Enhanced killing of Acanthamoeba cysts with a plant peroxidase-hydrogen peroxide-halide antimicrobial system. Appl. Environ. Microbiol. 2003;69:2563–2567. doi: 10.1128/AEM.69.5.2563-2567.2003. PubMed DOI PMC
Kilvington S., Winterton L. Fibrous Catalyst-Enhanced Acanthamoeba Disinfection by Hydrogen Peroxide. Opt. Vis. Sci. 2017;94:1022–1028. doi: 10.1097/OPX.0000000000001126. PubMed DOI PMC