Inactivation of Schistosoma Using Low-Temperature Plasma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33374135
PubMed Central
PMC7823541
DOI
10.3390/microorganisms9010032
PII: microorganisms9010032
Knihovny.cz E-zdroje
- Klíčová slova
- decontamination, non-thermal plasma,
- Publikační typ
- časopisecké články MeSH
The inactivation of Schistosoma mansoni cercariae and miracidia was achieved by exposure to plasma produced by the positive, negative, and axial negative corona discharges. The positive discharge appeared as the most effective, causing the death of cercariae and miracidia within 2-3 min of exposure. The negative discharge was less effective, and the axial discharge was ineffective. The water pre-activated (PAW) by the discharges showed similar efficiency, with the exception of the significantly effective PAW activated with axial discharge. These facts, together with the observation of various reactions among plasma-damaged schistosomes, suggest that the mechanisms of inactivation by different types of discharges are different.
Zobrazit více v PubMed
Bisoffi Z., Buonfrate D., Beltrame A. Schistosomiasis transmission in Europe. Lancet Infect. Dis. 2016;16:878–880. doi: 10.1016/S1473-3099(16)30061-5. PubMed DOI
Boissier J., Grech-Angelini S., Webster B.L., Allienne J.-F., Huyse T., Mas-Coma S., Toulza E., Barré-Cardi H., Rollinson D., Kincaid-Smith J., et al. Outbreak of urogenital schistosomiasis in Corsica (France): An epidemiological case study. Lancet Infect. Dis. 2016;16:971–979. doi: 10.1016/S1473-3099(16)00175-4. PubMed DOI
Nelwan M.L. Schistosomiasis: Life Cycle, Diagnosis, and Control. Curr. Ther. Res. 2019;91:5–9. doi: 10.1016/j.curtheres.2019.06.001. PubMed DOI PMC
Fedail S.S. Digestive Diseases in Sub-Saharan Africa. Elsevier; Amsterdam, The Netherlands: 2019. Intestinal Schistosomiasis in Africa; pp. 185–194.
Lewis F. Schistosomiasis. In: Coligan J.E., Bierer B.E., Margulies D.H., Shevach E.M., Strober W., editors. Current Protocols in Immunology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2001. p. im1901s28.
Dziwornu G.A., Attram H.D., Gachuhi S., Chibale K. Chemotherapy for human schistosomiasis: How far have we come? What’s new? Where do we go from here? RSC Med. Chem. 2020;11:455–490. doi: 10.1039/D0MD00062K. PubMed DOI PMC
Leiper R.T., Atkinson E.L. Observations on the Spread of Asiatic Schistosomiasis. BMJ. 1915;1:201. doi: 10.1136/bmj.1.2822.201. PubMed DOI PMC
Braun L., Grimes J.E.T., Templeton M.R. The effectiveness of water treatment processes against schistosome cercariae: A systematic review. PLoS Negl. Trop. Dis. 2018;12:e0006364. doi: 10.1371/journal.pntd.0006364. PubMed DOI PMC
Asch H.L. Effect of selected chemical agents on longevity and infectivity of Schistosoma mansoni cercariae. Exp. Parasitol. 1975;38:208–216. doi: 10.1016/0014-4894(75)90023-5. PubMed DOI
Kawata K. Slow Sand Filtration for Cercarial Control in North Cameroon Village Water Supply. Water Sci. Technol. 1982;14:491–498. doi: 10.2166/wst.1982.0121. DOI
Braun L., Sylivester Y.D., Zerefa M.D., Maru M., Allan F., Zewge F., Emery A.M., Kinung’Hi S., Templeton M.R. Chlorination of Schistosoma mansoni cercariae. PLoS Negl. Trop. Dis. 2020;14:e0008665. doi: 10.1371/journal.pntd.0008665. PubMed DOI PMC
Ruppel A., Shi Y.E., Moloney N.A. Schistosoma mansoni and S. japonicum: Comparison of levels of ultraviolet irradiation for vaccination of mice with cercariae. Parasitology. 1990;101:23–26. doi: 10.1017/S0031182000079701. PubMed DOI
Ehlbeck J., Schnabel U., Polak M., Winter J., Von Woedtke T., Brandenburg R., Hagen T.V.D., Weltmann K.-D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 2011;44 doi: 10.1088/0022-3727/44/1/013002. DOI
Khun J., Scholtz V., Hozák P., Fitl P., Julák J. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. Plasma Sources Sci. Technol. 2018;27:065002. doi: 10.1088/1361-6595/aabdd0. DOI
Laroussi M. Plasma Medicine: A Brief Introduction. Plasma. 2018;1:47–60. doi: 10.3390/plasma1010005. DOI
Laroussi M. Low-Temperature Plasmas for Medicine? IEEE Trans. Plasma Sci. 2009;37:714–725. doi: 10.1109/TPS.2009.2017267. DOI
Laroussi M., Lu X., Keidar M. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J. Appl. Phys. 2017;122:020901. doi: 10.1063/1.4993710. DOI
Laroussi M., Akan T. Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Process. Polym. 2007;4:777–788. doi: 10.1002/ppap.200700066. DOI
Šimončicová J., Kryštofová S., Medvecká V., Ďurišová K., Kaliňáková B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019;103:5117–5129. doi: 10.1007/s00253-019-09877-x. PubMed DOI
Yousfi M., Merbahi N., Sarrette J.P., Eichwald O., Ricard A., Gardou J., Ducasse O., Benhenni M. Non Thermal Plasma Sources of Production of Active Species for Biomedical Uses: Analyses, Optimization and Prospect. In: Fazel R., editor. Biomedical Engineering—Frontiers and Challenges. IntechOpen; London, UK: 2011.
Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B At. Spectrosc. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI
Bourke P., Ziuzina D., Han L., Cullen P., Gilmore B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017;123:308–324. doi: 10.1111/jam.13429. PubMed DOI
Zhao Y., Patange A., Sunabcd D.-W., Tiwari B.K. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr. Rev. Food Sci. Food Saf. 2020;19:3951–3979. doi: 10.1111/1541-4337.12644. PubMed DOI
Julák J., Scholtz V., Vaňková E. Medically important biofilms and non-thermal plasma. World J. Microbiol. Biotechnol. 2018;34:178. doi: 10.1007/s11274-018-2560-2. PubMed DOI
Metelmann H.-R., von Woedtke T., Weltmann K.-D. Plasmamedizin. Springer; Cham, Switzerland: 2018.
Gweon B., Kim K., Choe W., Shin J.H. Therapeutic Uses of Atmospheric Pressure Plasma: Cancer and Wound. In: Jo H., Jun H.-W., Shin J., Lee S., editors. Biomedical Engineering: Frontier Research and Converging Technologies. Volume 9. Springer International Publishing; Cham, Switzerland: 2016. pp. 357–385.
Keidar M., Yan D., Beilis I.I., Trink B., Sherman J.H. Plasmas for Treating Cancer: Opportunities for Adaptive and Self-Adaptive Approaches. Trends Biotechnol. 2018;36:586–593. doi: 10.1016/j.tibtech.2017.06.013. PubMed DOI
Julák J., Hujacová A., Scholtz V., Khun J., Holada K. Contribution to the Chemistry of Plasma-Activated Water. Plasma Phys. Rep. 2018;44:125–136. doi: 10.1134/S1063780X18010075. DOI
Zhou R., Zhou R., Wang P., Xian Y., Mai-Prochnow A., Lu X., Cullen P.J., Ostrikov K., Bazaka K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020;53:303001. doi: 10.1088/1361-6463/ab81cf. DOI
Al-Sharify Z.T., Al-Sharify T.A., Al-Obaidy B.W., Al-Azawi A.M. Investigative Study on the Interaction and Applications of Plasma Activated Water (PAW) IOP Conf. Ser. Mater. Sci. Eng. 2020;870:012042. doi: 10.1088/1757-899X/870/1/012042. DOI
Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012;45:263001. doi: 10.1088/0022-3727/45/26/263001. DOI
Kelly S., Turner M.M. Atomic oxygen patterning from a biomedical needle-plasma source. J. Appl. Phys. 2013;114:123301. doi: 10.1063/1.4821241. DOI
Liu D.X., Liu Z.C., Chen C., Yang A.J., Li D., Rong M.Z., Chen H.L., Kong M.G. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016;6:23737. doi: 10.1038/srep23737. PubMed DOI PMC
Lunov O., Zablotskii V., Churpita O., Jäger A., Polívka L., Syková E., Dejneka A., Kubinová Š. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials. 2016;82:71–83. doi: 10.1016/j.biomaterials.2015.12.027. PubMed DOI
Julák J., Soušková H., Scholtz V., Kvasničková E., Savická D., Kříha V. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiol. 2017;63:63–68. doi: 10.1007/s12223-017-0535-6. PubMed DOI
Misra N.N., Yadav B., Roopesh M., Jo C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications: Cold plasma for effective fungal…. Compr. Rev. Food Sci. Food Saf. 2018;18:106–120. doi: 10.1111/1541-4337.12398. PubMed DOI
Hayes J., Kirf D., Garvey M., Rowan N.J. Disinfection and toxicological assessments of pulsed UV and pulsed-plasma gas-discharge treated-water containing the waterborne protozoan enteroparasite Cryptosporidium parvum. J. Microbiol. Methods. 2013;94:325–337. doi: 10.1016/j.mimet.2013.07.012. PubMed DOI
Rowan N. Defining Established and Emerging Microbial Risks in the Aquatic Environment: Current Knowledge, Implications, and Outlooks. Int. J. Microbiol. 2011;2011:1–15. doi: 10.1155/2011/462832. PubMed DOI PMC
Heaselgrave W., Shama G., Andrew P.W., Kong M.G. Inactivation of Acanthamoeba spp. and Other Ocular Pathogens by Application of Cold Atmospheric Gas Plasma. Appl. Environ. Microbiol. 2016;82:3143–3148. doi: 10.1128/AEM.03863-15. PubMed DOI PMC
Wang X.-Q., Wang F.-P., Chen W., Huang J., Bazaka K., Ostrikov K. Non-equilibrium plasma prevention of Schistosoma japonicum transmission. Sci. Rep. 2016;6:35353. doi: 10.1038/srep35353. PubMed DOI PMC
Hozák P., Scholtz V., Khun J., Mertová D., Vaňková E., Julák J. Further contribution to the chemistry of plasma-activated water: Influence on bacteria in planktonic and biofilm forms. Plasma Phys. Rep. 2018;44:799–804. doi: 10.1134/S1063780X18090040. DOI