The Instrumental Activities of Daily Living in Parkinson's Disease Patients Treated by Subthalamic Deep Brain Stimulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35783142
PubMed Central
PMC9247575
DOI
10.3389/fnagi.2022.886491
Knihovny.cz E-zdroje
- Klíčová slova
- activities of daily living, cognition, deep brain stimulation, everyday abilities, subthalamic nucleus,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Everyday functioning and instrumental activities of daily living (IADL) play a vital role in preserving the quality of life in patients with Parkinson's disease (PD) after deep brain stimulation of the subthalamic nucleus (STN-DBS). OBJECTIVE: The main goal of the current study was to examine IADL change in pre-and post-surgery of the STN-DBS. We also analyzed the influence of the levodopa equivalent daily dose (LEDD) and global cognitive performance (Dementia Rating Scale; DRS-2) as covariates in relation to IADL. METHODS: Thirty-two non-demented PD patients were administered before and after STN-DBS neurosurgery the Penn Parkinson's Daily Activities Questionnaire (PDAQ; self-report), the DRS-2 and Beck Depression Inventory (BDI-II) to assess IADL change, global cognition, and depression. RESULTS: We found a positive effect of STN-DBS on IADL in the post-surgery phase. Moreover, lower global cognition and lower LEDD are predictive of lower IADL in both pre-surgery and post-surgery examinations. SUMMARY/CONCLUSION: STN-DBS in PD is a safe method for improvement of everyday functioning and IADL. In the post-surgery phase, we show a relation of IADL to the severity of cognitive impairment in PD and to LEDD.
Zobrazit více v PubMed
Altieri M., Garramone F., Santangelo G. (2021). Functional autonomy in dementia of the Alzheimer’s type, mild cognitive impairment, and healthy aging: a meta-analysis. Neurol. Sci. 42 1773–1783. 10.1007/s10072-021-05142-0 PubMed DOI
Beck A. T., Steer R. A., Brown G. (1996). Manual For The Beck Depression Inventory-II. San Antonio, TX: Pearson.
Becker S., Bäumer A., Maetzler W., Nussbaum S., Timmers M., Van Nueten L., et al. (2020). Assessment of cognitive-driven activity of daily living impairment in non-demented Parkinson’s patients. J. Neuropsychol. 14 69–84. 10.1111/jnp.12173 PubMed DOI
Becker S., Pauly C., Lawton M., Hipp G., Bowring F., Sulzer P., et al. (2022). Quantifying activities of daily living impairment in Parkinson’s disease using the Functional Activities Questionnaire. Neurol. Sci. 43 1047–1054. 10.1007/s10072-021-05365-1 PubMed DOI PMC
Bezdicek O., Michalec J., Nikolai T., Havrankova P., Roth J., Jech R., et al. (2015). Clinical validity of the Mattis Dementia Rating Scale in differentiating mild cognitive impairment in Parkinson’s disease and normative data. Dement. Geriatr. Cogn. Disord. 39 303–311. 10.1159/000375365 PubMed DOI
Bezdicek O., Nikolai T., Michalec J., Růžička F., Havránková P., Roth J., et al. (2016). The diagnostic accuracy of parkinson’s disease mild cognitive impairment battery using the movement disorder society task force criteria. Mov. Disord. Clin. Pract. 4 237–244. 10.1002/mdc3.12391 PubMed DOI PMC
Bezdicek O., Sulc Z., Nikolai T., Stepankova H., Kopecek M., Jech R., et al. (2017). A parsimonious scoring and normative calculator for the Parkinson’s disease mild cognitive impairment battery. Clin. Neuropsychol. 31 1231–1247. 10.1080/13854046.2017.1293161 PubMed DOI
Bratsos S., Karponis D., Saleh S. N. (2018). Efficacy and Safety of Deep Brain Stimulation in the Treatment of Parkinson’s Disease: a systematic review and meta-analysis of randomized controlled trials. Cureus 10:e3474. 10.7759/cureus.3474 PubMed DOI PMC
Brennan L., Siderowf A., Rubright J. D., Rick J., Dahodwala N., Duda J. E., et al. (2016a). Development and initial testing of the penn Parkinson’s daily activities questionnaire. Mov Disord 31 126–134. 10.1002/mds.26339 PubMed DOI PMC
Brennan L., Siderowf A., Rubright J. D., Rick J., Dahodwala N., Duda J. E., et al. (2016b). The penn Parkinson’s daily activities questionnaire-15: psychometric properties of a brief assessment of cognitive instrumental activities of daily living in Parkinson’s disease. Parkinsonism Relat. Disord. 25 21–26. 10.1016/j.parkreldis.2016.02.020 PubMed DOI PMC
Bronnick K., Ehrt U., Emre M., De Deyn P. P., Wesnes K., Tekin S., et al. (2006). Attentional deficits affect activities of daily living in dementia-associated with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 77 1136–1142. 10.1136/jnnp.2006.093146 PubMed DOI PMC
Bronstein J. M., Tagliati M., Alterman R. L., Lozano A. M., Volkmann J., Stefani A., et al. (2011). Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 68:165. 10.1001/archneurol.2010.260 PubMed DOI PMC
Bürkner P.-C., Vuorre M. (2019). Ordinal regression models in psychology: a tutorial. Adv. Methods Pract. Psychol. Sci. 2 77–101.
Cahn D. A., Sullivan E. V., Shear P. K., Pfefferbaum A., Heit G., Silverberg G. (1998). Differential contributions of cognitive and motor component processes to physical and instrumental activities of daily living in Parkinson’s disease. Arch. Clin. Neuropsychol. 13 575–583. PubMed
Cholerton B., Poston K. L., Tian L., Quinn J. F., Chung K. A., Hiller A. L., et al. (2020). Participant and study partner reported impact of cognition on functional activities in parkinson’s disease. Mov. Disord. Clin. Pract. 7 61–69. 10.1002/mdc3.12870 PubMed DOI PMC
Christ J. B., Fruhmann Berger M., Riedl E., Prakash D., Csoti I., Molt W., et al. (2013). How precise are activities of daily living scales for the diagnosis of Parkinson’s disease dementia? A pilot study. Parkinsonism Relat. Disord. 19 371–374. 10.1016/j.parkreldis.2012.11.004 PubMed DOI
Ciharova M., Cígler H., Dostálová V., Šivicová G., Bezdicek O. (2020). Beck depression inventory, second edition, Czech version: demographic correlates, factor structure and comparison with foreign data. Int. J. Psychiatry Clin. Pract. 24 371–379. 10.1080/13651501.2020.1775854 PubMed DOI
Deuschl G., Schade-Brittinger C., Krack P., Volkmann J., Schäfer H., Bötzel K., et al. (2006). A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355 896–908. 10.1056/NEJMoa060281 PubMed DOI
Emre M., Aarsland D., Brown R., Burn D. J., Duyckaerts C., Mizuno Y., et al. (2007). Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov. Disord. 22 1689–1707; quiz1837. 10.1002/mds.21507 PubMed DOI
Fellows R. P., Schmitter-Edgecombe M. (2019). Multimethod assessment of everyday functioning and memory abilities in Parkinson’s disease. Neuropsychology 33 169–177. 10.1037/neu0000505 PubMed DOI
Foley J. A., Foltynie T., Limousin P., Cipolotti L. (2018). Standardised neuropsychological assessment for the selection of patients undergoing DBS for Parkinson’s Disease. Parkinsons Dis. 2018:4328371. 10.1155/2018/4328371 PubMed DOI PMC
Foster E. R. (2014). Instrumental activities of daily living performance among people with Parkinson’s disease without dementia. Am. J. Occup. Ther. 68 353–362. 10.5014/ajot.2014.010330 PubMed DOI PMC
Foster E. R., Doty T. (2021). Cognitive correlates of instrumental activities of daily living performance in parkinson disease without dementia. Arch. Rehabil. Res. Clin. Transl. 3:100138. 10.1016/j.arrct.2021.100138 PubMed DOI PMC
Giovannetti T., Britnell P., Brennan L., Siderowf A., Grossman M., Libon D. J., et al. (2012). Everyday action impairment in Parkinson’s disease dementia. J. Int. Neuropsychol. Soc. 18 787–798. 10.1017/S135561771200046X PubMed DOI PMC
Gorecka-Mazur A., Furgala A., Krygowska-Wajs A., Pietraszko W., Kwinta B., Gil K. (2019). Activities of daily living and their relationship to health-related quality of life in patients with parkinson disease after subthalamic nucleus deep brain stimulation. World Neurosurg. 125 e552–e562. 10.1016/j.wneu.2019.01.132 PubMed DOI
Hariz G.-M., Forsgren L. (2011). Activities of daily living and quality of life in persons with newly diagnosed Parkinson’s disease according to subtype of disease, and in comparison to healthy controls. Acta Neurol. Scand. 123 20–27. 10.1111/j.1600-0404.2010.01344.x PubMed DOI
Hentz J. G., Mehta S. H., Shill H. A., Driver-Dunckley E., Beach T. G., Adler C. H. (2015). Simplified conversion method for unified Parkinson’s disease rating scale motor examinations. Mov. Disord. 30 1967–1970. 10.1002/mds.26435 PubMed DOI PMC
Hoogland J., Boel J. A., De Bie R. M. A., Geskus R. B., Schmand B. A., Dalrymple-Alford J. C., et al. (2017). Mild cognitive impairment as a risk factor for Parkinson’s disease dementia. Mov. Disord. 32 1056–1065. 10.1002/mds.27002 PubMed DOI
Hughes A. J., Daniel S. E., Kilford L., Lees A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55 181–184. 10.1136/jnnp.55.3.181 PubMed DOI PMC
Jech R., Mueller K., Urgošík D., Sieger T., Holiga Š, Růžička F., et al. (2012). The Subthalamic microlesion story in Parkinson’s disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI. PLoS One 7:e49056. 10.1371/journal.pone.0049056 PubMed DOI PMC
Jech R., Ruzicka E., Urgosik D., Serranova T., Volfova M., Novakova O., et al. (2006). Deep brain stimulation of the subthalamic nucleus affects resting EEG and visual evoked potentials in Parkinson’s disease. Clin. Neurophysiol. 117 1017–1028. 10.1016/j.clinph.2006.01.009 PubMed DOI
Jiang J.-L., Chen S.-Y., Hsieh T.-C., Lee C.-W., Lin S.-H., Tsai S.-T. (2015). Different effectiveness of subthalamic deep brain stimulation in Parkinson’s disease: a comparative cohort study at 1 year and 5 years. J. Formos. Med. Assoc. 114 835–841. 10.1016/j.jfma.2013.09.006 PubMed DOI
Jurica P. J., Leitten C. L., Mattis S. (2001). Dementia Rating Scale-2 (DRS-2) Professional Manual. Lutz, FL: Psychological Assessment Resources.
Kleiner-Fisman G., Stern M. B., Fisman D. N. (2010). Health-related quality of life in parkinson disease: correlation between health utilities index iii and unified parkinson’s disease rating scale (UPDRS) in U.S. male veterans. Health Qual. Life Outcomes 8:91. 10.1186/1477-7525-8-91 PubMed DOI PMC
Kubu C. S. (2018). The role of a neuropsychologist on a movement disorders deep brain stimulation team. Arch. Clin. Neuropsychol. 33 365–374. 10.1093/arclin/acx130 PubMed DOI PMC
Lawson R. A., Williams-Gray C. H., Camacho M., Duncan G. W., Khoo T. K., Breen D. P., et al. (2021). Which neuropsychological tests? Predicting cognitive decline and dementia in Parkinson’s Disease in the ICICLE-PD cohort. J. Parkinsons Dis. 11 1297–1308. 10.3233/JPD-212581 PubMed DOI PMC
Liddell T. M., Kruschke J. K. (2018). Analyzing ordinal data with metric models: what could possibly go wrong? J. Exp. Soc. Psychol. 79 328–348.
Litvan I., Goldman J. G., Tröster A. I., Schmand B. A., Weintraub D., Petersen R. C., et al. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov. Disord. 27 349–356. 10.1002/mds.24893 PubMed DOI PMC
Martin R. C., Triebel K. L., Kennedy R. E., Nicholas A. P., Watts R. L., Stover N. P., et al. (2013). Impaired financial abilities in Parkinson’s disease patients with mild cognitive impairment and dementia. Parkinsonism Relat. Disord. 19 986–990. 10.1016/j.parkreldis.2013.06.017 PubMed DOI PMC
McElreath R. (2020). Statistical Rethinking: A Bayesian Course With Examples in R and Stan. London: Chapman and Hall/CRC.
Molinuevo J. L., Valldeoriola F., Tolosa E., Rumià J., Valls-Solé J., Roldán H., et al. (2000). Levodopa withdrawal after bilateral subthalamic nucleus stimulation in advanced parkinson disease. Arch. Neurol. 57 983–988. 10.1001/archneur.57.7.983 PubMed DOI
Moro E., Lang A. E. (2006). Criteria for deep-brain stimulation in Parkinson’s disease: review and analysis. Exp. Rev. Neurother. 6 1695–1705. 10.1586/14737175.6.11.1695 PubMed DOI
Mueller K., Urgošík D., Ballarini T., Holiga Š, Möller H. E., Růžička F., et al. (2020). Differential effects of deep brain stimulation and levodopa on brain activity in Parkinson’s disease. Brain Commun. 2:fcaa005. 10.1093/braincomms/fcaa005 PubMed DOI PMC
Odekerken V. J. J., Van Laar T., Staal M. J., Mosch A., Hoffmann C. F. E., Nijssen P. C. G., et al. (2013). Subthalamic nucleus versus Globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 12 37–44. 10.1016/S1474-4422(12)70264-8 PubMed DOI
Okun M. S. (2014). Deep-brain stimulation–entering the era of human neural-network modulation. N. Engl. J. Med. 371 1369–1373. 10.1056/NEJMp1408779 PubMed DOI
Pearl J. (2009). Causality: Models, Reasoning, and Inference. Cambridge: Cambridge University Press.
Perlmutter J. S., Mink J. W. (2006). Deep brain stimulation. Ann. Rev. Neurosci. 29 229–257. PubMed PMC
Pirogovsky E., Martinez-Hannon M., Schiehser D. M., Lessig S. L., Song D. D., Litvan I., et al. (2013). Predictors of performance-based measures of instrumental activities of daily living in nondemented patients with Parkinson’s disease. J. Clin. Exp. Neuropsychol. 35 926–933. 10.1080/13803395.2013.838940 PubMed DOI
Pirogovsky E., Schiehser D. M., Obtera K. M., Burke M. M., Lessig S. L., Song D. D., et al. (2014). Instrumental activities of daily living are impaired in Parkinson’s disease patients with mild cognitive impairment. Neuropsychology 28 229–237. 10.1037/neu0000045 PubMed DOI
R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Rosenthal E., Brennan L., Xie S., Hurtig H., Milber J., Weintraub D., et al. (2010). Association between cognition and function in patients with Parkinson disease with and without dementia. Mov. Disord. 25 1170–1176. 10.1002/mds.23073 PubMed DOI PMC
Russmann H., Ghika J., Combrement P., Villemure J. G., Bogousslavsky J., Burkhard P. R., et al. (2004). L-Dopa-induced dyskinesia improvement after STN-DBS depends upon medication reduction. Neurology 63 153–155. 10.1212/01.wnl.0000131910.72829.9d PubMed DOI
Schmitter-Edgecombe M., McAlister C., Greeley D. (2021). A comparison of functional abilities in individuals with mild cognitive impairment and Parkinson’s disease with mild cognitive impairment using multiple assessment methods. J. Int. Neuropsychol. Soc. 1–12. 10.1017/S1355617721001077 [Epub ahead of print]. PubMed DOI PMC
Shulman L. M., Armstrong M., Ellis T., Gruber-Baldini A., Horak F., Nieuwboer A., et al. (2016). Disability rating scales in parkinson’s disease: critique and recommendations. Mov. Disord. 31 1455–1465. 10.1002/mds.26649 PubMed DOI
Soh S.-E., Mcginley J. L., Watts J. J., Iansek R., Murphy A. T., Menz H. B., et al. (2013). Determinants of health-related quality of life in people with Parkinson’s disease: a path analysis. Qual. Life Res. 22 1543–1553. 10.1007/s11136-012-0289-1 PubMed DOI
Stan Development Team (2021). Stan Modeling Language User’s Guide and Reference Manual (Version 2.21.0). Available online at: http://mc-stan.org/
Sulzer P., Liebig L., Csoti I., Graessel E., Wurster I., Berg D., et al. (2020). A time-efficient screening tool for activities of daily living functions in Parkinson’s disease dementia. J. Clin. Exp. Neuropsychol. 42 867–879. 10.1080/13803395.2020.1825634 PubMed DOI
Tödt I., Al-Fatly B., Granert O., Kühn A. A., Krack P., Rau J., et al. (2022). The contribution of subthalamic nucleus deep brain stimulation to the improvement in motor functions and quality of life. Mov. Disord. 37 291–301. 10.1002/mds.28952 PubMed DOI
Tomlinson C. L., Stowe R., Patel S., Rick C., Gray R., Clarke C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 25 2649–2653. 10.1002/mds.23429 PubMed DOI
Urgosik D., Jech R., Ruzicka E., Ruzicka F. (2011). Deep brain stimulation in movement disorders: a prague-center experience. Cas Lek Cesk 150 223–228. PubMed
Young T. L., Granic A., Yu Chen T., Haley C. B., Edwards J. D. (2010). Everyday reasoning abilities in persons with Parkinson’s disease. Mov. Disord. 25 2756–2761. 10.1002/mds.23379 PubMed DOI PMC