Multi-centre classification of functional neurological disorders based on resting-state functional connectivity
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
35752061
PubMed Central
PMC9240866
DOI
10.1016/j.nicl.2022.103090
PII: S2213-1582(22)00155-3
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarker, Conversion disorder, Functional connectivity, Inter-scanner variability, Multi-site,
- MeSH
- konverzní poruchy * diagnostické zobrazování patofyziologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mozek * diagnostické zobrazování patofyziologie MeSH
- reprodukovatelnost výsledků MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
BACKGROUND: Patients suffering from functional neurological disorder (FND) experience disabling neurological symptoms not caused by an underlying classical neurological disease (such as stroke or multiple sclerosis). The diagnosis is made based on reliable positive clinical signs, but clinicians often require additional time- and cost consuming medical tests and examinations. Resting-state functional connectivity (RS FC) showed its potential as an imaging-based adjunctive biomarker to help distinguish patients from healthy controls and could represent a "rule-in" procedure to assist in the diagnostic process. However, the use of RS FC depends on its applicability in a multi-centre setting, which is particularly susceptible to inter-scanner variability. The aim of this study was to test the robustness of a classification approach based on RS FC in a multi-centre setting. METHODS: This study aimed to distinguish 86 FND patients from 86 healthy controls acquired in four different centres using a multivariate machine learning approach based on whole-brain resting-state functional connectivity. First, previously published results were replicated in each centre individually (intra-centre cross-validation) and its robustness across inter-scanner variability was assessed by pooling all the data (pooled cross-validation). Second, we evaluated the generalizability of the method by using data from each centre once as a test set, and the data from the remaining centres as a training set (inter-centre cross-validation). RESULTS: FND patients were successfully distinguished from healthy controls in the replication step (accuracy of 74%) as well as in each individual additional centre (accuracies of 73%, 71% and 70%). The pooled cross validation confirmed that the classifier was robust with an accuracy of 72%. The results survived post-hoc adjustment for anxiety, depression, psychotropic medication intake, and symptom severity. The most discriminant features involved the angular- and supramarginal gyri, sensorimotor cortex, cingular- and insular cortex, and hippocampal regions. The inter-centre validation step did not exceed chance level (accuracy below 50%). CONCLUSIONS: The results demonstrate the applicability of RS FC to correctly distinguish FND patients from healthy controls in different centres and its robustness against inter-scanner variability. In order to generalize its use across different centres and aim for clinical application, future studies should work towards optimization of acquisition parameters and include neurological and psychiatric control groups presenting with similar symptoms.
Department of Radiology Lausanne University Hospital and University of Lausanne Lausanne Switzerland
Zobrazit více v PubMed
Abdulkadir A., Mortamet B., Vemuri P., Jack C.R., Krueger G., Klöppel S. Effects of hardware heterogeneity on the performance of SVM Alzheimer’s disease classifier. Neuroimage. 2011;58(3):785–792. PubMed PMC
Abraham A., Milham M.P., Di Martino A., Craddock R.C., Samaras D., Thirion B., Varoquaux G. Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example. Neuroimage. 2017;147:736–745. doi: 10.1016/j.neuroimage.2016.10.045. PubMed DOI
Aléman-Gomez Y.-M.-G., Melie-Garcia L., Valdés-Hernandez P. Annu. Meet. Organ. Hum. Brain Mapping; Florence, Italy: 2006. IBASPM: toolbox for automatic parcellation of brain structures; p. 27.
American Psychiatric Association Diagnostic and statistical manual of mental disorders. American Psychiatric Association. 2013 doi: 10.1176/appi.books.9780890425596. DOI
Aybek S., Nicholson T.R., O’Daly O., Zelaya F., Kanaan R.A., David A.S., Park S. Emotion-motion interactions in conversion disorder: an fMRI study. PLoS One. 2015;10(4):e0123273. PubMed PMC
Aybek S., Nicholson T.R., Zelaya F., O’Daly O.G., Craig T.J., David A.S., Kanaan R.A., O’Daly O.G., Craig T.J., David A.S., Kanaan R.A. Neural correlates of recall of life events in conversion disorder. JAMA Psychiatry. 2014;71:52–60. doi: 10.1001/jamapsychiatry.2013.2842. PubMed DOI
Baek K., Doñamayor N., Morris L.S., Strelchuk D., Mitchell S., Mikheenko Y., Yeoh S.Y., Phillips W., Zandi M., Jenaway A., Walsh C., Voon V. Impaired awareness of motor intention in functional neurological disorder: implications for voluntary and functional movement. Psychol. Med. 2017;47:1624–1636. doi: 10.1017/S0033291717000071. PubMed DOI PMC
Beck A.T. An inventory for measuring depression. Arch. Gen. Psychiatry. 1961;4:561. doi: 10.1001/archpsyc.1961.01710120031004. PubMed DOI
Beck A.T., Epstein N., Brown G., Steer R.A. An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 1988;56:893–897. doi: 10.1037/0022-006X.56.6.893. PubMed DOI
Blakemore R.L., Sinanaj I., Galli S., Aybek S., Vuilleumier P. Aversive stimuli exacerbate defensive motor behaviour in motor conversion disorder. Neuropsychologia. 2016;93:229–241. doi: 10.1016/j.neuropsychologia.2016.11.005. PubMed DOI
Carson A., Lehn A. Epidemiology. Handb. Clin. Neurol. 2016:47–60. doi: 10.1016/B978-0-12-801772-2.00005-9. PubMed DOI
Castrillon, J.G., Ahmadi, A., Navab, N., Richiardi, J., 2015. Learning with multi-site fMRI graph data. Conf. Rec. - Asilomar Conf. Signals, Syst. Comput. 2015-April, 608–612. https://doi.org/10.1109/ACSSC.2014.7094518.
Chang C.-C., Lin C.-J. LIBSVM: a Library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011;2(3):1–27.
Chen A.A., Srinivasan D., Pomponio R., Fan Y., Nasrallah I.M., Resnick S.M., Beason-Held L.L., Davatzikos C., Satterthwaite T.D., Bassett D.S., Shinohara R.T., Shou H. Harmonizing functional connectivity reduces scanner effects in community detection. Neuroimage. 2022;256 doi: 10.1016/j.neuroimage.2022.119198. PubMed DOI PMC
Chen H.H., Duan X., Liu F., Lu F., Ma X., Zhang Y., Uddin L.Q., Chen H.H. Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—A multi-center study. Prog. Neuro-Psychopharmacology Biol. Psychiatry. 2016;64:1–9. doi: 10.1016/j.pnpbp.2015.06.014. PubMed DOI
Cojan Y., Waber L., Carruzzo A., Vuilleumier P. Motor inhibition in hysterical conversion paralysis. Neuroimage. 2009;47:1026–1037. doi: 10.1016/j.neuroimage.2009.05.023. PubMed DOI
Colombari M., Di Vico I.A., Turrina S., De Leo D., Tinazzi M. Medico-legal aspects of functional neurological disorders: time for an interdisciplinary dialogue. Neurol. Sci. 2021;42:3053–3055. doi: 10.1007/s10072-021-05162-w. PubMed DOI
Dansereau C., Benhajali Y., Risterucci C., Pich E.M., Orban P., Arnold D., Bellec P. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity. Neuroimage. 2017;149:220–232. doi: 10.1016/j.neuroimage.2017.01.072. PubMed DOI
Daum C., Gheorghita F., Spatola M., Stojanova V., Medlin F., Vingerhoets F., Berney A., Gholam-Rezaee M., Maccaferri G.E., Hubschmid M., Aybek S. Interobserver agreement and validity of bedside ‘positive signs’ for functional weakness, sensory and gait disorders in conversion disorder: a pilot study. J. Neurol. Neurosurg. Psychiatry. 2015;86:425–430. doi: 10.1136/jnnp-2013-307381. PubMed DOI
Dewey B.E., Zhao C., Reinhold J.C., Carass A., Fitzgerald K.C., Sotirchos E.S., Saidha S., Oh J., Pham D.L., Calabresi P.A., van Zijl P.C.M., Prince J.L. DeepHarmony: a deep learning approach to contrast harmonization across scanner changes. Magn. Reson. Imaging. 2019;64:160–170. doi: 10.1016/j.mri.2019.05.041. PubMed DOI PMC
Di Martino A., Yan C.-G.-G., Li Q., Denio E., Castellanos F.X., Alaerts K., Anderson J.S., Assaf M., Bookheimer S.Y., Dapretto M., Deen B., Delmonte S., Dinstein I., Ertl-Wagner B., Fair D.A., Gallagher L., Kennedy D.P., Keown C.L., Keysers C., Lainhart J.E., Lord C., Luna B., Menon V., Minshew N.J., Monk C.S., Mueller S., Müller R.-A.-A., Nebel M.B., Nigg J.T., O’Hearn K., Pelphrey K.A., Peltier S.J., Rudie J.D., Sunaert S., Thioux M., Tyszka J.M., Uddin L.Q., Verhoeven J.S., Wenderoth N., Wiggins J.L., Mostofsky S.H., Milham M.P. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry. 2014;19:659–667. doi: 10.1038/mp.2013.78. PubMed DOI PMC
Diez I., Larson A.G., Nakhate V., Dunn E.C., Fricchione G.L., Nicholson T.R., Sepulcre J., Perez D.L. Early-life trauma endophenotypes and brain circuit–gene expression relationships in functional neurological (conversion) disorder. Mol. Psychiatry. 2020;26(8):3817–3828. PubMed PMC
Diez I., Ortiz-Terán L., Williams B., Jalilianhasanpour R., Ospina J.P., Dickerson B.C., Keshavan M.S., Lafrance W.C., Sepulcre J., Perez D.L. Corticolimbic fast-tracking: enhanced multimodal integration in functional neurological disorder. J. Neurol. Neurosurg. Psychiatry. 2019;90:929–938. doi: 10.1136/jnnp-2018-319657. PubMed DOI PMC
Ding J.-R., An D., Liao W., Li J., Wu G.-R., Xu Q., Long Z., Gong Q., Zhou D., Sporns O., Chen H., Kaiser M. Altered functional and structural connectivity networks in psychogenic non-epileptic seizures. PLoS One. 2013;8(5):e63850. PubMed PMC
Donnelly-Kehoe P.A., Pascariello G.O., García A.M., Hodges J.R., Miller B., Rosen H., Manes F., Landin-Romero R., Matallana D., Serrano C., Herrera E., Reyes P., Santamaria-Garcia H., Kumfor F., Piguet O., Ibanez A., Sedeño L. Robust automated computational approach for classifying frontotemporal neurodegeneration: multimodal/multicenter neuroimaging. Alzheimer’s Dement. Diagnosis Assess. Dis. Monit. 2019;11:588–598. doi: 10.1016/j.dadm.2019.06.002. PubMed DOI PMC
Drane D.L., Fani N., Hallett M., Khalsa S.S., Perez D.L., Roberts N.A. A framework for understanding the pathophysiology of functional neurological disorder. CNS Spectr. 2020;26(6):555–561. PubMed PMC
Dyrba M., Ewers M., Wegrzyn M., Kilimann I., Plant C., Oswald A., Meindl T., Pievani M., Bokde A.L.W., Fellgiebel A., Filippi M., Hampel H., Klöppel S., Hauenstein K., Kirste T., Teipel S.J., Zhan W. Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data. PLoS One. 2013;8(5):e64925. PubMed PMC
Eickhoff S.B., Constable R.T., Yeo B.T.T. Topographic organization of the cerebral cortex and brain cartography. Neuroimage. 2018;170:332–347. doi: 10.1016/j.neuroimage.2017.02.018. PubMed DOI PMC
Erickson B.J., Korfiatis P., Akkus Z., Kline T.L. Machine learning for medical imaging. RadioGraphics. 2017;37:505–515. doi: 10.1148/rg.2017160130. PubMed DOI PMC
Espay A.J., Aybek S., Carson A., Edwards M.J., Goldstein L.H., Hallett M., LaFaver K., LaFrance W.C., Lang A.E., Nicholson T., Nielsen G., Reuber M., Voon V., Stone J., Morgante F. Current concepts in diagnosis and treatment of functional neurological disorders. JAMA Neurol. 2018;75:1132–1141. doi: 10.1001/jamaneurol.2018.1264. PubMed DOI PMC
Espay A.J., Goldenhar L.M., Voon V., Schrag A., Burton N., Lang A.E. Opinions and clinical practices related to diagnosing and managing patients with psychogenic movement disorders: an international survey of movement disorder society members. Mov. Disord. 2009;24:1366–1374. doi: 10.1002/mds.22618. PubMed DOI
Espay A.J., Maloney T., Vannest J., Norris M.M., Eliassen J.C., Neefus E., Allendorfer J.B., Chen R., Szaflarski J.P. Dysfunction in emotion processing underlies functional (psychogenic) dystonia. Mov. Disord. 2018;33:136–145. doi: 10.1002/mds.27217. PubMed DOI PMC
Friedman L., Glover G.H., The FBIRN Consortium Reducing interscanner variability of activation in a multicenter fMRI study: Controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage. 2006;33(2):471–481. PubMed
Galli S., Béreau M., Magnin E., Moulin T., Aybek S. Functional movement disorders. Rev. Neurol. (Paris) 2020;176:244–251. doi: 10.1016/j.neurol.2019.08.007. PubMed DOI
Glasser M.F., Coalson T.S., Robinson E.C., Hacker C.D., Harwell J., Yacoub E., Ugurbil K., Andersson J., Beckmann C.F., Jenkinson M., Smith S.M., Van Essen D.C. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536:171–178. doi: 10.1038/nature18933. PubMed DOI PMC
Glover G.H., Mueller B.A., Turner J.A., Van Erp T.G.M., Liu T.T., Greve D.N., Voyvodic J.T., Rasmussen J., Brown G.G., Keator D.B., Calhoun V.D., Lee H.J., Ford J.M., Mathalon D.H., Diaz M., O’Leary D.S., Gadde S., Preda A., Lim K.O., Wible C.G., Stern H.S., Belger A., McCarthy G., Ozyurt B., Potkin S.G. Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. J. Magn. Reson. Imaging. 2012;36:39–54. doi: 10.1002/jmri.23572. PubMed DOI PMC
Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 2008;21:424–430. doi: 10.1097/WCO.0b013e328306f2c5. PubMed DOI
Gupta A., Lang A.E. Psychogenic movement disorders. Curr. Opin. Neurol. 2009;22:430–436. doi: 10.1097/WCO.0b013e32832dc169. PubMed DOI
Guyon I., Elisseeff A., Kaelbling L.P. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003;3:1157–1182.
Hallett M., Aybek S., Dworetzky B.A., McWhirter L., Staab J.P., Stone J. Functional neurological disorder: new subtypes and shared mechanisms. Lancet Neurol. 2022;21(6):537–550. PubMed PMC
Hassa T., Sebastian A., Liepert J., Weiller C., Schmidt R., Tüscher O. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder. NeuroImage Clin. 2017;15:143–150. doi: 10.1016/j.nicl.2017.04.004. PubMed DOI PMC
Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P.J., Whitwell, J.L., Ward, C., Dale, A.M., Felmlee, J.P., Gunter, J.L., Hill, D.L.G., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C.S., Krueger, G., Ward, H.A., Metzger, G.J., Scott, K.T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J.P., Fleisher, A.S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., Weiner, M.W., L. Whitwell, J., Ward, C., Dale, A.M., Felmlee, J.P., Gunter, J.L., Hill, D.L.G., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., DeCarli, C.S., Gunnar Krueger, Ward, H.A., Metzger, G.J., Scott, K.T., Mallozzi, R., Blezek, D., Levy, J., Debbins, J.P., Fleisher, A.S., Albert, M., Green, R., Bartzokis, G., Glover, G., Mugler, J., Weiner, M.W., 2008. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27, 685–691. https://doi.org/10.1002/jmri.21049. PubMed PMC
Longarzo M., Cavaliere C., Mele G., Tozza S., Tramontano L., Alfano V., Aiello M., Salvatore M., Grossi D. Microstructural changes in motor functional conversion disorder: multimodal imaging approach on a case. Brain Sci. 2020;10:385. doi: 10.3390/brainsci10060385. PubMed DOI PMC
Ludwig J., Speier P., Seifert F., Schaeffter T., Kolbitsch C. Pilot tone–based motion correction for prospective respiratory compensated cardiac cine MRI. Magn. Reson. Med. 2021;85:2403–2416. doi: 10.1002/mrm.28580. PubMed DOI
Ludwig L., Pasman J.A., Nicholson T., Aybek S., David A.S., Tuck S., Kanaan R.A., Roelofs K., Carson A., Stone J. Stressful life events and maltreatment in conversion (functional neurological) disorder: systematic review and meta-analysis of case-control studies. Lancet Psychiatry. 2018;5:307–320. doi: 10.1016/S2215-0366(18)30051-8. PubMed DOI
Marapin R.S., Gelauff J.M., Marsman J.B.C., de Jong B.M., Dreissen Y.E.M., Koelman J.H.T.M., van der Horn H.J., Tijssen M.A.J. Altered posterior midline activity in patients with jerky and tremulous functional movement disorders. Brain Connect. 2021;11:584–593. doi: 10.1089/brain.2020.0779. PubMed DOI
Marapin R.S., van der Stouwe A.M.M., de Jong B.M., Gelauff J.M., Vergara V.M., Calhoun V.D., Dalenberg J.R., Dreissen Y.E.M., Koelman J.H.T.M., Tijssen M.A.J., van der Horn H.J. The chronnectome as a model for Charcot’s ‘dynamic lesion’ in functional movement disorders. NeuroImage Clin. 2020;28 doi: 10.1016/j.nicl.2020.102381. PubMed DOI PMC
Maurer C.W., LaFaver K., Ameli R., Epstein S.A., Hallett M., Horovitz S.G. Impaired self-agency in functional movement disorders: a resting-state fMRI study. Neurology. 2016;87:564–570. doi: 10.1212/WNL.0000000000002940. PubMed DOI PMC
Monsa R., Peer M., Arzy S. Self-reference, emotion inhibition and somatosensory disturbance: preliminary investigation of network perturbations in conversion disorder. Eur. J. Neurol. 2018;25:888–e62. doi: 10.1111/ene.13613. PubMed DOI
Mori Y., Miyata J., Isobe M., Son S., Yoshihara Y., Aso T., Kouchiyama T., Murai T., Takahashi H. Effect of phase-encoding direction on group analysis of resting-state functional magnetic resonance imaging. Psychiatry Clin. Neurosci. 2018;72:683–691. doi: 10.1111/pcn.12677. PubMed DOI
Morris L.S., To B., Baek K., Chang-Webb Y.-C., Mitchell S., Strelchuk D., Mikheenko Y., Phillips W., Zandi M., Jenaway A., Walsh C., Voon V. Disrupted avoidance learning in functional neurological disorder: Implications for harm avoidance theories. NeuroImage Clin. 2017;16:286–294. doi: 10.1016/j.nicl.2017.08.007. PubMed DOI PMC
Mueller K., Růžička F., Slovák M., Forejtová Z., Dušek P., Dušek P., Jech R., Serranová T. Symptom-severity-related brain connectivity alterations in functional movement disorders. NeuroImage Clin. 2022;34 doi: 10.1016/j.nicl.2022.102981. PubMed DOI PMC
Nakano T., Takamura M., Ichikawa N., Okada G., Okamoto Y., Yamada M., Suhara T., Yamawaki S., Yoshimoto J. Enhancing multi-center generalization of machine learning-based depression diagnosis from resting-state fMRI. Front. Psychiatry. 2020;11 doi: 10.3389/fpsyt.2020.00400. PubMed DOI PMC
Nielsen A.N., Barch D.M., Petersen S.E., Schlaggar B.L., Greene D.J. Machine learning with neuroimaging: evaluating its applications in psychiatry. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2020;5:791–798. doi: 10.1016/j.bpsc.2019.11.007. PubMed DOI PMC
Nielsen G., Ricciardi L., Meppelink A.M., Holt K., Teodoro T., Edwards M. A simplified version of the psychogenic movement disorders rating scale: the simplified functional movement disorders rating scale (S-FMDRS) Mov. Disord. Clin. Pract. 2017;4:710–716. doi: 10.1002/mdc3.12475. PubMed DOI PMC
Noble S., Scheinost D., Finn E.S., Shen X., Papademetris X., McEwen S.C., Bearden C.E., Addington J., Goodyear B., Cadenhead K.S., Mirzakhanian H., Cornblatt B.A., Olvet D.M., Mathalon D.H., McGlashan T.H., Perkins D.O., Belger A., Seidman L.J., Thermenos H., Tsuang M.T., van Erp T.G.M., Walker E.F., Hamann S., Woods S.W., Cannon T.D., Constable R.T. Multisite reliability of MR-based functional connectivity. Neuroimage. 2017;146:959–970. doi: 10.1016/j.neuroimage.2016.10.020. PubMed DOI PMC
Nunes A., Schnack H.G., Ching C.R.K., Agartz I., Akudjedu T.N., Alda M., Alnæs D., Alonso-Lana S., Bauer J., Baune B.T., Bøen E., Bonnin C.D.M., Busatto G.F., Canales-Rodríguez E.J., Cannon D.M., Caseras X., Chaim-Avancini T.M., Dannlowski U., Díaz-Zuluaga A.M., Dietsche B., Doan N.T., Duchesnay E., Elvsåshagen T., Emden D., Eyler L.T., Fatjó-Vilas M., Favre P., Foley S.F., Fullerton J.M., Glahn D.C., Goikolea J.M., Grotegerd D., Hahn T., Henry C., Hibar D.P., Houenou J., Howells F.M., Jahanshad N., Kaufmann T., Kenney J., Kircher T.T.J., Krug A., Lagerberg T.V., Lenroot R.K., López-Jaramillo C., Machado-Vieira R., Malt U.F., McDonald C., Mitchell P.B., Mwangi B., Nabulsi L., Opel N., Overs B.J., Pineda-Zapata J.A., Pomarol-Clotet E., Redlich R., Roberts G., Rosa P.G., Salvador R., Satterthwaite T.D., Soares J.C., Stein D.J., Temmingh H.S., Trappenberg T., Uhlmann A., van Haren N.E.M., Vieta E., Westlye L.T., Wolf D.H., Yüksel D., Zanetti M.V., Andreassen O.A., Thompson P.M., Hajek T. Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol. Psychiatry. 2020;25(9):2130–2143. PubMed PMC
Orrù G., Pettersson-Yeo W., Marquand A.F., Sartori G., Mechelli A. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 2012;36:1140–1152. doi: 10.1016/j.neubiorev.2012.01.004. PubMed DOI
Patel M.J., Andreescu C., Price J.C., Edelman K.L., Reynolds C.F., Aizenstein H.J. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int. J. Geriatr. Psychiatry. 2015;30(10):1056–1067. PubMed PMC
Perez D.L., Barsky A.J., Daffner K., Silbersweig D.A. Motor and somatosensory conversion disorder: a functional unawareness Syndrome? J. Neuropsychiatry Clin. Neurosci. 2012;24:141–151. doi: 10.1176/appi.neuropsych.11050110. PubMed DOI
Perez, D.L., Matin, N., Barsky, A., Costumero-ramos, V., Makaretz, S.J., Young, S.S., Sepulcre, J., LaFrance, W.C., Keshavan, M.S., Dickerson, B.C., LaFranceJr, W.C., Keshavan, M.S., Dickerson, B.C., Sara, J., Young, S.S., Sepulcre, J., Jr, W.C.L., Matcheri, S., Dickerson, B.C., 2017. Cingulo-insular structural alterations associated with psychogenic symptoms, childhood abuse and PTSD in functional neurological disorders. J. Neurol. Neurosurg. Psychiatry 88, 491–497. https://doi.org/10.1136/jnnp-2016-314998. PubMed PMC
Pessoa L. On the relationship between emotion and cognition. Nat. Rev. Neurosci. 2008;9:148–158. doi: 10.1038/nrn2317. PubMed DOI
Power J.D., Mitra A., Laumann T.O., Snyder A.Z., Schlaggar B.L., Petersen S.E. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. 2014;84:320–341. doi: 10.1016/j.neuroimage.2013.08.048. PubMed DOI PMC
Richiardi J., Eryilmaz H., Schwartz S., Vuilleumier P., Van De Ville D. Decoding brain states from fMRI connectivity graphs. Neuroimage. 2011;56:616–626. doi: 10.1016/j.neuroimage.2010.05.081. PubMed DOI
Richiardi J., Van De Ville D., Riesen K., Bunke H. Vector space embedding of undirected graphs with fixed-cardinality vertex sequences for classification. Proc. - Int. Conf. Pattern Recognit. 2010;902–905 doi: 10.1109/ICPR.2010.227. DOI
Rozycki M., Satterthwaite T.D., Koutsouleris N., Erus G., Doshi J., Wolf D.H., Fan Y., Gur R.E., Gur R.C., Meisenzahl E.M., Zhuo C., Yin H., Yan H., Yue W., Zhang D., Davatzikos C. Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals. Schizophr. Bull. 2018;44:1035–1044. doi: 10.1093/schbul/sbx137. PubMed DOI PMC
Smith S.M., Miller K.L., Salimi-Khorshidi G., Webster M., Beckmann C.F., Nichols T.E., Ramsey J.D., Woolrich M.W. Network modelling methods for FMRI. Neuroimage. 2011;54:875–891. doi: 10.1016/j.neuroimage.2010.08.063. PubMed DOI
Sokolov, A.A., Granziera, C., Fischi-Gomez, E., Preti, M.G., Ryvlin, P., Van De Ville, D., Friston, K.J., 2019. Brain network analyses in clinical neuroscience. Swiss Arch. Neurol. Psychiatry Psychother. https://doi.org/10.4414/sanp.2019.03074.
Spielberger, C., Gorsuch, R., Lushene, R., Vagg, P., Jacobs, G., 1983. Manual for the State-Trait Anxiety Inventory (Form Y1 - Y2).
Stone J., Carson A. Functional neurologic disorders. Contin. Lifelong Learn. Neurol. 2015;21:818–837. doi: 10.1212/01.CON.0000466669.02477.45. PubMed DOI
Stone J., LaFrance W.C., Brown R., Spiegel D., Levenson J.L., Sharpe M. Conversion disorder: current problems and potential solutions for DSM-5. J. Psychosom. Res. 2011;71(6):369–376. PubMed
Stone J., Zeman A., Simonotto E., Meyer M., Azuma R., Flett S., Sharpe M. fMRI in patients with motor conversion symptoms and controls with simulated weakness. Psychosom. Med. 2007;69:961–969. doi: 10.1097/PSY.0b013e31815b6c14. PubMed DOI
Syed T.U., LaFrance W.C., Kahriman E.S., Hasan S.N., Rajasekaran V., Gulati D., Borad S., Shahid A., Fernandez-Baca G., Garcia N., Pawlowski M., Loddenkemper T., Amina S., Koubeissi M.Z. Can semiology predict psychogenic nonepileptic seizures? A prospective study. Ann. Neurol. 2011;69(6):997–1004. PubMed
Szaflarski J.P., Allendorfer J.B., Nenert R., LaFrance W.C., Barkan H.I., DeWolfe J., Pati S., Thomas A.E., Ver Hoef L. Facial emotion processing in patients with seizure disorders. Epilepsy Behav. 2018;79:193–204. doi: 10.1016/j.yebeh.2017.12.004. PubMed DOI
Takamura T., Hanakawa T. Clinical utility of resting-state functional connectivity magnetic resonance imaging for mood and cognitive disorders. J. Neural Transm. 2017;124:821–839. doi: 10.1007/s00702-017-1710-2. PubMed DOI
Teipel S.J., Wohlert A., Metzger C., Grimmer T., Sorg C., Ewers M., Meisenzahl E., Klöppel S., Borchardt V., Grothe M.J., Walter M., Dyrba M. Multicenter stability of resting state fMRI in the detection of Alzheimer’s disease and amnestic MCI. NeuroImage Clin. 2017;14:183–194. doi: 10.1016/j.nicl.2017.01.018. PubMed DOI PMC
Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–289. doi: 10.1006/nimg.2001.0978. PubMed DOI
Vabalas A., Gowen E., Poliakoff E., Casson A.J., Hernandez-Lemus E. Machine learning algorithm validation with a limited sample size. PLoS One. 2019;14(11):e0224365. doi: 10.1371/journal.pone.0224365. PubMed DOI PMC
van den Heuvel M.P., Hulshoff Pol H.E. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010;20:519–534. doi: 10.1016/j.euroneuro.2010.03.008. PubMed DOI
van der Kruijs S.J.M., Bodde N.M.G., Vaessen M.J., Lazeron R.H.C., Vonck K., Boon P., Hofman P.A.M., Backes W.H., Aldenkamp A.P., Jansen J.F.A. Functional connectivity of dissociation in patients with psychogenic non-epileptic seizures. J. Neurol. Neurosurg. Psychiatry. 2012;83:239–247. doi: 10.1136/jnnp-2011-300776. PubMed DOI
Van Dijk K.R.A., Sabuncu M.R., Buckner R.L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage. 2012;59:431–438. doi: 10.1016/j.neuroimage.2011.07.044. PubMed DOI PMC
Vasta R., Cerasa A., Sarica A., Bartolini E., Martino I., Mari F., Metitieri T., Quattrone A., Gambardella A., Guerrini R., Labate A. The application of artificial intelligence to understand the pathophysiological basis of psychogenic nonepileptic seizures. Epilepsy Behav. 2018;87:167–172. doi: 10.1016/j.yebeh.2018.09.008. PubMed DOI
Voon V., Brezing C., Gallea C., Hallett M. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder. Mov. Disord. 2011;26:2396–2403. doi: 10.1002/mds.23890. PubMed DOI PMC
Voon V., Cavanna A.E., Coburn K., Sampson S., Reeve A., LaFrance W.C. Functional neuroanatomy and neurophysiology of functional neurological disorders (Conversion disorder) J. Neuropsychiatry Clin. Neurosci. 2016;28(3):168–190. PubMed
Voon V., Gallea C., Hattori N., Bruno M., Ekanayake V., Hallett M. The involuntary nature of conversion disorder. Neurology. 2010;74:223–228. doi: 10.1212/WNL.0b013e3181ca00e9. PubMed DOI PMC
Wegrzyk J., Kebets V., Richiardi J., Galli S., de Ville D., Van A., S., Identifying motor functional neurological disorder using resting-state functional connectivity. NeuroImage Clin. 2018;17:163–168. doi: 10.1016/j.nicl.2017.10.012. PubMed DOI PMC
World Health Organization . World Health Organization; Genève, Switzerland: 1993. The ICD-10 Classification of Mental and Behavioural Disorders.
Xia M., Wang J., He Y., Csermely P. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One. 2013;8(7):e68910. doi: 10.1371/journal.pone.0068910. PubMed DOI PMC
Yamashita A., Yahata N., Itahashi T., Lisi G., Yamada T., Ichikawa N., Takamura M., Yoshihara Y., Kunimatsu A., Okada N., Yamagata H., Matsuo K., Hashimoto R., Okada G.o., Sakai Y., Morimoto J., Narumoto J., Shimada Y., Kasai K., Kato N., Takahashi H., Okamoto Y., Tanaka S.C., Kawato M., Yamashita O., Imamizu H., Macleod M.R. Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biol. 2019;17(4):e3000042. doi: 10.1371/journal.pbio.3000042. PubMed DOI PMC
Yu M., Linn K.A., Cook P.A., Phillips M.L., McInnis M., Fava M., Trivedi M.H., Weissman M.M., Shinohara R.T., Sheline Y.I. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum. Brain Mapp. 2018;39:4213–4227. doi: 10.1002/hbm.24241. PubMed DOI PMC
Zeng L.-L.-L., Wang H., Hu P., Yang B., Pu W., Shen H., Chen X., Liu Z., Yin H., Tan Q., Wang K., Hu D. Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine. 2018;30:74–85. doi: 10.1016/j.ebiom.2018.03.017. PubMed DOI PMC
Zhao N., Yuan L.-X.-X., Jia X.-Z.-Z., Zhou X.-F.-F., Deng X.-P.-P., He H.-J.-J., Zhong J., Wang J., Zang Y.-F.-F. Intra- and inter-scanner reliability of voxel-wise whole-brain analytic metrics for resting state fMRI. Front. Neuroinform. 2018;12:1–9. doi: 10.3389/fninf.2018.00054. PubMed DOI PMC
Zhuang H., Liu R., Wu C., Meng Z., Wang D., Liu D., Liu M., Li Y. Multimodal classification of drug-naïve first-episode schizophrenia combining anatomical, diffusion and resting state functional resonance imaging. Neurosci. Lett. 2019;705:87–93. doi: 10.1016/j.neulet.2019.04.039. PubMed DOI