Atorvastatin Modulates Bile Acid Homeostasis in Mice with Diet-Induced Nonalcoholic Steatohepatitis

. 2021 Jun 16 ; 22 (12) : . [epub] 20210616

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34208774

Grantová podpora
Progres Q40/05 Grantová Agentura, Univerzita Karlova
260543/2020 Grantová Agentura, Univerzita Karlova
260 549 Grantová Agentura, Univerzita Karlova
GAUK 3462/18 Grantová Agentura, Univerzita Karlova
GACR 19-14497S Grantová Agentura České Republiky
INOMED (CZ.02.1.01/0.0/0.0/18_069/0010046) Ministerstvo Školství, Mládeže a Tělovýchovy

Bile acids (BA) play a significant role in the pathophysiology of nonalcoholic steatohepatitis (NASH). The present study evaluates the modulation of bile acid metabolomics by atorvastatin, a cholesterol-lowering agent commonly used to treat cardiovascular complications accompanying NASH. NASH was induced in mice by 24 weeks of consuming a high-saturated fat, high-fructose, and high-cholesterol diet (F), with atorvastatin administered orally (20 mg/kg/day) during the last three weeks. Biochemical and histological analyses confirmed the effectiveness of the F diet in inducing NASH. Untreated NASH animals had significantly reduced biliary secretion of BA and increased fecal excretion of BA via decreased apical sodium-dependent bile salt transporter (Asbt)-mediated reabsorption. Atorvastatin decreased liver steatosis and inflammation in NASH animals consistently with a reduction in crucial lipogenic enzyme stearoyl-coenzyme A (CoA) desaturase-1 and nuclear factor kappa light chain enhancer of activated B-cell pro-inflammatory signaling, respectively. In this group, atorvastatin also uniformly enhanced plasma concentration, biliary secretion and fecal excretion of the secondary BA, deoxycholic acid (DCA). However, in the chow diet-fed animals, atorvastatin decreased plasma concentrations of BA, and reduced BA biliary secretions. These changes stemmed primarily from the increased fecal excretion of BA resulting from the reduced Asbt-mediated BA reabsorption in the ileum and suppression of synthesis in the liver. In conclusion, our results reveal that atorvastatin significantly modulates BA metabolomics by altering their intestinal processing and liver synthesis in control and NASH mice.

Zobrazit více v PubMed

Ekstedt M., Franzen L.E., Mathiesen U.L., Thorelius L., Holmqvist M., Bodemar G., Kechagias S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44:865–873. doi: 10.1002/hep.21327. PubMed DOI

Zoppini G., Fedeli U., Gennaro N., Saugo M., Targher G., Bonora E. Mortality from chronic liver diseases in diabetes. Am. J. Gastroenterol. 2014;109:1020–1025. doi: 10.1038/ajg.2014.132. PubMed DOI

Arab J.P., Karpen S.J., Dawson P.A., Arrese M., Trauner M. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology. 2017;65:350–362. doi: 10.1002/hep.28709. PubMed DOI PMC

Puri P., Daita K., Joyce A., Mirshahi F., Santhekadur P.K., Cazanave S., Luketic V.A., Siddiqui M.S., Boyett S., Min H.K., et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology. 2018;67:534–548. doi: 10.1002/hep.29359. PubMed DOI PMC

Byrne C.D., Targher G. NAFLD: A multisystem disease. J. Hepatol. 2015;62:S47–S64. doi: 10.1016/j.jhep.2014.12.012. PubMed DOI

Targher G., Corey K.E., Byrne C.D. NAFLD, and cardiovascular and cardiac diseases: Factors influencing risk, prediction and treatment. Diabetes Metab. 2020;47:101215. doi: 10.1016/j.diabet.2020.101215. PubMed DOI

Mills E.P., Brown K.P.D., Smith J.D., Vang P.W., Trotta K. Treating nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: A review of efficacy and safety. Ther. Adv. Endocrinol. Metab. 2018;9:15–28. doi: 10.1177/2042018817741852. PubMed DOI PMC

Doumas M., Imprialos K., Dimakopoulou A., Stavropoulos K., Binas A., Athyros V.G. The Role of Statins in the Management of Nonalcoholic Fatty Liver Disease. Curr. Pharm. Des. 2018;24:4587–4592. doi: 10.2174/1381612825666190117114305. PubMed DOI

Rodrigues G., Moreira A.J., Bona S., Schemitt E., Marroni C.A., Di Naso F.C., Dias A.S., Pires T.R., Picada J.N., Marroni N.P. Simvastatin Reduces Hepatic Oxidative Stress and Endoplasmic Reticulum Stress in Nonalcoholic Steatohepatitis Experimental Model. Oxid. Med. Cell Longev. 2019;2019:3201873. doi: 10.1155/2019/3201873. PubMed DOI PMC

Ji G., Zhao X., Leng L., Liu P., Jiang Z. Comparison of dietary control and atorvastatin on high fat diet induced hepatic steatosis and hyperlipidemia in rats. Lipids Health Dis. 2011;10:23. doi: 10.1186/1476-511X-10-23. PubMed DOI PMC

Okada Y., Yamaguchi K., Nakajima T., Nishikawa T., Jo M., Mitsumoto Y., Kimura H., Nishimura T., Tochiki N., Yasui K., et al. Rosuvastatin ameliorates high-fat and high-cholesterol diet-induced nonalcoholic steatohepatitis in rats. Liver. Int. 2013;33:301–311. doi: 10.1111/liv.12033. PubMed DOI

Seif El-Din S.H., El-Lakkany N.M., El-Naggar A.A., Hammam O.A., Abd El-Latif H.A., Ain-Shoka A.A., Ebeid F.A. Effects of rosuvastatin and/or beta-carotene on non-alcoholic fatty liver in rats. Res. Pharm. Sci. 2015;10:275–287. PubMed PMC

Kabel A.M., Abd Elmaaboud M.A., Albarraq A.A. Ameliorative potential of omega 3 fatty acids and HMG-CoA reductase inhibitors on experimentally-induced non-alcoholic steatohepatitis. Prostaglandins Leukot. Essent. Fatty Acids. 2015;96:1–9. doi: 10.1016/j.plefa.2014.12.003. PubMed DOI

Matafome P., Louro T., Rodrigues L., Crisostomo J., Nunes E., Amaral C., Monteiro P., Cipriano A., Seica R. Metformin and atorvastatin combination further protect the liver in type 2 diabetes with hyperlipidaemia. Diabetes Metab. Res. Rev. 2011;27:54–62. doi: 10.1002/dmrr.1157. PubMed DOI

Vila L., Rebollo A., Adalsteisson G.S., Alegret M., Merlos M., Roglans N., Laguna J.C. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment. Toxicol. Appl. Pharmacol. 2011;251:32–40. doi: 10.1016/j.taap.2010.11.011. PubMed DOI

Miyaki T., Nojiri S., Shinkai N., Kusakabe A., Matsuura K., Iio E., Takahashi S., Yan G., Ikeda K., Joh T. Pitavastatin inhibits hepatic steatosis and fibrosis in non-alcoholic steatohepatitis model rats. Hepatol. Res. 2011;41:375–385. doi: 10.1111/j.1872-034X.2010.00769.x. PubMed DOI

Van Rooyen D.M., Gan L.T., Yeh M.M., Haigh W.G., Larter C.Z., Ioannou G., Teoh N.C., Farrell G.C. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J. Hepatol. 2013;59:144–152. doi: 10.1016/j.jhep.2013.02.024. PubMed DOI

Schierwagen R., Maybüchen L., Hittatiya K., Klein S., Uschner F.E., Braga T.T., Franklin B.S., Nickenig G., Strassburg C.P., Plat J., et al. Statins improve NASH via inhibition of RhoA and Ras. Am. J. Physiol. Gastrointest. Liver. Physiol. 2016;311:G724–G733. doi: 10.1152/ajpgi.00063.2016. PubMed DOI

Zhang W., Yang X., Chen Y., Hu W., Liu L., Zhang X., Liu M., Sun L., Liu Y., Yu M., et al. Activation of hepatic Nogo-B receptor expression-A new anti-liver steatosis mechanism of statins. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2018;1863:177–190. doi: 10.1016/j.bbalip.2017.12.002. PubMed DOI PMC

Fu Z.D., Cui J.Y., Klaassen C.D. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice. J. Lipid. Res. 2014;55:2576–2586. doi: 10.1194/jlr.M053124. PubMed DOI PMC

Nolan J.A., Skuse P., Govindarajan K., Patterson E., Konstantinidou N., Casey P.G., MacSharry J., Shanahan F., Stanton C., Hill C., et al. The influence of rosuvastatin on the gastrointestinal microbiota and host gene expression profiles. Am. J. Physiol. Gastrointest. Liver. Physiol. 2017;312:G488–G497. doi: 10.1152/ajpgi.00149.2016. PubMed DOI

Caparros-Martin J.A., Lareu R.R., Ramsay J.P., Peplies J., Reen F.J., Headlam H.A., Ward N.C., Croft K.D., Newsholme P., Hughes J.D., et al. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome. 2017;5:95. doi: 10.1186/s40168-017-0312-4. PubMed DOI PMC

Schonewille M., de Boer J.F., Mele L., Wolters H., Bloks V.W., Wolters J.C., Kuivenhoven J.A., Tietge U.J.F., Brufau G., Groen A.K. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. J. Lipid Res. 2016;57:1455–1464. doi: 10.1194/jlr.M067488. PubMed DOI PMC

Zucchetti A.E., Barosso I.R., Boaglio A., Pellegrino J.M., Ochoa E.J., Roma M.G., Crocenzi F.A., Sanchez Pozzi E.J. Prevention of estradiol 17beta-D-glucuronide-induced canalicular transporter internalization by hormonal modulation of cAMP in rat hepatocytes. Mol. Biol. Cell. 2011;22:3902–3915. doi: 10.1091/mbc.e11-01-0047. PubMed DOI PMC

Dzierlenga A.L., Clarke J.D., Cherrington N.J. Nonalcoholic Steatohepatitis Modulates Membrane Protein Retrieval and Insertion Processes. Drug. Metab. Dispos. 2016;44:1799–1807. doi: 10.1124/dmd.116.071415. PubMed DOI PMC

Dzierlenga A.L., Cherrington N.J. Misregulation of membrane trafficking processes in human nonalcoholic steatohepatitis. J. Biochem. Mol. Toxicol. 2018;32:e22035. doi: 10.1002/jbt.22035. PubMed DOI PMC

McCommis K.S., Hodges W.T., Brunt E.M., Nalbantoglu I., McDonald W.G., Holley C., Fujiwara H., Schaffer J.E., Colca J.R., Finck B.N. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology. 2017;65:1543–1556. doi: 10.1002/hep.29025. PubMed DOI PMC

Igreja Sá I.C., Tripska K., Hroch M., Hyspler R., Ticha A., Lastuvkova H., Schreiberova J., Dolezelova E., Eissazadeh S., Vitverova B., et al. Soluble Endoglin as a Potential Biomarker of Nonalcoholic Steatohepatitis (NASH) Development, Participating in Aggravation of NASH-Related Changes in Mouse Liver. Int. J. Mol. Sci. 2020;21:9021. doi: 10.3390/ijms21239021. PubMed DOI PMC

Kleiner D.E., Brunt E.M., Van Natta M., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.C., Torbenson M.S., Unalp-Arida A., et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701. PubMed DOI

He X., Zheng N., He J., Liu C., Feng J., Jia W., Li H. Gut Microbiota Modulation Attenuated the Hypolipidemic Effect of Simvastatin in High-Fat/Cholesterol-Diet Fed Mice. J. Proteome Res. 2017;16:1900–1910. doi: 10.1021/acs.jproteome.6b00984. PubMed DOI PMC

Jia X., Suzuki Y., Naito H., Yetti H., Kitamori K., Hayashi Y., Kaneko R., Nomura M., Yamori Y., Zaitsu K., et al. A possible role of chenodeoxycholic acid and glycine-conjugated bile acids in fibrotic steatohepatitis in a dietary rat model. Dig. Dis. Sci. 2014;59:1490–1501. doi: 10.1007/s10620-014-3028-3. PubMed DOI

Athyros V.G., Alexandrides T.K., Bilianou H., Cholongitas E., Doumas M., Ganotakis E.S., Goudevenos J., Elisaf M.S., Germanidis G., Giouleme O., et al. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. Expert Panel Statement. Metab. 2017;71:17–32. doi: 10.1016/j.metabol.2017.02.014. PubMed DOI

Sigler M.A., Congdon L., Edwards K.L. An Evidence-Based Review of Statin Use in Patients With Nonalcoholic Fatty Liver Disease. Clin. Med. Insights Gastroenterol. 2018;11 doi: 10.1177/1179552218787502. PubMed DOI PMC

Park H.S., Jang J.E., Ko M.S., Woo S.H., Kim B.J., Kim H.S., Park H.S., Park I.S., Koh E.H., Lee K.U. Statins Increase Mitochondrial and Peroxisomal Fatty Acid Oxidation in the Liver and Prevent Non-Alcoholic Steatohepatitis in Mice. Diabetes Metab. J. 2016;40:376–385. doi: 10.4093/dmj.2016.40.5.376. PubMed DOI PMC

Chong L.W., Hsu Y.C., Lee T.F., Lin Y., Chiu Y.T., Yang K.C., Wu J.C., Huang Y.T. Fluvastatin attenuates hepatic steatosis-induced fibrogenesis in rats through inhibiting paracrine effect of hepatocyte on hepatic stellate cells. BMC Gastroenterol. 2015;15:22. doi: 10.1186/s12876-015-0248-8. PubMed DOI PMC

Yang B., Xuan S., Ruan Q., Jiang S., Cui H., Zhu L., Luo X., Jin J., Zhao Z. UPLC/Q-TOF-MS/MS-based metabolomics revealed the lipid-lowering effect of Ilicis Rotundae Cortex on high-fat diet induced hyperlipidemia rats. J. Ethnopharmacol. 2020;256:112784. doi: 10.1016/j.jep.2020.112784. PubMed DOI

Khan T.J., Ahmed Y.M., Zamzami M.A., Siddiqui A.M., Khan I., Baothman O.A.S., Mehanna M.G., Kuerban A., Kaleemuddin M., Yasir M. Atorvastatin Treatment Modulates the Gut Microbiota of the Hypercholesterolemic Patients. Omics. 2018;22:154–163. doi: 10.1089/omi.2017.0130. PubMed DOI

Kim B.H., Han S., Lee H., Park C.H., Chung Y.M., Shin K., Lee H.G., Ye S.K. Metformin enhances the anti-adipogenic effects of atorvastatin via modulation of STAT3 and TGF-beta/Smad3 signaling. Biochem. Biophys. Res. Commun. 2015;456:173–178. doi: 10.1016/j.bbrc.2014.11.054. PubMed DOI

Khan T.J., Ahmed Y.M., Zamzami M.A., Mohamed S.A., Khan I., Baothman O.A.S., Mehanna M.G., Yasir M. Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats. Sci. Rep. 2018;8:662. doi: 10.1038/s41598-017-19013-2. PubMed DOI PMC

Ridlon J.M., Kang D.J., Hylemon P.B., Bajaj J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014;30:332–338. doi: 10.1097/MOG.0000000000000057. PubMed DOI PMC

Sun L., Xie C., Wang G., Wu Y., Wu Q., Wang X., Liu J., Deng Y., Xia J., Chen B., et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 2018;24:1919–1929. doi: 10.1038/s41591-018-0222-4. PubMed DOI PMC

Orime K., Shirakawa J., Togashi Y., Tajima K., Inoue H., Nagashima Y., Terauchi Y. Lipid-lowering agents inhibit hepatic steatosis in a non-alcoholic steatohepatitis-derived hepatocellular carcinoma mouse model. Eur. J. Pharmacol. 2016;772:22–32. doi: 10.1016/j.ejphar.2015.12.043. PubMed DOI

Egawa T., Toda K., Nemoto Y., Ono M., Akisaw N., Saibara T., Hayashi Y., Hiroi M., Enzan H., Onishi S. Pitavastatin ameliorates severe hepatic steatosis in aromatase-deficient (Ar-/-) mice. Lipids. 2003;38:519–523. doi: 10.1007/s11745-003-1093-x. PubMed DOI

Parker R.A., Garcia R., Ryan C.S., Liu X., Shipkova P., Livanov V., Patel P., Ho S.P. Bile acid and sterol metabolism with combined HMG-CoA reductase and PCSK9 suppression. J. Lipid. Res. 2013;54:2400–2409. doi: 10.1194/jlr.M038331. PubMed DOI PMC

Wagner M., Halilbasic E., Marschall H.U., Zollner G., Fickert P., Langner C., Zatloukal K., Denk H., Trauner M. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology. 2005;42:420–430. doi: 10.1002/hep.20784. PubMed DOI

Li W.K., Li H., Lu Y.F., Li Y.Y., Fu Z.D., Liu J. Atorvastatin alters the expression of genes related to bile acid metabolism and circadian clock in livers of mice. PeerJ. 2017;5:e3348. doi: 10.7717/peerj.3348. PubMed DOI PMC

Ioannou G.N., Van Rooyen D.M., Savard C., Haigh W.G., Yeh M.M., Teoh N.C., Farrell G.C. Cholesterol-lowering drugs cause dissolution of cholesterol crystals and disperse Kupffer cell crown-like structures during resolution of NASH. J. Lipid Res. 2015;56:277–285. doi: 10.1194/jlr.M053785. PubMed DOI PMC

Dolezelova E., Sa I.C.I., Prasnicka A., Hroch M., Hyspler R., Ticha A., Lastuvkova H., Cermanova J., Pericacho M., Visek J., et al. High soluble endoglin levels regulate cholesterol homeostasis and bile acids turnover in the liver of transgenic mice. Life Sci. 2019;232:116643. doi: 10.1016/j.lfs.2019.116643. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace