High Soluble Endoglin Levels Affect Aortic Vascular Function during Mice Aging
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000841
European Food Safety Authority
SVV 260 549
Charles University
PubMed
34940528
PubMed Central
PMC8703792
DOI
10.3390/jcdd8120173
PII: jcdd8120173
Knihovny.cz E-zdroje
- Klíčová slova
- endoglin signaling, mice, soluble endoglin, vascular function,
- Publikační typ
- časopisecké články MeSH
Endoglin is a 180 kDa transmembrane glycoprotein that was demonstrated to be present in two different endoglin forms, namely membrane endoglin (Eng) and soluble endoglin (sEng). Increased sEng levels in the circulation have been detected in atherosclerosis, arterial hypertension, and type II diabetes mellitus. Moreover, sEng was shown to aggravate endothelial dysfunction when combined with a high-fat diet, suggesting it might be a risk factor for the development of endothelial dysfunction in combination with other risk factors. Therefore, this study hypothesized that high sEng levels exposure for 12 months combined with aging (an essential risk factor of atherosclerosis development) would aggravate vascular function in mouse aorta. Male transgenic mice with high levels of human sEng in plasma (Sol-Eng+) and their age-matched male transgenic littermates that do not develop high soluble endoglin (Control) on a chow diet were used. The aging process was initiated to contribute to endothelial dysfunction/atherosclerosis development, and it lasted 12 months. Wire myograph analysis showed impairment contractility in the Sol-Eng+ group when compared to the control group after KCl and PGF2α administration. Endothelium-dependent responsiveness to Ach was not significantly different between these groups. Western blot analysis revealed significantly decreased protein expression of Eng, p-eNOS, and ID1 expression in the Sol-Eng+ group compared to the control group suggesting reduced Eng signaling. In conclusion, we demonstrated for the first time that long-term exposure to high levels of sEng during aging results in alteration of vasoconstriction properties of the aorta, reduced eNOS phosphorylation, decreased Eng expression, and altered Eng signaling. These findings suggest that sEng can be considered a risk factor for the development of vascular dysfunction during aging and a potential therapeutical target for pharmacological intervention.
Zobrazit více v PubMed
Bot P.T., Hoefer I.E., Sluijter J.P., van Vliet P., Smits A.M., Lebrin F., Moll F., de Vries J.P., Doevendans P., Piek J.J., et al. Increased expression of the transforming growth factor-beta signaling pathway, endoglin, and early growth response-1 in stable plaques. Stroke. 2009;40:439–447. doi: 10.1161/STROKEAHA.108.522284. PubMed DOI
St-Jacques S., Cymerman U., Pece N., Letarte M. Molecular characterization and in situ localization of murine endoglin reveal that it is a transforming growth factor-beta binding protein of endothelial and stromal cells. Endocrinology. 1994;134:2645–2657. doi: 10.1210/endo.134.6.8194490. PubMed DOI
Meurer S., Wimmer A.E., Leur E.V., Weiskirchen R. Endoglin Trafficking/Exosomal Targeting in Liver Cells Depends on N-Glycosylation. Cells. 2019;8:997. doi: 10.3390/cells8090997. PubMed DOI PMC
Lastres P., Bellon T., Cabanas C., Sanchez-Madrid F., Acevedo A., Gougos A., Letarte M., Bernabeu C. Regulated expression on human macrophages of endoglin, an Arg-Gly-Asp-containing surface antigen. Eur. J. Immunol. 1992;22:393–397. doi: 10.1002/eji.1830220216. PubMed DOI
Gonzalez-Nunez M., Munoz-Felix J.M., Lopez-Novoa J.M. The ALK-1/Smad1 pathway in cardiovascular physiopathology. A new target for therapy? Biochim. Biophys. Acta. 2013;1832:1492–1510. doi: 10.1016/j.bbadis.2013.05.016. PubMed DOI
Zhao Y., Vanhoutte P.M., Leung S.W. Vascular nitric oxide: Beyond eNOS. J. Pharm. Sci. 2015;129:83–94. doi: 10.1016/j.jphs.2015.09.002. PubMed DOI
Palmer R.M., Ashton D.S., Moncada S. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature. 1988;333:664–666. doi: 10.1038/333664a0. PubMed DOI
Moncada S., Higgs E.A. Nitric oxide and the vascular endothelium. Handb Exp. Pharm. 2006;176:213–254. doi: 10.1007/3-540-32967-6_7. PubMed DOI
Lloyd-Jones D.M., Bloch K.D. The vascular biology of nitric oxide and its role in atherogenesis. Annu. Rev. Med. 1996;47:365–375. doi: 10.1146/annurev.med.47.1.365. PubMed DOI
Nachtigal P., Zemankova Vecerova L., Rathouska J., Strasky Z. The role of endoglin in atherosclerosis. Atherosclerosis. 2012;224:4–11. doi: 10.1016/j.atherosclerosis.2012.03.001. PubMed DOI
Zhang X.H., Zhang H.Y., Lu S., Jiang L.L., Wu J., Yang Y.L., Zhang S.A. MMP-14 aggravates onset of severe preeclampsia by mediating soluble endoglin release. Eur. Rev. Med. Pharmacol. Sci. 2018;22:1209–1215. PubMed
Vitverova B., Blazickova K., Najmanova I., Vicen M., Hyspler R., Dolezelova E., Nemeckova I., Tebbens J.D., Bernabeu C., Pericacho M., et al. Soluble endoglin and hypercholesterolemia aggravate endothelial and vessel wall dysfunction in mouse aorta. Atherosclerosis. 2018;271:15–25. doi: 10.1016/j.atherosclerosis.2018.02.008. PubMed DOI
Blazquez-Medela A.M., Garcia-Ortiz L., Gomez-Marcos M.A., Recio-Rodriguez J.I., Sanchez-Rodriguez A., Lopez-Novoa J.M., Martinez-Salgado C. Increased plasma soluble endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic patients. BMC Med. 2010;8:86. doi: 10.1186/1741-7015-8-86. PubMed DOI PMC
Gallardo-Vara E., Gamella-Pozuelo L., Perez-Roque L., Bartha J.L., Garcia-Palmero I., Casal J.I., Lopez-Novoa J.M., Pericacho M., Bernabeu C. Potential Role of Circulating Endoglin in Hypertension via the Upregulated Expression of BMP4. Cells. 2020;9:988. doi: 10.3390/cells9040988. PubMed DOI PMC
Guo W.T., Dong D.L. Bone morphogenetic protein-4: A novel therapeutic target for pathological cardiac hypertrophy/heart failure. Heart Fail. Rev. 2014;19:781–788. doi: 10.1007/s10741-014-9429-8. PubMed DOI
Nemeckova I., Serwadczak A., Oujo B., Jezkova K., Rathouska J., Fikrova P., Varejckova M., Bernabeu C., Lopez-Novoa J.M., Chlopicki S., et al. High soluble endoglin levels do not induce endothelial dysfunction in mouse aorta. PLoS ONE. 2015;10:e0119665. doi: 10.1371/journal.pone.0119665. PubMed DOI PMC
Jezkova K., Rathouska J., Nemeckova I., Fikrova P., Dolezelova E., Varejckova M., Vitverova B., Tysonova K., Serwadczak A., Buczek E., et al. High Levels of Soluble Endoglin Induce a Proinflammatory and Oxidative-Stress Phenotype Associated with Preserved NO-Dependent Vasodilatation in Aortas from Mice Fed a High-Fat Diet. J. Vasc. Res. 2016;53:149–162. doi: 10.1159/000448996. PubMed DOI
Vanhooren V., Libert C. The mouse as a model organism in aging research: Usefulness, pitfalls and possibilities. Ageing Res. Rev. 2013;12:8–21. doi: 10.1016/j.arr.2012.03.010. PubMed DOI
Ackert-Bicknell C.L., Anderson L.C., Sheehan S., Hill W.G., Chang B., Churchill G.A., Chesler E.J., Korstanje R., Peters L.L. Aging Research Using Mouse Models. Curr. Protoc. Mouse Biol. 2015;5:95–133. doi: 10.1002/9780470942390.mo140195. PubMed DOI PMC
Harkema L., Youssef S.A., de Bruin A. Pathology of Mouse Models of Accelerated Aging. Vet. Pathol. 2016;53:366–389. doi: 10.1177/0300985815625169. PubMed DOI
Jackson S.J., Andrews N., Ball D., Bellantuono I., Gray J., Hachoumi L., Holmes A., Latcham J., Petrie A., Potter P., et al. Does age matter? The impact of rodent age on study outcomes. Lab. Anim. 2017;51:160–169. doi: 10.1177/0023677216653984. PubMed DOI PMC
Valbuena-Diez A.C., Blanco F.J., Oujo B., Langa C., Gonzalez-Nunez M., Llano E., Pendas A.M., Diaz M., Castrillo A., Lopez-Novoa J.M., et al. Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation. 2012;126:2612–2624. doi: 10.1161/CIRCULATIONAHA.112.101261. PubMed DOI
Vicen M., Igreja Sa I.C., Tripska K., Vitverova B., Najmanova I., Eissazadeh S., Micuda S., Nachtigal P. Membrane and soluble endoglin role in cardiovascular and metabolic disorders related to metabolic syndrome. Cell Mol. Life Sci. 2020;78:2405–2418. doi: 10.1007/s00018-020-03701-w. PubMed DOI PMC
Dolezelova E., Sa I.C.I., Prasnicka A., Hroch M., Hyspler R., Ticha A., Lastuvkova H., Cermanova J., Pericacho M., Visek J., et al. High soluble endoglin levels regulate cholesterol homeostasis and bile acids turnover in the liver of transgenic mice. Life Sci. 2019;232:116643. doi: 10.1016/j.lfs.2019.116643. PubMed DOI
Igreja Sa I.C., Tripska K., Hroch M., Hyspler R., Ticha A., Lastuvkova H., Schreiberova J., Dolezelova E., Eissazadeh S., Vitverova B., et al. Soluble Endoglin as a Potential Biomarker of Nonalcoholic Steatohepatitis (NASH) Development, Participating in Aggravation of NASH-Related Changes in Mouse Liver. Int. J. Mol. Sci. 2020;21:9021. doi: 10.3390/ijms21239021. PubMed DOI PMC
Venkatesha S., Toporsian M., Lam C., Hanai J., Mammoto T., Kim Y.M., Bdolah Y., Lim K.H., Yuan H.T., Libermann T.A., et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 2006;12:642–649. doi: 10.1038/nm1429. PubMed DOI
Varejckova M., Gallardo-Vara E., Vicen M., Vitverova B., Fikrova P., Dolezelova E., Rathouska J., Prasnicka A., Blazickova K., Micuda S., et al. Soluble endoglin modulates the pro-inflammatory mediators NF-kappaB and IL-6 in cultured human endothelial cells. Life Sci. 2017;175:52–60. doi: 10.1016/j.lfs.2017.03.014. PubMed DOI
Perez-Roque L., Nunez-Gomez E., Rodriguez-Barbero A., Bernabeu C., Lopez-Novoa J.M., Pericacho M. Pregnancy-Induced High Plasma Levels of Soluble Endoglin in Mice Lead to Preeclampsia Symptoms and Placental Abnormalities. Int. J. Mol. Sci. 2020;22:165. doi: 10.3390/ijms22010165. PubMed DOI PMC
Shao C., Wang J., Tian J., Tang Y.D. Coronary Artery Disease: From Mechanism to Clinical Practice. Adv. Exp. Med. Biol. 2020;1177:1–36. doi: 10.1007/978-981-15-2517-9_1. PubMed DOI
Ratz P.H., Berg K.M., Urban N.H., Miner A.S. Regulation of smooth muscle calcium sensitivity: KCl as a calcium-sensitizing stimulus. Am. J. Physiol. Cell Physiol. 2005;288:C769–C783. doi: 10.1152/ajpcell.00529.2004. PubMed DOI
Himpens B., Missiaen L., Casteels R. Ca2+ homeostasis in vascular smooth muscle. J. Vasc. Res. 1995;32:207–219. doi: 10.1159/000159095. PubMed DOI
Morimoto S., Koh E., Kim S., Morita R., Fukuo K., Ogihara T. Effects of prostaglandin F2 alpha on the mobilization of cytosolic free calcium in vascular smooth muscle cells and on the tension of aortic strips from rats. Am. J. Hypertens. 1990;3:241S–244S. doi: 10.1093/ajh/3.8.241. PubMed DOI
Kishi H., Ye L.H., Nakamura A., Okagaki T., Iwata A., Tanaka T., Kohama K. Structure and function of smooth muscle myosin light chain kinase. Adv. Exp. Med. Biol. 1998;453:229–234. doi: 10.1007/978-1-4684-6039-1_26. PubMed DOI
Stull J.T., Tansey M.G., Tang D.C., Word R.A., Kamm K.E. Phosphorylation of myosin light chain kinase: A cellular mechanism for Ca2+ desensitization. Mol. Cell Biochem. 1993;127-128:229–237. doi: 10.1007/BF01076774. PubMed DOI
Eglen R.M., Whiting R.L. Heterogeneity of vascular muscarinic receptors. J. Auton. Pharm. 1990;10:233–245. doi: 10.1111/j.1474-8673.1990.tb00023.x. PubMed DOI
Tangsucharit P., Takatori S., Zamami Y., Goda M., Pakdeechote P., Kawasaki H., Takayama F. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries. J. Pharm. Sci. 2016;130:24–32. doi: 10.1016/j.jphs.2015.12.005. PubMed DOI
Vanhoutte P.M., De Mey J. Control of vascular smooth muscle function by the endothelial cells. Gen. Pharm. 1983;14:39–41. doi: 10.1016/0306-3623(83)90060-5. PubMed DOI
Vicen M., Vitverova B., Havelek R., Blazickova K., Machacek M., Rathouska J., Najmanova I., Dolezelova E., Prasnicka A., Sternak M., et al. Regulation and role of endoglin in cholesterol-induced endothelial and vascular dysfunction in vivo and in vitro. FASEB J. 2019;33:6099–6114. doi: 10.1096/fj.201802245R. PubMed DOI
Santibanez J.F., Letamendia A., Perez-Barriocanal F., Silvestri C., Saura M., Vary C.P., Lopez-Novoa J.M., Attisano L., Bernabeu C. Endoglin increases eNOS expression by modulating Smad2 protein levels and Smad2-dependent TGF-beta signaling. J. Cell Physiol. 2007;210:456–468. doi: 10.1002/jcp.20878. PubMed DOI
Toporsian M., Gros R., Kabir M.G., Vera S., Govindaraju K., Eidelman D.H., Husain M., Letarte M. A role for endoglin in coupling eNOS activity and regulating vascular tone revealed in hereditary hemorrhagic telangiectasia. Circ. Res. 2005;96:684–692. doi: 10.1161/01.RES.0000159936.38601.22. PubMed DOI
Chen C.A., Druhan L.J., Varadharaj S., Chen Y.R., Zweier J.L. Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J. Biol. Chem. 2008;283:27038–27047. doi: 10.1074/jbc.M802269200. PubMed DOI PMC
Goumans M.J., Valdimarsdottir G., Itoh S., Rosendahl A., Sideras P., ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 2002;21:1743–1753. doi: 10.1093/emboj/21.7.1743. PubMed DOI PMC
Galkina E., Ley K. Vascular adhesion molecules in atherosclerosis. Arter. Thromb. Vasc. Biol. 2007;27:2292–2301. doi: 10.1161/ATVBAHA.107.149179. PubMed DOI
Sumagin R., Lomakina E., Sarelius I.H. Leukocyte-endothelial cell interactions are linked to vascular permeability via ICAM-1-mediated signaling. Am. J. Physiol. Heart Circ. Physiol. 2008;295:H969–H977. doi: 10.1152/ajpheart.00400.2008. PubMed DOI PMC
Habas K., Shang L. Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell. 2018;54:139–143. doi: 10.1016/j.tice.2018.09.002. PubMed DOI
Liao J.K. Linking endothelial dysfunction with endothelial cell activation. J. Clin. Investig. 2013;123:540–541. doi: 10.1172/JCI66843. PubMed DOI PMC
Alt A., Miguel-Romero L., Donderis J., Aristorena M., Blanco F.J., Round A., Rubio V., Bernabeu C., Marina A. Structural and functional insights into endoglin ligand recognition and binding. PLoS ONE. 2012;7:e29948. doi: 10.1371/journal.pone.0029948. PubMed DOI PMC
Van Le B., Franke D., Svergun D.I., Han T., Hwang H.Y., Kim K.K. Structural and functional characterization of soluble endoglin receptor. Biochem. Biophys. Res. Commun. 2009;383:386–391. doi: 10.1016/j.bbrc.2009.02.162. PubMed DOI
Rossi E., Sanz-Rodriguez F., Eleno N., Duwell A., Blanco F.J., Langa C., Botella L.M., Cabanas C., Lopez-Novoa J.M., Bernabeu C. Endothelial endoglin is involved in inflammation: Role in leukocyte adhesion and transmigration. Blood. 2013;121:403–415. doi: 10.1182/blood-2012-06-435347. PubMed DOI
Rossi E., Smadja D.M., Boscolo E., Langa C., Arevalo M.A., Pericacho M., Gamella-Pozuelo L., Kauskot A., Botella L.M., Gaussem P., et al. Endoglin regulates mural cell adhesion in the circulatory system. Cell Mol. Life Sci. 2016;73:1715–1739. doi: 10.1007/s00018-015-2099-4. PubMed DOI PMC