Photoinduced hole hopping through tryptophans in proteins

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33836608

Grantová podpora
R01 DK019038 NIDDK NIH HHS - United States

Hole hopping through tryptophan/tyrosine chains enables rapid unidirectional charge transport over long distances. We have elucidated structural and dynamical factors controlling hopping speed and efficiency in two modified azurin constructs that include a rhenium(I) sensitizer, Re(His)(CO)3(dmp)+, and one or two tryptophans (W1, W2). Experimental kinetics investigations showed that the two closely spaced (3 to 4 Å) intervening tryptophans dramatically accelerated long-range electron transfer (ET) from CuI to the photoexcited sensitizer. In our theoretical work, we found that time-dependent density-functional theory (TDDFT) quantum mechanics/molecular mechanics/molecular dynamics (QM/MM/MD) trajectories of low-lying triplet excited states of ReI(His)(CO)3(dmp)+-W1(-W2) exhibited crossings between sensitizer-localized (*Re) and charge-separated [ReI(His)(CO)3(dmp•-)/(W1•+ or W2•+)] (CS1 or CS2) states. Our analysis revealed that the distances, angles, and mutual orientations of ET-active cofactors fluctuate in a relatively narrow range in which the cofactors are strongly coupled, enabling adiabatic ET. Water-dominated electrostatic field fluctuations bring *Re and CS1 states to a crossing where *Re(CO)3(dmp)+←W1 ET occurs, and CS1 becomes the lowest triplet state. ET is promoted by solvation dynamics around *Re(CO)3(dmp)+(W1); and CS1 is stabilized by Re(dmp•-)/W1•+ electron/hole interaction and enhanced W1•+ solvation. The second hop, W1•+←W2, is facilitated by water fluctuations near the W1/W2 unit, taking place when the electrostatic potential at W2 drops well below that at W1•+ Insufficient solvation and reorganization around W2 make W1•+←W2 ET endergonic, shifting the equilibrium toward W1•+ and decreasing the charge-separation yield. We suggest that multiscale TDDFT/MM/MD is a suitable technique to model the simultaneous evolution of photogenerated excited-state manifolds.

Zobrazit více v PubMed

Winkler J. R., Gray H. B., Electron flow through metalloproteins. Chem. Rev. 114, 3369–3380 (2014). PubMed PMC

Warren J. J., Ener M. E., Vlček A. Jr, Winkler J. R., Gray H. B., Electron hopping through proteins. Coord. Chem. Rev. 256, 2478–2487 (2012). PubMed PMC

Minnihan E. C., Nocera D. G., Stubbe J., Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc. Chem. Res. 46, 2524–2535 (2013). PubMed PMC

Sjöberg B. M., Reichard P., Nature of the free radical in ribonucleotide reductase from Escherichia coli. J. Biol. Chem. 252, 536–541 (1977). PubMed

Olshansky L., Stubbe J., Nocera D. G., Charge-transfer dynamics at the α/β subunit interface of a photochemical ribonucleotide reductase. J. Am. Chem. Soc. 138, 1196–1205 (2016). PubMed PMC

Olshansky L., Greene B. L., Finkbeiner C., Stubbe J., Nocera D. G., Photochemical generation of a tryptophan radical within the subunit interface of ribonucleotide reductase. Biochemistry 55, 3234–3240 (2016). PubMed PMC

Ehrenberg A., Reichard P., Electron spin resonance of the iron-containing protein B2 from ribonucleotide reductase. J. Biol. Chem. 247, 3485–3488 (1972). PubMed

Sancar A., Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103, 2203–2237 (2003). PubMed

Liu Z., et al. ., Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proc. Natl. Acad. Sci. U.S.A. 108, 14831–14836 (2011). PubMed PMC

Liu Z., et al. ., Determining complete electron flow in the cofactor photoreduction of oxidized photolyase. Proc. Natl. Acad. Sci. U.S.A. 110, 12966–12971 (2013). PubMed PMC

Lukacs A., Eker A. P. M., Byrdin M., Brettel K., Vos M. H., Electron hopping through the 15 A triple tryptophan molecular wire in DNA photolyase occurs within 30 ps. J. Am. Chem. Soc. 130, 14394–14395 (2008). PubMed

Byrdin M., et al. ., Quantum yield measurements of short-lived photoactivation intermediates in DNA photolyase: Toward a detailed understanding of the triple tryptophan electron transfer chain. J. Phys. Chem. A 114, 3207–3214 (2010). PubMed

Müller P., Yamamoto J., Martin R., Iwai S., Brettel K., Discovery and functional analysis of a 4th electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6-4) photolyases. Chem. Commun. (Camb.) 51, 15502–15505 (2015). PubMed

Müller P., Ignatz E., Kiontke S., Brettel K., Essen L.-O., Sub-nanosecond tryptophan radical deprotonation mediated by a protein-bound water cluster in class II DNA photolyases. Chem. Sci. (Camb.) 9, 1200–1212 (2017). PubMed PMC

Lacombat F., et al. ., Delocalized hole transport coupled to sub-ns tryptophanyl deprotonation promotes photoreduction of class II photolyases. Phys. Chem. Chem. Phys. 20, 25446–25457 (2018). PubMed

Jiang N., et al. ., Distance-independent charge recombination kinetics in cytochrome c-cytochrome c peroxidase complexes: Compensating changes in the electronic coupling and reorganization energies. J. Phys. Chem. B 117, 9129–9141 (2013). PubMed PMC

Hoffman B. M., et al. ., Differential influence of dynamic processes on forward and reverse electron transfer across a protein-protein interface. Proc. Natl. Acad. Sci. U.S.A. 102, 3564–3569 (2005). PubMed PMC

Seifert J. L., Pfister T. D., Nocek J. M., Lu Y., Hoffman B. M., Hopping in the electron-transfer photocycle of the 1:1 complex of Zn-cytochrome c peroxidase with cytochrome c. J. Am. Chem. Soc. 127, 5750–5751 (2005). PubMed

Tarboush N. A., et al. ., Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 108, 16956–16961 (2011). PubMed PMC

Gray H. B., Winkler J. R., The rise of radicals in bioinorganic chemistry. Isr. J. Chem. 56, 640–648 (2016). PubMed PMC

Farver O., Pecht I., Electron transfer in blue copper proteins. Coord. Chem. Rev. 255, 757–773 (2011).

Gupta A., et al. ., Involvement of Tyr108 in the enzyme mechanism of the small laccase from Streptomyces coelicolor. J. Am. Chem. Soc. 134, 18213–18216 (2012). PubMed

Wittekindt C., Schwarz M., Friedrich T., Koslowski T., Aromatic amino acids as stepping stones in charge transfer in respiratory complex I: An unusual mechanism deduced from atomistic theory and bioinformatics. J. Am. Chem. Soc. 131, 8134–8140 (2009). PubMed

Lacombat F., et al. ., Ultrafast oxidation of a tyrosine by proton-coupled electron transfer promotes light activation of an animal-like cryptochrome. J. Am. Chem. Soc. 141, 13394–13409 (2019). PubMed

Gray H. B., Winkler J. R., Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. Proc. Natl. Acad. Sci. U.S.A. 112, 10920–10925 (2015). PubMed PMC

Winkler J. R., Gray H. B., Electron flow through biological molecules: Does hole hopping protect proteins from oxidative damage? Q. Rev. Biophys. 48, 411–420 (2015). PubMed PMC

Winkler J. R., Gray H. B., Long-range electron tunneling. J. Am. Chem. Soc. 136, 2930–2939 (2014). PubMed PMC

Blumberger J., Electron transfer and transport through multi-heme proteins: Recent progress and future directions. Curr. Opin. Chem. Biol. 47, 24–31 (2018). PubMed

van Wonderen J. H., et al. ., Ultrafast light-driven electron transfer in a Ru(II)tris(bipyridine)-labeled multiheme cytochrome. J. Am. Chem. Soc. 141, 15190–15200 (2019). PubMed

Jiang X., et al. ., Which multi-heme protein complex transfers electrons more efficiently? Comparing MtrCAB from Shewanella with OmcS from Geobacter. J. Phys. Chem. Lett. 11, 9421–9425 (2020). PubMed

Breuer M., Rosso K. M., Blumberger J., Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Proc. Natl. Acad. Sci. U.S.A. 111, 611–616 (2014). PubMed PMC

Hayashi T., Stuchebrukhov A. A., Electron tunneling in respiratory complex I. Proc. Natl. Acad. Sci. U.S.A. 107, 19157–19162 (2010). PubMed PMC

Hirst J., Roessler M. M., Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. Biochim. Biophys. Acta 1857, 872–883 (2016). PubMed PMC

Fritsch J., et al. ., The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature 479, 249–252 (2011). PubMed

Shih C., et al. ., Tryptophan-accelerated electron flow through proteins. Science 320, 1760–1762 (2008). PubMed

Takematsu K., et al. ., Two tryptophans are better than one in accelerating electron flow through a protein. ACS Cent. Sci. 5, 192–200 (2019). PubMed PMC

Blanco-Rodríguez A. M., et al. ., Phototriggering electron flow through Re(I)-modified Pseudomonas aeruginosa azurins. Chemistry 17, 5350–5361 (2011). PubMed PMC

Takematsu K., et al. ., Hole hopping across a protein-protein interface. J. Phys. Chem. B 123, 1578–1591 (2019). PubMed PMC

Mai S., et al. ., Competing ultrafast photoinduced electron transfer and intersystem crossing of [Re(CO)3(Dmp)(His124)(Trp122)]+ in Pseudomonas aeruginosa azurin: A nonadiabatic dynamics study. Theor. Chem. Acc. 139, 65 (2020). PubMed PMC

El Nahhas A., et al. ., Ultrafast excited-state dynamics of rhenium(I) photosensitizers [Re(Cl)(CO)3(N,N)] and [Re(imidazole)(CO)3(N,N)]+: Diimine effects. Inorg. Chem. 50, 2932–2943 (2011). PubMed

Kundu M., He T.-F., Lu Y., Wang L., Zhong D., Short-range electron transfer in reduced flavodoxin: Ultrafast nonequilibrium dynamics coupled with protein fluctuations. J. Phys. Chem. Lett. 9, 2782–2790 (2018). PubMed PMC

He T.-F., et al. ., Femtosecond dynamics of short-range protein electron transfer in flavodoxin. Biochemistry 52, 9120–9128 (2013). PubMed PMC

Kubař T., Elstner M., A hybrid approach to simulation of electron transfer in complex molecular systems. J. R. Soc. Interface 10, 20130415 (2013). PubMed PMC

Newton M. D., Quantum chemical probes of electron transfer kinetics: The nature of donor-acceptor interactions. Chem. Rev. 91, 767–792 (1991).

Blumberger J., Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem. Rev. 115, 11191–11238 (2015). PubMed

A. Vlček, Jr, Ultrafast excited-state processes in Re(I) carbonyl-diimine complexes: From excitation to photochemistry. Top. Organomet. Chem. 29, 73–114 (2010).

Cannizzo A., et al. ., Femtosecond fluorescence and intersystem crossing in rhenium(I) carbonyl-bipyridine complexes. J. Am. Chem. Soc. 130, 8967–8974 (2008). PubMed

Blanco-Rodríguez A. M., et al. ., Relaxation dynamics of Pseudomonas aeruginosa Re(I)(CO)3(alpha-diimine)(HisX)+ (X = 83, 107, 109, 124, 126)Cu(II) azurins. J. Am. Chem. Soc. 131, 11788–11800 (2009). PubMed

Mai S., González L., Unconventional two-step spin relaxation dynamics of [Re(CO)3(im)(phen)]+ in aqueous solution. Chem. Sci. (Camb.) 10, 10405–10411 (2019). PubMed PMC

Mai S., et al. ., Excited-states of a rhenium carbonyl diimine complex: Solvation models, spin-orbit coupling, and vibrational sampling effects. Phys. Chem. Chem. Phys. 19, 27240–27250 (2017). PubMed

Mai S., et al. ., Quantitative wave function analysis for excited states of transition metal complexes. Coord. Chem. Rev. 361, 74–97 (2018).

Sumi H., Marcus R. A., Dynamical effects in electron transfer reactions. J. Chem. Phys. 84, 4894–4914 (1986).

Sumi H., “Adiabatic versus non-adiabatic electron transfer” in Electron Transfer in Chemistry, Balzani V., Ed. (Wiley-VCH, Weinheim, 1999), vol. 1, pp. 64–108.

Onuchic J. N., Beratan D. N., Hopfield J. J., Some aspects of electron-transfer reaction dynamics. J. Phys. Chem. 90, 3707–3721 (1986).

Rips I., Jortner J., Dynamic solvent effects on outer-sphere electron transfer. J. Chem. Phys. 87, 2090–2104 (1987).

Cave R. J., Newton M. D., Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem. Phys. Lett. 249, 15–19 (1996).

Cave R. J., Newton M. D., Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken–Hush and block diagonalization methods. J. Chem. Phys. 106, 9213–9226 (1997).

Voityuk A. A., Rösch N., Fragment charge difference method for estimating donor–acceptor electronic coupling: Application to DNA π-stacks. J. Chem. Phys. 117, 5607 (2002).

Takematsu K., et al. ., Tryptophan-accelerated electron flow across a protein-protein interface. J. Am. Chem. Soc. 135, 15515–15525 (2013). PubMed PMC

Oberhofer H., Reuter K., Blumberger J., Charge transport in molecular materials: An assessment of computational methods. Chem. Rev. 117, 10319–10357 (2017). PubMed

Bixon M., Jortner J., Solvent relaxation dynamics and electron transfer. Chem. Phys. 176, 467–481 (1993).

Pospíšil P., et al. ., Light-induced nanosecond relaxation dynamics of rhenium-labeled Pseudomonas aeruginosa Azurins. J. Phys. Chem. B 124, 788–797 (2020). PubMed

Polák J., Ondo D., Heyda J., Thermodynamics of N-isopropylacrylamide in water: Insight from experiments, simulations, and Kirkwood-Buff analysis teamwork. J. Phys. Chem. B 124, 2495–2504 (2020). PubMed

Lin B., Pettitt B. M., Note: On the universality of proximal radial distribution functions of proteins. J. Chem. Phys. 134, 106101 (2011). PubMed PMC

Tang E., Di Tommaso D., de Leeuw N. H., Hydrogen transfer and hydration properties of H(n)PO4(3-n) (n=0-3) in water studied by first principles molecular dynamics simulations. J. Chem. Phys. 130, 234502 (2009). PubMed

Gaigeot M.-P., Sprik M., Ab initio molecular dynamics study of Uracil in aqueous solution. J. Phys. Chem. B 108, 7458–7467 (2004).

Zhang Y., Liu C., Balaeff A., Skourtis S. S., Beratan D. N., Biological charge transfer via flickering resonance. Proc. Natl. Acad. Sci. U.S.A. 111, 10049–10054 (2014). PubMed PMC

Beratan D. N., et al. ., Charge transfer in dynamical biosystems, or the treachery of (static) images. Acc. Chem. Res. 48, 474–481 (2015). PubMed PMC

Head-Gordon M., Grańa A. M., Maurice D., White C. A., Analysis of electronic transitions as the difference of electron attachment and detachment densities. J. Phys. Chem. 99, 14261–14270 (1995).

Olmon E. D., et al. ., Charge photoinjection in intercalated and covalently bound [Re(CO)3(dppz)(py)]+-DNA constructs monitored by time-resolved visible and infrared spectroscopy. J. Am. Chem. Soc. 133, 13718–13730 (2011). PubMed PMC

Kubas A., et al. ., Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations. J. Chem. Phys. 140, 104105 (2014). PubMed

Kubas A., et al. ., Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT and FODFTB against high-level ab initio calculations. II. Phys. Chem. Chem. Phys. 17, 14342–14354 (2015). PubMed

Polizzi N. F., Migliore A., Therien M. J., Beratan D. N., Defusing redox bombs? Proc. Natl. Acad. Sci. U.S.A. 112, 10821–10822 (2015). PubMed PMC

Yue H., et al. ., On the electron transfer mechanism between cytochrome C and metal electrodes. Evidence for dynamic control at short distances. J. Phys. Chem. B 110, 19906–19913 (2006). PubMed

Davis K. L., et al. ., Electron-transfer kinetics of covalently attached cytochrome c/SAM/Au electrode assemblies. J. Phys. Chem. C 112, 6571–6576 (2008).

Cailliez F., Müller P., Gallois M., de la Lande A., ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome. J. Am. Chem. Soc. 136, 12974–12986 (2014). PubMed

Woiczikowski P. B., Steinbrecher T., Kubař T., Elstner M., Nonadiabatic QM/MM simulations of fast charge transfer in Escherichia coli DNA photolyase. J. Phys. Chem. B 115, 9846–9863 (2011). PubMed

Lüdemann G., Woiczikowski P. B., Kubař T., Elstner M., Steinbrecher T. B., Charge transfer in E. coli DNA photolyase: Understanding polarization and stabilization effects via QM/MM simulations. J. Phys. Chem. B 117, 10769–10778 (2013). PubMed

Lüdemann G., Solov’yov I. A., Kubař T., Elstner M., Solvent driving force ensures fast formation of a persistent and well-separated radical pair in plant cryptochrome. J. Am. Chem. Soc. 137, 1147–1156 (2015). PubMed

Cailliez F., Müller P., Firmino T., Pernot P., de la Lande A., Energetics of photoinduced charge migration within the tryptophan tetrad of an animal (6-4) photolyase. J. Am. Chem. Soc. 138, 1904–1915 (2016). PubMed

Teo R. D., et al. ., Mapping hole hopping escape routes in proteins. Proc. Natl. Acad. Sci. U.S.A. 116, 15811–15816 (2019). PubMed PMC

Fonseca B. M., et al. ., The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes. J. Biol. Inorg. Chem. 14, 375–385 (2009). PubMed

Ron I., Pecht I., Sheves M., Cahen D., Proteins as solid-state electronic conductors. Acc. Chem. Res. 43, 945–953 (2010). PubMed

Fereiro J. A., et al. ., Protein electronics: Chemical modulation of contacts control energy level alignment in Gold-Azurin-gold junctions. J. Am. Chem. Soc. 140, 13317–13326 (2018). PubMed

Yu X., et al. ., Insights into solid-state electron transport through proteins from inelastic tunneling spectroscopy: The case of Azurin. ACS Nano 9, 9955–9963 (2015). PubMed

Bostick C. D., et al. ., Protein bioelectronics: A review of what we do and do not know. Rep. Prog. Phys. 81, 026601 (2018). PubMed

Futera Z., et al. ., Coherent electron transport across a 3 nm bioelectronic junction made of multi-heme proteins. J. Phys. Chem. Lett. 11, 9766–9774 (2020). PubMed PMC

Ufimtsev I. S., Martínez T. J., Quantum chemistry on graphical processing units. 3. Analytical energy gradients and first principles molecular dynamics. J. Chem. Theory Comput. 5, 2619–2628 (2009). PubMed

Titov A. V., Ufimtsev I. S., Luehr N., Martínez T. J., Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 9, 213–221 (2013). PubMed

Case D. A., et al. ., AMBER 14 (University of California, San Francisco, 2014).

Adamo C., Scuseria G. E., Barone V., Accurate excitation energies from time-dependent density functionl theory: Assessing the PBE0 model. J. Chem. Phys. 111, 2889–2899 (1999).

Adamo C., Barone V., Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

Grimme S., Antony J., Ehrlich S., Krieg H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). PubMed

Yanai T., Tew D. P., Handy N. C., A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

Shao Y., et al. ., Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

Marenich A. V., Jerome S. V., Cramer C. J., Truhlar D. G., Charge model 5: An extension of hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J. Chem. Theory Comput. 8, 527–541 (2012). PubMed

Marazzi M., Gattuso H., Fumanal M., Daniel C., Monari A., Charge-transfer vs. charge-separated triplet excited states of [ReI(dmp)(CO)3(His124)(Trp122)]+ in water and in modified Pseudomonas aeruginosa azurin protein. Chemistry 25, 2519–2526 (2019). PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tryptophan to Tryptophan Hole Hopping in an Azurin Construct

. 2024 Jan 11 ; 128 (1) : 96-108. [epub] 20231225

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...