Two Tryptophans Are Better Than One in Accelerating Electron Flow through a Protein
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 DK019038
NIDDK NIH HHS - United States
PubMed
30693338
PubMed Central
PMC6346393
DOI
10.1021/acscentsci.8b00882
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We have constructed and structurally characterized a Pseudomonas aeruginosa azurin mutant Re126WWCuI , where two adjacent tryptophan residues (W124 and W122, indole separation 3.6-4.1 Å) are inserted between the CuI center and a Re photosensitizer coordinated to the imidazole of H126 (ReI(H126)(CO)3(4,7-dimethyl-1,10-phenanthroline)+). CuI oxidation by the photoexcited Re label (*Re) 22.9 Å away proceeds with a ∼70 ns time constant, similar to that of a single-tryptophan mutant (∼40 ns) with a 19.4 Å Re-Cu distance. Time-resolved spectroscopy (luminescence, visible and IR absorption) revealed two rapid reversible electron transfer steps, W124 → *Re (400-475 ps, K 1 ≅ 3.5-4) and W122 → W124•+ (7-9 ns, K 2 ≅ 0.55-0.75), followed by a rate-determining (70-90 ns) CuI oxidation by W122•+ ca. 11 Å away. The photocycle is completed by 120 μs recombination. No photochemical CuI oxidation was observed in Re126FWCuI , whereas in Re126WFCuI , the photocycle is restricted to the ReH126W124 unit and CuI remains isolated. QM/MM/MD simulations of Re126WWCuI indicate that indole solvation changes through the hopping process and W124 → *Re electron transfer is accompanied by water fluctuations that tighten W124 solvation. Our finding that multistep tunneling (hopping) confers a ∼9000-fold advantage over single-step tunneling in the double-tryptophan protein supports the proposal that hole-hopping through tryptophan/tyrosine chains protects enzymes from oxidative damage.
Beckman Institute California Institute of Technology Pasadena California 91125 United States
Department of Chemistry Bowdoin College Brunswick Maine 04011 United States
Department of Chemistry Xavier University of Louisiana New Orleans Louisiana 70125 United States
Zobrazit více v PubMed
Winkler J. R.; Gray H. B. Long-Range Electron Tunneling. J. Am. Chem. Soc. 2014, 136, 2930–2939. 10.1021/ja500215j. PubMed DOI PMC
Winkler J. R.; Gray H. B. Electron Flow through Metalloproteins. Chem. Rev. 2014, 114, 3369–3380. 10.1021/cr4004715. PubMed DOI PMC
Gray H. B.; Winkler J. R. Long-Range Electron Transfer. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 3534–3539. 10.1073/pnas.0408029102. PubMed DOI PMC
Gray H. B.; Winkler J. R. Electron Tunneling through Proteins. Q. Rev. Biophys. 1999, 36, 341–372. 10.1017/S0033583503003913. PubMed DOI
Warren J. J.; Ener M. E.; Jr Vlček A.; Winkler J. R.; Gray H. B. Electron Hopping through Proteins. Coord. Chem. Rev. 2012, 256, 2478–2487. 10.1016/j.ccr.2012.03.032. PubMed DOI PMC
Warren J. J.; Winkler J. R.; Gray H. B. Hopping Maps for Photosynthetic Reaction Centers. Coord. Chem. Rev. 2013, 257, 165–170. 10.1016/j.ccr.2012.07.002. PubMed DOI PMC
Shih C.; Museth A. K.; Abrahamsson M.; Blanco-Rodriguez A. M.; Di Bilio A. J.; Sudhamsu J.; Crane B. R.; Ronayne K. L.; Towrie M.; Vlček A. Jr.; Richards J. H.; Winkler J. R.; Gray H. B. Tryptophan-Accelerated Electron Flow through Proteins. Science 2008, 320, 1760–1762. 10.1126/science.1158241. PubMed DOI
Warren J. J.; Herrera N.; Hill M. G.; Winkler J. R.; Gray H. B. Electron Flow through Nitrotyrosinate in Pseudomonas aeruginosa Azurin. J. Am. Chem. Soc. 2013, 135, 11151–11158. 10.1021/ja403734n. PubMed DOI PMC
Blanco-Rodríguez A. M.; Di Bilio A. J.; Shih C.; Museth A. K.; Clark I. P.; Towrie M.; Cannizzo A.; Sudhamsu J.; Crane B. R.; Sýkora J.; Winkler J. R.; Gray H. B.; Záliš S.; Vlček A. Jr. Phototriggering Electron Flow through ReI-Modified Pseudomonas aeruginosa Azurins. Chem. - Eur. J. 2011, 17, 5350–5361. 10.1002/chem.201002162. PubMed DOI PMC
Fritsch J.; Scheerer P.; Frielingsdorf S.; Kroschinsky S.; Friedrich B.; Lenz O.; Spahn C. M. T. The Crystal Structure of an Oxygen-Tolerant Hydrogenase Uncovers a Novel Iron-Sulphur Centre. Nature 2011, 479, 249–253. 10.1038/nature10505. PubMed DOI
Hayashi T.; Stuchebrukhov A. A. Electron Tunneling in Respiratory Complex I. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 19157–19162. 10.1073/pnas.1009181107. PubMed DOI PMC
Hirst J.; Roessler M. M. Energy Conversion, Redox Catalysis and Generation of Reactive Oxygen Species by Respiratory Complex I. Biochim. Biophys. Acta, Bioenerg. 2016, 1857, 872–883. 10.1016/j.bbabio.2015.12.009. PubMed DOI PMC
Ehrenberg A.; Reichard P. Electron Spin Resonance of the Iron-Containing Protein B2 from Ribonucleotide Reductase. J. Biol. Chem. 1972, 247 (11), 3485–3488. PubMed
Sjöberg B. M.; Reichard P. Nature of the Free Radical in Ribonucleotide Reductase from Escherichia Coli. J. Biol. Chem. 1977, 252 (2), 536–541. PubMed
Larsson A.; Sjoberg B. M. Identification of the Stable Free-Radical Tyrosine Residue in Ribonucleotide Reductase. EMBO J. 1986, 5 (8), 2037–2040. 10.1002/j.1460-2075.1986.tb04461.x. PubMed DOI PMC
Minnihan E. C.; Nocera D. G.; Stubbe J. Reversible, Long-Range Radical Transfer in E. coli Class Ia Ribonucleotide Reductase. Acc. Chem. Res. 2013, 46 (11), 2524–2535. 10.1021/ar4000407. PubMed DOI PMC
Olshansky L.; Greene B. L.; Finkbeiner C.; Stubbe J.; Nocera D. G. Photochemical Generation of a Tryptophan Radical within the Subunit Interface of Ribonucleotide Reductase. Biochemistry 2016, 55, 3234–3240. 10.1021/acs.biochem.6b00292. PubMed DOI PMC
Olshansky L.; Stubbe J.; Nocera D. G. Charge-Transfer Dynamics at the Α/Β Subunit Interface of a Photochemical Ribonucleotide Reductase. J. Am. Chem. Soc. 2016, 138, 1196–1205. 10.1021/jacs.5b09259. PubMed DOI PMC
Bollinger M. J. Electron Relay in Proteins. Science 2008, 320 (5884), 1730–1731. 10.1126/science.1160001. PubMed DOI
Sjoberg B. M.Ribonucleotide Reductases - a Group of Enzymes with Different Metallosites and a Similar Reaction Mechanism. In Metal Sites in Proteins and Models: Iron Centres; Hill H. A. O.; Sadler P. J.; Thomson A. J., Eds.; Springer-Verlag Berlin: Berlin, 1997; Vol. 88, pp 139–173.
Lukacs A.; Eker A. P. M.; Byrdin M.; Brettel K.; Vos M. H. Electron Hopping through the 15 Å Triple Tryptophan Molecular Wire in DNA Photolyase Occurs within 30 ps. J. Am. Chem. Soc. 2008, 130, 14394–14395. 10.1021/ja805261m. PubMed DOI
Liu Z.; Tan C.; Guo X.; Li J.; Wang L.; Sancar A.; Zhong D. Determining Complete Electron Flow in the Cofactor Photoreduction of Oxidized Photolyase. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12966–12971. 10.1073/pnas.1311073110. PubMed DOI PMC
Gray H. B.; Winkler J. R. Hole Hopping through Tyrosine/Tryptophan Chains Protects Proteins from Oxidative Damage. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 10920–10925. 10.1073/pnas.1512704112. PubMed DOI PMC
Winkler J. R.; Gray H. B. Electron Flow through Biological Molecules: Does Hole Hopping Protect Proteins from Oxidative Damage?. Q. Rev. Biophys. 2015, 48, 411–420. 10.1017/S0033583515000062. PubMed DOI PMC
Gray H. B.; Winkler J. R. Living with Oxygen. Acc. Chem. Res. 2018, 51, 1850–1857. 10.1021/acs.accounts.8b00245. PubMed DOI PMC
Polizzi N. F.; Migliore A.; Therien M. J.; Beratan D. N. Defusing Redox Bombs?. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 10821–10822. 10.1073/pnas.1513520112. PubMed DOI PMC
Gray H. B.; Winkler J. R. The Rise of Radicals in Bioinorganic Chemistry. Isr. J. Chem. 2016, 56, 640–648. 10.1002/ijch.201600069. PubMed DOI PMC
Connick W. B.; Di Bilio A. J.; Hill M. G.; Winkler J. R.; Gray H. B. Tricarbonyl(1,10-phenanthroline)(imidazole)rhenium(I): A Powerful Photooxidant for Investigations of Electron Tunneling in Proteins. Inorg. Chim. Acta 1995, 240, 169–173. 10.1016/0020-1693(95)04532-5. DOI
Winkler J. R.; Di Bilio A. J.; Farrow N. A.; Richards J. H.; Gray H. B. Electron Tunneling in Biological Molecules. Pure Appl. Chem. 1999, 71, 1753–1764. 10.1351/pac199971091753. DOI
Crane B. R.; Di Bilio A. J.; Winkler J. R.; Gray H. B. Electron Transfer in Single Crystals of Pseudomonas aeruginosa Azurins. J. Am. Chem. Soc. 2001, 123, 11623–11631. 10.1021/ja0115870. PubMed DOI
Miller J. E.; Di Bilio A. J.; Wehbi W. A.; Green M. T.; Museth A. K.; Richards J. R.; Winkler J. R.; Gray H. B. Electron Tunneling in Rhenium-Modified Pseudomonas aeruginosa Azurins. Biochim. Biophys. Acta, Bioenerg. 2004, 1655, 59–63. 10.1016/j.bbabio.2003.06.010. PubMed DOI
Yu Y.; Petrik I. D.; Chacon K. N.; Hosseinzadeh P.; Chen H. H.; Blackburn N. J.; Lu Y. Effect of Circular Permutation on the Structure and Function of Type 1 Blue Copper Center in Azurin. Protein Sci. 2017, 26 (2), 218–226. 10.1002/pro.3071. PubMed DOI PMC
Gray H. B.; Malmstrom B. G.; Williams R. J. P. Copper Coordination in Blue Proteins. JBIC, J. Biol. Inorg. Chem. 2000, 5 (5), 551–559. 10.1007/s007750000146. PubMed DOI
Takematsu K.; Williamson H.; Blanco-Rodríguez A. M.; Sokolová L.; Nikolovski P.; Kaiser J. T.; Towrie M.; Clark I. P.; Vlček A. Jr; Winkler J. R.; Gray H. B. Tryptophan-Accelerated Electron Flow across a Protein-Protein Interface. J. Am. Chem. Soc. 2013, 135, 15515–15525. 10.1021/ja406830d. PubMed DOI PMC
Farver O.; Skov L. K.; Young S.; Bonander N.; Karlsson B. G.; Vänngård T.; Pecht I. Aromatic Residues May Enhance Intramolecular Electron Transfer in Azurin. J. Am. Chem. Soc. 1997, 119, 5453–5454. 10.1021/ja964386i. DOI
Sokolová L.; Williamson H.; Sýkora J.; Hof M.; Gray H. B.; Brutschy B.; Vlček A. Jr. Mass Spectrometric Characterization of Oligomers in Pseudomonas aeruginosa Azurin Solutions. J. Phys. Chem. B 2011, 115, 4790–4800. 10.1021/jp110460k. PubMed DOI PMC
Vlček A.; Kvapilová H.; Towrie M.; Záliš S. Electron-Transfer Acceleration Investigated by Time Resolved Infrared Spectroscopy. Acc. Chem. Res. 2015, 48, 868–876. 10.1021/ar5004048. PubMed DOI
Blanco-Rodríguez A. M.; Busby M.; Ronayne K. L.; Towrie M.; Grǎdinaru C.; Sudhamsu J.; Sýkora J.; Hof M.; Záliš S.; Di Bilio A. J.; Crane B. R.; Gray H. B.; Vlček A. Jr. Relaxation Dynamics of [ReI(CO)3(phen)(Hisx)]+ (X = 83, 107, 109, 124, 126) Pseudomonas aeruginosa Azurins. J. Am. Chem. Soc. 2009, 131, 11788–11800. 10.1021/ja902744s. PubMed DOI
Blumberger J. Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions. Chem. Rev. 2015, 115, 11191–11238. 10.1021/acs.chemrev.5b00298. PubMed DOI
Ryde U.QM/MM Calculations on Proteins. In Computational Approaches for Studying Enzyme Mechanism, Pt A; Voth G. A., Ed.; Elsevier Academic Press Inc: San Diego, 2016; Vol. 577, pp 119–158. PubMed
Adamo C.; Scuseria G. E.; Barone V. Accurate Excitation Energies from Time-Dependent Density Functionl Theory: Assessing the PBE0Model. J. Chem. Phys. 1999, 111, 2889–2899. 10.1063/1.479571. DOI
Adamo C.; Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
Striplin D. R.; Crosby G. A. Nature of the Emitting 3MLCT Manifold of Re(Cl)(CO)3(diimine). Chem. Phys. Lett. 1994, 221, 426–430. 10.1016/0009-2614(94)00282-7. DOI
Striplin D. R.; Crosby G. A. Photophysical Investigations of Rhenium(I)Cl(CO)3(phenanthroline) Complexes. Coord. Chem. Rev. 2001, 211, 163–175. 10.1016/S0010-8545(00)00277-0. DOI
Vlček A. Jr. Ultrafast Excited-State Processes in Re(I) Carbonyl-Diimine Complexes: From Excitation to Photochemistry. Top. Organomet. Chem. 2010, 29, 73–114.
Kumar A.; Sun S.-S.; Lees A. J. Photophysics and Photochemistry of Organometallic Rhenium Diimine Complexes. Top. Organomet. Chem. 2010, 29, 1–35.
Cannizzo A.; Blanco-Rodríguez A. M.; El Nahhas A.; Šebera J.; Záliš S.; Vlček A. Jr.; Chergui M. Femtosecond Fluorescence and Intersystem Crossing in Rhenium(I) Carbonyl-Bipyridine Complexes. J. Am. Chem. Soc. 2008, 130, 8967–8974. 10.1021/ja710763w. PubMed DOI
Tryptophan to Tryptophan Hole Hopping in an Azurin Construct
Photoinduced hole hopping through tryptophans in proteins
Hole Hopping Across a Protein-Protein Interface