(E)-7-Ethylidene-lithocholic Acid (7-ELCA) Is a Potent Dual Farnesoid X Receptor (FXR) Antagonist and GPBAR1 Agonist Inhibiting FXR-Induced Gene Expression in Hepatocytes and Stimulating Glucagon-like Peptide-1 Secretion From Enteroendocrine Cells
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34483922
PubMed Central
PMC8414367
DOI
10.3389/fphar.2021.713149
PII: 713149
Knihovny.cz E-resources
- Keywords
- G protein-coupled bile acid receptor 1, bile acids, farnesoid X receptor, metabolism, steroid,
- Publication type
- Journal Article MeSH
Bile acids (BAs) are key signaling steroidal molecules that regulate glucose, lipid, and energy homeostasis via interactions with the farnesoid X receptor (FXR) and G-protein bile acid receptor 1 (GPBAR1). Extensive medicinal chemistry modifications of the BA scaffold led to the discovery of potent selective or dual FXR and GPBAR1 agonists. Herein, we discovered 7-ethylidene-lithocholic acid (7-ELCA) as a novel combined FXR antagonist/GPBAR1 agonist (IC50 = 15 μM/EC50 = 26 nM) with no off-target activation in a library of 7-alkyl substituted derivatives of BAs. 7-ELCA significantly suppressed the effect of the FXR agonist obeticholic acid in BSEP and SHP regulation in human hepatocytes. Importantly, 7-ELCA significantly stimulated the production of glucagon-like peptide-1 (GLP-1), an incretin with insulinotropic effect in postprandial glucose utilization, in intestinal enteroendocrine cells. We can suggest that 7-ELCA may be a prospective approach to the treatment of type II diabetes as the dual modulation of GPBAR1 and FXR has been supposed to be effective in the synergistic regulation of glucose homeostasis in the intestine.
Department of Internal Medicine 8 University Hospital of Tübingen Tübingen Germany
Faculty of Sciences Charles University Prague Czechia
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czechia
School of Pharmacy University of Eastern Finland Faculty of Health Sciences Kuopio Finland
See more in PubMed
Ahmad T. R., Haeusler R. A. (2019). Bile Acids in Glucose Metabolism and Insulin Signalling - Mechanisms and Research Needs. Nat. Rev. Endocrinol. 15, 701–712. 10.1038/s41574-019-0266-7 PubMed DOI PMC
Arab J. P., Karpen S. J., Dawson P. A., Arrese M., Trauner M. (2017). Bile Acids and Nonalcoholic Fatty Liver Disease: Molecular Insights and Therapeutic Perspectives. Hepatology 65, 350–362. 10.1002/hep.28709 PubMed DOI PMC
Bjedov S., Jakimov D., Pilipović A., Poša M., Sakač M. (2017). Antitumor Activity of Newly Synthesized Oxo and Ethylidene Derivatives of Bile Acids and Their Amides and Oxazolines. Steroids 120, 19–25. 10.1016/j.steroids.2017.01.008 PubMed DOI
Brighton C. A., Rievaj J., Kuhre R. E., Glass L. L., Schoonjans K., Holst J. J., et al. (2015). Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors. Endocrinology 156, 3961–3970. 10.1210/en.2015-1321 PubMed DOI PMC
Cao H., Chen Z. X., Wang K., Ning M. M., Zou Q. A., Feng Y., et al. (2016). Intestinally-targeted TGR5 Agonists Equipped with Quaternary Ammonium Have an Improved Hypoglycemic Effect and Reduced Gallbladder Filling Effect. Sci. Rep. 6, 28676. 10.1038/srep28676 PubMed DOI PMC
Carazo A., Dusek J., Holas O., Skoda J., Hyrsova L., Smutny T., et al. (2018). Teriflunomide Is an Indirect Human Constitutive Androstane Receptor (CAR) Activator Interacting with Epidermal Growth Factor (EGF) Signaling. Front. Pharmacol. 9, 993. 10.3389/fphar.2018.00993 PubMed DOI PMC
Carino A., Biagioli M., Marchianò S., Scarpelli P., Zampella A., Limongelli V., et al. (2018). Disruption of TFGβ-SMAD3 Pathway by the Nuclear Receptor SHP Mediates the Antifibrotic Activities of BAR704, a Novel Highly Selective FXR Ligand. Pharmacol. Res. 131, 17–31. 10.1016/j.phrs.2018.02.033 PubMed DOI
Chaudhari S. N., Harris D. A., Aliakbarian H., Luo J. N., Henke M. T., Subramaniam R., et al. (2021). Bariatric Surgery Reveals a Gut-Restricted TGR5 Agonist with Anti-diabetic Effects. Nat. Chem. Biol. 17, 20–29. 10.1038/s41589-020-0604-z PubMed DOI PMC
Chen T., Reich N. W., Bell N., Finn P. D., Rodriguez D., Kohler J., et al. (2018). Design of Gut-Restricted Thiazolidine Agonists of G Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5). J. Med. Chem. 61, 7589–7613. 10.1021/acs.jmedchem.8b00308 PubMed DOI
Cui J., Huang L., Zhao A., Lew J.-L., Yu J., Sahoo S., et al. (2003). Guggulsterone Is a Farnesoid X Receptor Antagonist in Coactivator Association Assays but Acts to Enhance Transcription of Bile Salt export Pump. J. Biol. Chem. 278, 10214–10220. 10.1074/jbc.m209323200 PubMed DOI
D'Amore C., Di Leva F. S., Sepe V., Renga B., Del Gaudio C., D'Auria M. V., et al. (2014). Design, Synthesis, and Biological Evaluation of Potent Dual Agonists of Nuclear and Membrane Bile Acid Receptors. J. Med. Chem. 57, 937–954. 10.1021/jm401873d PubMed DOI
Ðanić M., Stanimirov B., Pavlović N., Goločorbin-Kon S., Al-Salami H., Stankov K., et al. (2018). Pharmacological Applications of Bile Acids and Their Derivatives in the Treatment of Metabolic Syndrome. Front. Pharmacol. 9, 1382. 10.3389/fphar.2018.01382 PubMed DOI PMC
De Marino S., Festa C., Sepe V., Zampella A. (2019). Chemistry and Pharmacology of GPBAR1 and FXR Selective Agonists, Dual Agonists, and Antagonists. Handb Exp. Pharmacol. 256, 137–165. 10.1007/164_2019_237 PubMed DOI
Di Leva F. S., Di Marino D., Limongelli V. (2019). Structural Insight into the Binding Mode of FXR and GPBAR1 Modulators. Handb Exp. Pharmacol. 256, 111–136. 10.1007/164_2019_234 PubMed DOI
Donkers J. M., Roscam Abbing R. L. P., van de Graaf S. F. J. (2019). Developments in Bile Salt Based Therapies: A Critical Overview. Biochem. Pharmacol. 161, 1–13. 10.1016/j.bcp.2018.12.018 PubMed DOI
Downes M., Verdecia M. A., Roecker A. J., Hughes R., Hogenesch J. B., Kast-Woelbern H. R., et al. (2003). A Chemical, Genetic, and Structural Analysis of the Nuclear Bile Acid Receptor FXR. Mol. Cel 11, 1079–1092. 10.1016/s1097-2765(03)00104-7 PubMed DOI PMC
Duan H., Ning M., Zou Q., Ye Y., Feng Y., Zhang L., et al. (2015). Discovery of Intestinal Targeted TGR5 Agonists for the Treatment of Type 2 Diabetes. J. Med. Chem. 58, 3315–3328. 10.1021/jm500829b PubMed DOI
Dvorák Z., Vrzal R., Pávek P., Ulrichová J. (2008). An Evidence for Regulatory Cross-Talk between Aryl Hydrocarbon Receptor and Glucocorticoid Receptor in HepG2 Cells. Physiol. Res. 57, 427–435. 10.33549/physiolres.931090 PubMed DOI
Fang S., Suh J. M., Reilly S. M., Yu E., Osborn O., Lackey D., et al. (2015). Intestinal FXR Agonism Promotes Adipose Tissue browning and Reduces Obesity and Insulin Resistance. Nat. Med. 21, 159–165. 10.1038/nm.3760 PubMed DOI PMC
Farrugia L. J. (2012). WinGXandORTEP for Windows: an Update. J. Appl. Cryst. 45, 849–854. 10.1107/s0021889812029111 DOI
Festa C., Renga B., D’Amore C., Sepe V., Finamore C., De Marino S., et al. (2014). Exploitation of Cholane Scaffold for the Discovery of Potent and Selective Farnesoid X Receptor (FXR) and G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1) Ligands. J. Med. Chem. 57, 8477–8495. 10.1021/jm501273r PubMed DOI
Fieser L. F., Rajagopalan S. (1950). Oxidation of Steroids. III. Selective Oxidations and Acylations in the Bile Acid Series1. J. Am. Chem. Soc. 72, 5530–5536. 10.1021/ja01168a046 DOI
Fieser L. F., Rajagopalan S. (1949). Selective Oxidation with N-Bromosuccinimide. I. Cholic Acid. J. Am. Chem. Soc. 71, 3935–3938. 10.1021/ja01180a015 DOI
Fiorucci S., Di Giorgio C., Distrutti E. (2019). Obeticholic Acid: An Update of its Pharmacological Activities in Liver Disorders. Handb Exp. Pharmacol. 256, 283–295. 10.1007/164_2019_227 PubMed DOI
Fujino T., Une M., Imanaka T., Inoue K., Nishimaki-Mogami T. (2004). Structure-activity Relationship of Bile Acids and Bile Acid Analogs in Regard to FXR Activation. J. Lipid Res. 45, 132–138. 10.1194/jlr.m300215-jlr200 PubMed DOI
Gertzen C. G. W., Spomer L., Smits S. H. J., Häussinger D., Keitel V., Gohlke H. (2015). Mutational Mapping of the Transmembrane Binding Site of the G-Protein Coupled Receptor TGR5 and Binding Mode Prediction of TGR5 Agonists. Eur. J. Med. Chem. 104, 57–72. 10.1016/j.ejmech.2015.09.024 PubMed DOI
Glicksman C., Pournaras D. J., Wright M., Roberts R., Mahon D., Welbourn R., et al. (2010). Postprandial Plasma Bile Acid Responses in normal Weight and Obese Subjects. Ann. Clin. Biochem. 47, 482–484. 10.1258/acb.2010.010040 PubMed DOI
Gonzalez F. J., Jiang C., Patterson A. D. (2016). An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology 151, 845–859. 10.1053/j.gastro.2016.08.057 PubMed DOI PMC
Gonzalez F. J., Jiang C., Xie C., Patterson A. D. (2017). Intestinal Farnesoid X Receptor Signaling Modulates Metabolic Disease. Dig. Dis. 35, 178–184. 10.1159/000450908 PubMed DOI PMC
Han C. Y. (2018). Update on FXR Biology: Promising Therapeutic Target?. Int. J. Mol. Sci. 19, 2069. 10.3390/ijms19072069 PubMed DOI PMC
Han X., Cui Z.-Y., Song J., Piao H.-Q., Lian L.-H., Hou L.-S., et al. (2019). Acanthoic Acid Modulates Lipogenesis in Nonalcoholic Fatty Liver Disease via FXR/LXRs-dependent Manner. Chemico-Biological Interactions 311, 108794. 10.1016/j.cbi.2019.108794 PubMed DOI
Haslewood G. A. D. (1942). Preparation of Deoxycholic Acid. Nature 150, 211. 10.1038/150211b0 DOI
Hui S., Liu Y., Chen M., Wang X., Lang H., Zhou M., et al. (2019). Capsaicin Improves Glucose Tolerance and Insulin Sensitivity through Modulation of the Gut Microbiota-Bile Acid-FXR Axis in Type 2 Diabetic Db/db Mice. Mol. Nutr. Food Res. 63, e1900608. 10.1002/mnfr.201900608 PubMed DOI
Iguchi Y., Nishimaki-Mogami T., Yamaguchi M., Teraoka F., Kaneko T., Une M. (2011). Effects of Chemical Modification of Ursodeoxycholic Acid on TGR5 Activation. Biol. Pharm. Bull. 34, 1–7. 10.1248/bpb.34.1 PubMed DOI
Katsuma S., Hirasawa A., Tsujimoto G. (2005). Bile Acids Promote Glucagon-like Peptide-1 Secretion through TGR5 in a Murine Enteroendocrine Cell Line STC-1. Biochem. Biophysical Res. Commun. 329, 386–390. 10.1016/j.bbrc.2005.01.139 PubMed DOI
Kawamata Y., Fujii R., Hosoya M., Harada M., Yoshida H., Miwa M., et al. (2003). A G Protein-Coupled Receptor Responsive to Bile Acids. J. Biol. Chem. 278, 9435–9440. 10.1074/jbc.m209706200 PubMed DOI
Kecman S., Škrbić R., Badnjevic Cengic A., Mooranian A., Al-Salami H., Mikov M., et al. (2020). Potentials of Human Bile Acids and Their Salts in Pharmaceutical Nano Delivery and Formulations Adjuvants. Thc 28, 325–335. 10.3233/thc-191845 PubMed DOI
Keitel V., Stindt J., Häussinger D. (2019). Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb Exp. Pharmacol. 256, 19–49. 10.1007/164_2019_230 PubMed DOI
Kim H., Une M., Hino A., Wada H., Yoshii M., Kuramoto T., et al. (2000). Bile Acid Sulfonate and 7-alkylated Bile Acid Analogs: Effect on Intestinal Absorption of Taurocholate and Cholesterol 7α-Hydroxylase Activity in Cultured Rat Hepatocytes. Steroids 65, 24–28. 10.1016/s0039-128x(99)00075-6 PubMed DOI
Lamers C., Schubert-Zsilavecz M., Merk D. (2014). Medicinal Chemistry and Pharmacological Effects of Farnesoid X Receptor (FXR) Antagonists. Ctmc 14, 2188–2205. 10.2174/1568026614666141112103516 PubMed DOI
Lasalle M., Hoguet V., Hennuyer N., Leroux F., Piveteau C., Belloy L., et al. (2017). Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon like Peptide-1 Secretion and Improve Glucose Tolerance. J. Med. Chem. 60, 4185–4211. 10.1021/acs.jmedchem.6b01873 PubMed DOI
Laskowski R. A., Swindells M. B. (2011). LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 51, 2778–2786. 10.1021/ci200227u PubMed DOI
Li F., Jiang C., Krausz K. W., Li Y., Albert I., Hao H., et al. (2013). Microbiome Remodelling Leads to Inhibition of Intestinal Farnesoid X Receptor Signalling and Decreased Obesity. Nat. Commun. 4, 2384. 10.1038/ncomms3384 PubMed DOI PMC
Li P., Zhu L., Yang X., Li W., Sun X., Yi B., et al. (2018). Farnesoid X Receptor (FXR) Interacts with Camp Response Element Binding Protein (CREB) to Modulate Glucagon-like Peptide-1 (7-36) Amide (GLP-1) Secretion by Intestinal L Cell. Cell Physiol Biochem. 47, 1442–1452. 10.1159/000490836 PubMed DOI
Ma S.-y., Ning M.-m., Zou Q.-a., Feng Y., Ye Y.-l., Shen J.-h., et al. (2016). OL3, a Novel Low-Absorbed TGR5 Agonist with Reduced Side Effects, Lowered Blood Glucose via Dual Actions on TGR5 Activation and DPP-4 Inhibition. Acta Pharmacol. Sin 37, 1359–1369. 10.1038/aps.2016.27 PubMed DOI PMC
Macchiarulo A., Gioiello A., Thomas C., Pols T. W. H., Nuti R., Ferrari C., et al. (2013). Probing the Binding Site of Bile Acids in TGR5. ACS Med. Chem. Lett. 4, 1158–1162. 10.1021/ml400247k PubMed DOI PMC
Massafra V., Pellicciari R., Gioiello A., van Mil S. W. C. (2018). Progress and Challenges of Selective Farnesoid X Receptor Modulation. Pharmacol. Ther. 191, 162–177. 10.1016/j.pharmthera.2018.06.009 PubMed DOI
Merk D., Sreeramulu S., Kudlinzki D., Saxena K., Linhard V., Gande S. L., et al. (2019). Molecular Tuning of Farnesoid X Receptor Partial Agonism. Nat. Commun. 10, 2915. 10.1038/s41467-019-10853-2 PubMed DOI PMC
Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., et al. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 30, 2785–2791. 10.1002/jcc.21256 PubMed DOI PMC
Nakhi A., McDermott C. M., Stoltz K. L., John K., Hawkinson J. E., Ambrose E. A., et al. (2019). 7-Methylation of Chenodeoxycholic Acid Derivatives Yields a Substantial Increase in TGR5 Receptor Potency. J. Med. Chem. 62, 6824–6830. 10.1021/acs.jmedchem.9b00770 PubMed DOI
Niss K., Jakobsson M. E., Westergaard D., Belling K. G., Olsen J. V., Brunak S. (2020). Effects of Active Farnesoid X Receptor on GLUTag Enteroendocrine L Cells. Mol. Cell Endocrinol. 517, 110923. 10.1016/j.mce.2020.110923 PubMed DOI
Pathak P., Liu H., Boehme S., Xie C., Krausz K. W., Gonzalez F., et al. (2017). Farnesoid X Receptor Induces Takeda G-Protein Receptor 5 Cross-Talk to Regulate Bile Acid Synthesis and Hepatic Metabolism. J. Biol. Chem. 292, 11055–11069. 10.1074/jbc.m117.784322 PubMed DOI PMC
Pathak P., Xie C., Nichols R. G., Ferrell J. M., Boehme S., Krausz K. W., et al. (2018). Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G‐protein Bile Acid Receptor‐1 Signaling to Improve Metabolism. Hepatology 68, 1574–1588. 10.1002/hep.29857 PubMed DOI PMC
Pellicciari R., Fiorucci S., Camaioni E., Clerici C., Costantino G., Maloney P. R., et al. (2002). 6α-Ethyl-Chenodeoxycholic Acid (6-ECDCA), a Potent and Selective FXR Agonist Endowed with Anticholestatic Activity. J. Med. Chem. 45, 3569–3572. 10.1021/jm025529g PubMed DOI
Pellicciari R., Gioiello A., Macchiarulo A., Thomas C., Rosatelli E., Natalini B., et al. (2009). Discovery of 6α-Ethyl-23(S)-methylcholic Acid (S-EMCA, INT-777) as a Potent and Selective Agonist for the TGR5 Receptor, a Novel Target for Diabesity. J. Med. Chem. 52, 7958–7961. 10.1021/jm901390p PubMed DOI
Pellicciari R., Gioiello A., Sabbatini P., Venturoni F., Nuti R., Colliva C., et al. (2012). Avicholic Acid: A Lead Compound from Birds on the Route to Potent TGR5 Modulators. ACS Med. Chem. Lett. 3, 273–277. 10.1021/ml200256d PubMed DOI PMC
Perino A., Pols T. W. H., Nomura M., Stein S., Pellicciari R., Schoonjans K. (2014). TGR5 Reduces Macrophage Migration through mTOR-Induced C/EBPβ Differential Translation. J. Clin. Invest. 124, 5424–5436. 10.1172/jci76289 PubMed DOI PMC
Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., et al. (2004). UCSF Chimera?A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 25, 1605–1612. 10.1002/jcc.20084 PubMed DOI
Pols T. W. H., Nomura M., Harach T., Lo Sasso G., Oosterveer M. H., Thomas C., et al. (2011). TGR5 Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading. Cel Metab. 14, 747–757. 10.1016/j.cmet.2011.11.006 PubMed DOI PMC
Posa M., Bjedov S., Sebenji A., Sakac M. (2014). Wittig Reaction (With Ethylidene Triphenylphosphorane) of Oxo-Hydroxy Derivatives of 5beta-Cholanic Acid: Hydrophobicity, Haemolytic Potential and Capacity of Derived Ethylidene Derivatives for Solubilisation of Cholesterol. Steroids 86, 16–25. 10.1016/j.steroids.2014.04.018 PubMed DOI
Prawitt J., Abdelkarim M., Stroeve J. H. M., Popescu I., Duez H., Velagapudi V. R., et al. (2011). Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes 60, 1861–1871. 10.2337/db11-0030 PubMed DOI PMC
Ratziu V., Sanyal A. J., Loomba R., Rinella M., Harrison S., Anstee Q. M., et al. (2019). REGENERATE: Design of a Pivotal, Randomised, Phase 3 Study Evaluating the Safety and Efficacy of Obeticholic Acid in Patients with Fibrosis Due to Nonalcoholic Steatohepatitis. Contemp. Clin. Trials 84, 105803. 10.1016/j.cct.2019.06.017 PubMed DOI
Rizzo G., Passeri D., De Franco F., Ciaccioli G., Donadio L., Rizzo G., et al. (2010). Functional Characterization of the Semisynthetic Bile Acid Derivative INT-767, a Dual Farnesoid X Receptor and TGR5 Agonist. Mol. Pharmacol. 78, 617–630. 10.1124/mol.110.064501 PubMed DOI PMC
Sayin S. I., Wahlström A., Felin J., Jäntti S., Marschall H.-U., Bamberg K., et al. (2013). Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cel Metab. 17, 225–235. 10.1016/j.cmet.2013.01.003 PubMed DOI
Sepe V., Festa C., Renga B., Carino A., Cipriani S., Finamore C., et al. (2016a). Insights on FXR Selective Modulation. Speculation on Bile Acid Chemical Space in the Discovery of Potent and Selective Agonists. Sci. Rep. 6, 19008. 10.1038/srep19008 PubMed DOI PMC
Sepe V., Distrutti E., Fiorucci S., Zampella A. (2018). Farnesoid X Receptor Modulators 2014-present: a Patent Review. Expert Opin. Ther. Patents 28, 351–364. 10.1080/13543776.2018.1459569 PubMed DOI
Sepe V., Distrutti E., Limongelli V., Fiorucci S., Zampella A. (2015). Steroidal Scaffolds as FXR and GPBAR1 Ligands: from Chemistry to Therapeutical Application. Future Med. Chem. 7, 1109–1135. 10.4155/fmc.15.54 PubMed DOI
Sepe V., Renga B., Festa C., D’Amore C., Masullo D., Cipriani S., et al. (2014). Modification on Ursodeoxycholic Acid (UDCA) Scaffold. Discovery of Bile Acid Derivatives as Selective Agonists of Cell-Surface G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1). J. Med. Chem. 57, 7687–7701. 10.1021/jm500889f PubMed DOI
Sepe V., Renga B., Festa C., Finamore C., Masullo D., Carino A., et al. (2016b). Investigation on Bile Acid Receptor Regulators. Discovery of Cholanoic Acid Derivatives with Dual G-Protein Coupled Bile Acid Receptor 1 (GPBAR1) Antagonistic and Farnesoid X Receptor (FXR) Modulatory Activity. Steroids 105, 59–67. 10.1016/j.steroids.2015.11.003 PubMed DOI
Stedman C., Liddle C., Coulter S., Sonoda J., Alvarez J. G., Evans R. M., et al. (2006). Benefit of Farnesoid X Receptor Inhibition in Obstructive Cholestasis. Proc. Natl. Acad. Sci. 103, 11323–11328. 10.1073/pnas.0604772103 PubMed DOI PMC
Stefela A., Kaspar M., Drastik M., Holas O., Hroch M., Smutny T., et al. (2020). 3β-Isoobeticholic Acid Efficiently Activates the Farnesoid X Receptor (FXR) Due to its Epimerization to 3α-Epimer by Hepatic Metabolism. J. Steroid Biochem. Mol. Biol. 202, 105702. 10.1016/j.jsbmb.2020.105702 PubMed DOI
Sun L., Xie C., Wang G., Wu Y., Wu Q., Wang X., et al. (2018). Gut Microbiota and Intestinal FXR Mediate the Clinical Benefits of Metformin. Nat. Med. 24, 1919–1929. 10.1038/s41591-018-0222-4 PubMed DOI PMC
Thomas C., Gioiello A., Noriega L., Strehle A., Oury J., Rizzo G., et al. (2009). TGR5-mediated Bile Acid Sensing Controls Glucose Homeostasis. Cel Metab. 10, 167–177. 10.1016/j.cmet.2009.08.001 PubMed DOI PMC
Trabelsi M. S., Daoudi M., Prawitt J., Ducastel S., Touche V., Sayin S. I., et al. (2015). Farnesoid X Receptor Inhibits Glucagon-like Peptide-1 Production by Enteroendocrine L Cells. Nat. Commun. 6, 7629. 10.1038/ncomms8629 PubMed DOI PMC
Trott O., Olson A. J. (2010). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 31, 455–461. 10.1002/jcc.21334 PubMed DOI PMC
Une M., Yamanaga K., Mosbach E. H., Kuroki S., Hoshita T. (1989). Synthesis of Bile Acid Analogs: 7-alkylated Chenodeoxycholic Acids. Steroids 53, 97–105. 10.1016/0039-128x(89)90148-7 PubMed DOI
Une M., Yamanaga K., Mosbach E. H., Tsujimura K., Hoshita T. (1990). Metabolism of 7 Beta-Alkyl Chenodeoxycholic Acid Analogs and Their Effect on Cholesterol Metabolism in Hamsters. J. Lipid Res. 31, 1015–1021. 10.1016/s0022-2275(20)42741-5 PubMed DOI
Urizar N. L., Liverman A. B., Dodds D. T., Silva F. V., Ordentlich P., Yan Y., et al. (2002). A Natural Product that Lowers Cholesterol as an Antagonist Ligand for FXR. Science 296, 1703–1706. 10.1126/science.1072891 PubMed DOI
van Zutphen T., Bertolini A., de Vries H. D., Bloks V. W., de Boer J. F., Jonker J. W., et al. (2019). Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. Handb Exp. Pharmacol. 256, 207–234. 10.1007/164_2019_233 PubMed DOI
Watanabe M., Houten S. M., Mataki C., Christoffolete M. A., Kim B. W., Sato H., et al. (2006). Bile Acids Induce Energy Expenditure by Promoting Intracellular Thyroid Hormone Activation. Nature 439, 484–489. 10.1038/nature04330 PubMed DOI
Xu X., Shi X., Chen Y., Zhou T., Wang J., Xu X., et al. (2018). HS218 as an FXR Antagonist Suppresses Gluconeogenesis by Inhibiting FXR Binding to PGC-1α Promoter. Metabolism 85, 126–138. 10.1016/j.metabol.2018.03.016 PubMed DOI
Yang F., Mao C., Guo L., Lin J., Ming Q., Xiao P., et al. (2020). Structural Basis of GPBAR Activation and Bile Acid Recognition. Nature 587, 499–504. 10.1038/s41586-020-2569-1 PubMed DOI
Zhang X., Wall M., Sui Z., Kauffman J., Hou C., Chen C., et al. (2017). Discovery of Orally Efficacious Tetrahydrobenzimidazoles as TGR5 Agonists for Type 2 Diabetes. ACS Med. Chem. Lett. 8, 560–565. 10.1021/acsmedchemlett.7b00116 PubMed DOI PMC
Carvedilol impairs bile acid homeostasis in mice: implication for nonalcoholic steatohepatitis