Uncovering α-Selectivity for Liver X Receptor Agonists for Lipotoxic Cancer Therapies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40127224
PubMed Central
PMC11997999
DOI
10.1021/acs.jmedchem.4c02712
Knihovny.cz E-zdroje
- MeSH
- hepatocelulární karcinom * farmakoterapie metabolismus patologie MeSH
- jaterní receptor X * agonisté metabolismus MeSH
- lidé MeSH
- maleimidy * farmakologie chemie terapeutické užití MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory jater * farmakoterapie metabolismus patologie MeSH
- protinádorové látky * farmakologie chemie terapeutické užití chemická syntéza MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jaterní receptor X * MeSH
- maleimidy * MeSH
- protinádorové látky * MeSH
Hepatocellular carcinoma (HCC) is one of the most frequent causes of cancer-related deaths worldwide. We recently showed that pharmacologically induced lipotoxicity represents a promising therapeutic strategy for the treatment of HCC. Synthetic LXRα agonists induce the production of toxic saturated fatty acids in tumor cells. When combined with DFG-out Raf inhibitors, which block fatty acid desaturation by inducing proteasomal degradation of stearoyl-CoA desaturase (SCD1), LXRα activation can trigger lipotoxicity-induced cancer cell death. However, the clinical translation of this therapeutic strategy is limited by the lack of specific LXRα agonists for clinical use. Here, we have developed a series of promising maleimide LXR agonists with increased potency for LXRα and enhanced specificity. Our agonist frontrunner 40 shows high selectivity for LXRα and strong therapeutic efficacy in HCC organoids, therefore illustrating a strong potential for advancing this lipotoxic treatment strategy to clinical application.
Zobrazit více v PubMed
Bray F.; Laversanne M.; Sung H.; Ferlay J.; Siegel R. L.; Soerjomataram I.; Jemal A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clinicians 2024, 74 (3), 229–263. 10.3322/caac.21834. PubMed DOI
Llovet J. M.; Kelley R. K.; Villanueva A.; Singal A. G.; Pikarsky E.; Roayaie S.; Lencioni R.; Koike K.; Zucman-Rossi J.; Finn R. S. Hepatocellular Carcinoma. Nat. Rev. Dis Primers 2021, 7 (1), 6.10.1038/s41572-020-00240-3. PubMed DOI
Anstee Q. M.; Reeves H. L.; Kotsiliti E.; Govaere O.; Heikenwalder M. From NASH to HCC: Current Concepts and Future Challenges. Nat. Rev. Gastroenterol Hepatol 2019, 16 (7), 411–428. 10.1038/s41575-019-0145-7. PubMed DOI
Pinter M.; Scheiner B.; Peck-Radosavljevic M. Immunotherapy for Advanced Hepatocellular Carcinoma: A Focus on Special Subgroups. Gut 2021, 70 (1), 204–214. 10.1136/gutjnl-2020-321702. PubMed DOI PMC
Pfister D.; Núñez N. G.; Pinyol R.; Govaere O.; Pinter M.; Szydlowska M.; Gupta R.; Qiu M.; Deczkowska A.; Weiner A.; Müller F.; Sinha A.; Friebel E.; Engleitner T.; Lenggenhager D.; Moncsek A.; Heide D.; Stirm K.; Kosla J.; Kotsiliti E.; Leone V.; Dudek M.; Yousuf S.; Inverso D.; Singh I.; Teijeiro A.; Castet F.; Montironi C.; Haber P. K.; Tiniakos D.; Bedossa P.; Cockell S.; Younes R.; Vacca M.; Marra F.; Schattenberg J. M.; Allison M.; Bugianesi E.; Ratziu V.; Pressiani T.; D’Alessio A.; Personeni N.; Rimassa L.; Daly A. K.; Scheiner B.; Pomej K.; Kirstein M. M.; Vogel A.; Peck-Radosavljevic M.; Hucke F.; Finkelmeier F.; Waidmann O.; Trojan J.; Schulze K.; Wege H.; Koch S.; Weinmann A.; Bueter M.; Rössler F.; Siebenhüner A.; De Dosso S.; Mallm J.-P.; Umansky V.; Jugold M.; Luedde T.; Schietinger A.; Schirmacher P.; Emu B.; Augustin H. G.; Billeter A.; Müller-Stich B.; Kikuchi H.; Duda D. G.; Kütting F.; Waldschmidt D.-T.; Ebert M. P.; Rahbari N.; Mei H. E.; Schulz A. R.; Ringelhan M.; Malek N.; Spahn S.; Bitzer M.; Ruiz De Galarreta M.; Lujambio A.; Dufour J.-F.; Marron T. U.; Kaseb A.; Kudo M.; Huang Y.-H.; Djouder N.; Wolter K.; Zender L.; Marche P. N.; Decaens T.; Pinato D. J.; Rad R.; Mertens J. C.; Weber A.; Unger K.; Meissner F.; Roth S.; Jilkova Z. M.; Claassen M.; Anstee Q. M.; Amit I.; Knolle P.; Becher B.; Llovet J. M.; Heikenwalder M. NASH Limits Anti-Tumour Surveillance in Immunotherapy-Treated HCC. Nature 2021, 592 (7854), 450–456. 10.1038/s41586-021-03362-0. PubMed DOI PMC
Rudalska R.; Harbig J.; Snaebjornsson M. T.; Klotz S.; Zwirner S.; Taranets L.; Heinzmann F.; Kronenberger T.; Forster M.; Cui W.; D’Artista L.; Einig E.; Hinterleitner M.; Schmitz W.; Dylawerska A.; Kang T.-W.; Poso A.; Rosenfeldt M. T.; Malek N. P.; Bitzer M.; Laufer S.; Pichler B. J.; Popov N.; Schulze A.; Zender L.; Dauch D. LXRα Activation and Raf Inhibition Trigger Lethal Lipotoxicity in Liver Cancer. Nat. Cancer 2021, 2 (2), 201–217. 10.1038/s43018-020-00168-3. PubMed DOI
Rudalska R.; Zender L.; Dauch D. Exploiting Lipotoxicity for the Treatment of Liver Cancer. Br. J. Cancer 2021, 125 (11), 1459–1461. 10.1038/s41416-021-01479-7. PubMed DOI PMC
Weikum E. R.; Liu X.; Ortlund E. A. The Nuclear Receptor Superfamily: A Structural Perspective. Protein Sci. 2018, 27 (11), 1876–1892. 10.1002/pro.3496. PubMed DOI PMC
Sever R.; Glass C. K. Signaling by Nuclear Receptors. Cold Spring Harbor Perspectives in Biology 2013, 5 (3), a016709–a016709. 10.1101/cshperspect.a016709. PubMed DOI PMC
Sladek F. M. Nuclear Receptors as Drug Targets: New Developments in Coregulators, Orphan Receptors and Major Therapeutic Areas. Expert Opinion on Therapeutic Targets 2003, 7 (5), 679–684. 10.1517/14728222.7.5.679. PubMed DOI
Hu X.; Li S.; Wu J.; Xia C.; Lala D. S. Liver X Receptors Interact with Corepressors to Regulate Gene Expression. Mol. Endocrinol. 2003, 17 (6), 1019–1026. 10.1210/me.2002-0399. PubMed DOI
Chen J. D.; Evans R. M. A Transcriptional Co-Repressor That Interacts with Nuclear Hormone Receptors. Nature 1995, 377 (6548), 454–457. 10.1038/377454a0. PubMed DOI
Wagner B. L.; Valledor A. F.; Shao G.; Daige C. L.; Bischoff E. D.; Petrowski M.; Jepsen K.; Baek S. H.; Heyman R. A.; Rosenfeld M. G.; Schulman I. G.; Glass C. K. Promoter-Specific Roles for Liver X Receptor/Corepressor Complexes in the Regulation of ABCA1 and SREBP1 Gene Expression. Mol. Cell. Biol. 2003, 23 (16), 5780–5789. 10.1128/MCB.23.16.5780-5789.2003. PubMed DOI PMC
Glass C. K.; Rosenfeld M. G. The Coregulator Exchange in Transcriptional Functions of Nuclear Receptors. Genes Dev. 2000, 14 (2), 121–141. 10.1101/gad.14.2.121. PubMed DOI
McKenna N. J.; O’Malley B. W. Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators. Cell 2002, 108 (4), 465–474. 10.1016/S0092-8674(02)00641-4. PubMed DOI
Hong C.; Tontonoz P. Liver X Receptors in Lipid Metabolism: Opportunities for Drug Discovery. Nat. Rev. Drug Discov 2014, 13 (6), 433–444. 10.1038/nrd4280. PubMed DOI
Villa G. R.; Hulce J. J.; Zanca C.; Bi J.; Ikegami S.; Cahill G. L.; Gu Y.; Lum K. M.; Masui K.; Yang H.; Rong X.; Hong C.; Turner K. M.; Liu F.; Hon G. C.; Jenkins D.; Martini M.; Armando A. M.; Quehenberger O.; Cloughesy T. F.; Furnari F. B.; Cavenee W. K.; Tontonoz P.; Gahman T. C.; Shiau A. K.; Cravatt B. F.; Mischel P. S. An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers. Cancer Cell 2016, 30 (5), 683–693. 10.1016/j.ccell.2016.09.008. PubMed DOI PMC
Kirchgessner T. G.; Martin R.; Sleph P.; Grimm D.; Liu X.; Lupisella J.; Smalley J.; Narayanan R.; Xie Y.; Ostrowski J.; Cantor G. H.; Mohan R.; Kick E. Pharmacological Characterization of a Novel Liver X Receptor Agonist with Partial LXR α Activity and a Favorable Window in Nonhuman Primates. J. Pharmacol Exp Ther 2015, 352 (2), 305–314. 10.1124/jpet.114.219923. PubMed DOI
Boström J.; Brickmann K.; Broo A.; Holm P.; Judkins R.; Li L.; Sandberg P.; Swanson M.; Westerlund C.. Derivatives of Isothiazol-3(2h)-One 1,1-Dioxides as Liver x Receptor Modulators. WO2006073363A1, 2006.
Belorusova A. Y.; Evertsson E.; Hovdal D.; Sandmark J.; Bratt E.; Maxvall I.; Schulman I. G.; Åkerblad P.; Lindstedt E.-L. Structural Analysis Identifies an Escape Route from the Adverse Lipogenic Effects of Liver X Receptor Ligands. Commun. Biol. 2019, 2 (1), 431.10.1038/s42003-019-0675-0. PubMed DOI PMC
Serafim R. A. M.; Sorrell F. J.; Berger B.-T.; Collins R. J.; Vasconcelos S. N. S.; Massirer K. B.; Knapp S.; Bennett J.; Fedorov O.; Patel H.; Zuercher W. J.; Elkins J. M. Discovery of a Potent Dual SLK/STK10 Inhibitor Based on a Maleimide Scaffold. J. Med. Chem. 2021, 64 (18), 13259–13278. 10.1021/acs.jmedchem.0c01579. PubMed DOI
Jaye M. C.; Krawiec J. A.; Campobasso N.; Smallwood A.; Qiu C.; Lu Q.; Kerrigan J. J.; De Los Frailes Alvaro M.; Laffitte B.; Liu W.-S.; Marino J. P.; Meyer C. R.; Nichols J. A.; Parks D. J.; Perez P.; Sarov-Blat L.; Seepersaud S. D.; Steplewski K. M.; Thompson S. K.; Wang P.; Watson M. A.; Webb C. L.; Haigh D.; Caravella J. A.; Macphee C. H.; Willson T. M.; Collins J. L. Discovery of Substituted Maleimides as Liver X Receptor Agonists and Determination of a Ligand-Bound Crystal Structure. J. Med. Chem. 2005, 48 (17), 5419–5422. 10.1021/jm050532w. PubMed DOI
Sander P.; Schwalm M. P.; Krämer A.; Elson L.; Rasch A.; Masberg B.; Selig R.; Sievers-Engler A.; Lämmerhofer M.; Müller S.; Knapp S.; Albrecht W.; Laufer S. A. Design, Synthesis, and Biochemical Evaluation of Novel MLK3 Inhibitors: A Target Hopping Example. J. Med. Chem. 2025, 68 (1), 674–694. 10.1021/acs.jmedchem.4c02552. PubMed DOI
Mejdrová I.; Dušek J.; Škach K.; Stefela A.; Skoda J.; Chalupský K.; Dohnalová K.; Pavkova I.; Kronenberger T.; Rashidian A.; Smutná L.; Duchoslav V.; Smutny T.; Pávek P.; Nencka R. Discovery of Novel Human Constitutive Androstane Receptor Agonists with the Imidazo[1,2- a ]Pyridine Structure. J. Med. Chem. 2023, 66 (4), 2422–2456. 10.1021/acs.jmedchem.2c01140. PubMed DOI PMC
Stefela A.; Kaspar M.; Drastik M.; Kronenberger T.; Micuda S.; Dracinsky M.; Klepetarova B.; Kudova E.; Pavek P. (E)-7-Ethylidene-Lithocholic Acid (7-ELCA) Is a Potent Dual Farnesoid X Receptor (FXR) Antagonist and GPBAR1 Agonist Inhibiting FXR-Induced Gene Expression in Hepatocytes and Stimulating Glucagon-like Peptide-1 Secretion From Enteroendocrine Cells. Front. Pharmacol. 2021, 12, 71314910.3389/fphar.2021.713149. PubMed DOI PMC
Rudalska R.; Harbig J.; Forster M.; Woelffing P.; Esposito A.; Kudolo M.; Botezatu A.; Haller V.; Janssen N.; Holzmayer S.; Nahidino P.; Trompak O.; Pantsar T.; Kronenberger T.; Yurttas C.; Rist E.; Weber A. N. R.; Dahlke M. H.; Ott G.; Koenigsrainer A.; Rothbauer U.; Maerklin M.; Muerdter T.; Schwab M.; Singer S.; Zender L.; Laufer S.; Dauch D. First-in-Class Ultralong-Target-Residence-Time P38α Inhibitors as a Mitosis-Targeted Therapy for Colorectal Cancer. Nat. Cancer 2025, 6, 259.10.1038/s43018-024-00899-7. PubMed DOI PMC
Friesner R. A.; Banks J. L.; Murphy R. B.; Halgren T. A.; Klicic J. J.; Mainz D. T.; Repasky M. P.; Knoll E. H.; Shelley M.; Perry J. K.; Shaw D. E.; Francis P.; Shenkin P. S. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47 (7), 1739–1749. 10.1021/jm0306430. PubMed DOI
Friesner R. A.; Murphy R. B.; Repasky M. P.; Frye L. L.; Greenwood J. R.; Halgren T. A.; Sanschagrin P. C.; Mainz D. T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein–Ligand Complexes. J. Med. Chem. 2006, 49 (21), 6177–6196. 10.1021/jm051256o. PubMed DOI
Bowers K. J.; Sacerdoti F. D.; Salmon J. K.; Shan Y.; Shaw D. E.; Chow E.; Xu H.; Dror R. O.; Eastwood M. P.; Gregersen B. A.; Klepeis J. L.; Kolossvary I.; Moraes M. A.. Molecular Dynamics---Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing-SC'06; ACM Press: Tampa, FL, 2006; p 84. 10.1145/1188455.1188544. DOI
Lu C.; Wu C.; Ghoreishi D.; Chen W.; Wang L.; Damm W.; Ross G. A.; Dahlgren M. K.; Russell E.; Von Bargen C. D.; Abel R.; Friesner R. A.; Harder E. D. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17 (7), 4291–4300. 10.1021/acs.jctc.1c00302. PubMed DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI
Darden T.; York D.; Pedersen L. Particle Mesh Ewald: An N ·log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98 (12), 10089–10092. 10.1063/1.464397. DOI
Hoover W. G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31 (3), 1695–1697. 10.1103/PhysRevA.31.1695. PubMed DOI
Nosé S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81 (1), 511–519. 10.1063/1.447334. DOI
Martyna G. J.; Tuckerman M. E.; Tobias D. J.; Klein M. L. Explicit Reversible Integrators for Extended Systems Dynamics. Mol. Phys. 1996, 87 (5), 1117–1157. 10.1080/00268979600100761. DOI
Li J.; Abel R.; Zhu K.; Cao Y.; Zhao S.; Friesner R. A. The VSGB 2.0 Model: A next Generation Energy Model for High Resolution Protein Structure Modeling. Proteins 2011, 79 (10), 2794–2812. 10.1002/prot.23106. PubMed DOI PMC
Genheden S.; Ryde U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opinion on Drug Discovery 2015, 10 (5), 449–461. 10.1517/17460441.2015.1032936. PubMed DOI PMC