The Effect of Foraging on Bumble Bees, Bombus terrestris, Reared under Laboratory Conditions

. 2020 May 23 ; 11 (5) : . [epub] 20200523

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32456127

Grantová podpora
MZE-RO1720a Ministerstvo Zemědělství
NAZV QK1910286 Ministerstvo Zemědělství

Bumble bees are important pollinators broadly used by farmers in greenhouses and under conditions in which honeybee pollination is limited. As such, bumble bees are increasingly being reared for commercial purposes, which brings into question whether individuals reared under laboratory conditions are fully capable of physiological adaptation to field conditions. To understand the changes in bumble bee organism caused by foraging, we compared the fundamental physiological and immunological parameters of Bombus terrestris workers reared under constant optimal laboratory conditions with workers from sister colonies that were allowed to forage for two weeks in the field. Nutritional status and immune response were further determined in wild foragers of B. terrestris that lived under the constant influence of natural stressors. Both wild and laboratory-reared workers subjected to the field conditions had a lower protein concentration in the hemolymph and increased antimicrobial activity, the detection of which was limited in the non-foragers. However, in most of the tested parameters, specifically the level of carbohydrates, antioxidants, total hemocyte concentration in the hemolymph and melanization response, we did not observe any significant differences between bumble bee workers produced in the laboratory and wild animals, nor between foragers and non-foragers. Our results show that bumble bees reared under laboratory conditions can mount a sufficient immune response to potential pathogens and cope with differential food availability in the field, similarly to the wild bumble bee workers.

Zobrazit více v PubMed

Velthius H.W., Van Doorn A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie. 2006;37:421–451. doi: 10.1051/apido:2006019. DOI

Goulson D., Lye G.C., Darvill B. Decline and Conservation of Bumble Bees. Annu. Rev. Entomol. 2008;53:191–208. doi: 10.1146/annurev.ento.53.103106.093454. PubMed DOI

Cameron S.A., Lozier J.D., Strange J.P., Koch J.B., Cordes N., Solter L.F., Griswold T.L. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA. 2011;108:662–667. doi: 10.1073/pnas.1014743108. PubMed DOI PMC

Doums C., Moret Y., Benelli E., Schmid-Hempel P. Senescence of immune defence in Bombus workers. Ecol. Entomol. 2002;27:138–144. doi: 10.1046/j.1365-2311.2002.00388.x. DOI

Stabler D., Paoli P.P., Nicolson S.W., Wright G.A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 2015;218:793–802. doi: 10.1242/jeb.114249. PubMed DOI PMC

Roulston T.H., Cane J.H. Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 2000;222:187–209. doi: 10.1007/BF00984102. DOI

Brodschneider R., Crailsheim K. Nutrition and health in honey bees. Apidologie. 2010;41:278–294. doi: 10.1051/apido/2010012. DOI

Vaudo A.D., Patch H.M., Mortensen D.A., Tooker J.F., Grozinger C.M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl. Acad. Sci. USA. 2016;113:E4035–E4042. doi: 10.1073/pnas.1606101113. PubMed DOI PMC

Paoli P.P., Donley D., Stabler D., Saseendranath A., Nicolson S.W., Simpson S.J., Wright G.A. Nutritional balance of essential amino acids and carbohydrates of the adult worker honeybee depends on age. Amino Acids. 2014;46:1449–1458. doi: 10.1007/s00726-014-1706-2. PubMed DOI PMC

Vaudo A.D., Farrell L.M., Patch H.M., Grozinger C.M., Tooker J.F. Consistent pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and reproduction across different habitats. Ecol. Evol. 2018;8:5765–5776. doi: 10.1002/ece3.4115. PubMed DOI PMC

Kraus S., Gómez-Moracho T., Pasquaretta C., Latil G., Dussutour A., Lihoreau M. Bumblebees adjust protein and lipid collection rules to the presence of brood. Curr. Zool. 2019;65:437–446. doi: 10.1093/cz/zoz026. PubMed DOI PMC

Ruiz-González M.X., Moret Y., Brown M.J.F. Rapid induction of immune prophylaxis in adult social insects. Biol. Lett. 2009;5:781–783. doi: 10.1098/rsbl.2009.0505. PubMed DOI PMC

Goulson D., Nicholls E., Botías C., Rotheray E.L. Bee declines driven by combined Stress from parasites, pesticides, and lack of flowers. Science. 2015;347:1255957. doi: 10.1126/science.1255957. PubMed DOI

König C., Schmid-Hempel P. Foraging activity and immunocompetence in workers of the bumble bee, Bombus terrestris L. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 1995;260:225–227.

Doums C., Schmid-Hempel P. Immunocompetence in workers of a social insect, Bombus terrestris L., in relation to foraging activity and parasitic infection. Can. J. Zool. 2000;78:1060–1066. doi: 10.1139/z00-035. DOI

Schmid M.R., Brockmann A., Pirk C.W.W., Stanley D.W., Tautz J. Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. J. Insect Physiol. 2008;54:439–444. doi: 10.1016/j.jinsphys.2007.11.002. PubMed DOI

Wilson-Rich N., Dres S.T., Starks P.T. The ontogeny of immunity: Development of innate immune strength in the honey bee (Apis mellifera) J. Insect Physiol. 2008;54:1392–1399. doi: 10.1016/j.jinsphys.2008.07.016. PubMed DOI

Jiravanichpaisal P., Lee B.L., Söderhäll K. Cell-mediated immunity in arthropods: Hematopoiesis, coagulation, melanization and opsonization. Immunobiology. 2006;211:213–236. doi: 10.1016/j.imbio.2005.10.015. PubMed DOI

Gillespie J.P., Kanost M.R., Trenczek T. Biological Mediators of Insect Immunity. Annu. Rev. Entomol. 1997;42:611–643. doi: 10.1146/annurev.ento.42.1.611. PubMed DOI

Moret Y., Schmid-Hempel P. Survival for immunity: The price of immune system activation for bumblebee workers. Science. 2000;290:1166–1168. doi: 10.1126/science.290.5494.1166. PubMed DOI

Adamo S.A., Jensen M., Younger M. Changes in lifetime immunocompetence in male and female Gryllus texensis (formerly G. integer): Trade-offs between immunity and reproduction. Anim. Behav. 2001;62:417–425. doi: 10.1006/anbe.2001.1786. DOI

Moret Y., Schmid-Hempel P. Immune defence in bumble-bee offspring. Nature. 2001;414:1–2. doi: 10.1038/35107138. PubMed DOI

Rolff J., Siva-Jothy M.T. Copulation corrupts immunity: A mechanism for a cost of mating in insects. Proc. Natl. Acad. Sci. USA. 2002;99:9916–9918. doi: 10.1073/pnas.152271999. PubMed DOI PMC

Alghamdi A., Dalton L., Phillis A., Rosato E., Mallon E.B. Immune response impairs learning in free-flying bumble-bees. Biol. Lett. 2008;4:479–481. doi: 10.1098/rsbl.2008.0331. PubMed DOI PMC

Amdam G.V., Aase A.L.T.O., Seehuus S.C., Kim Fondrk M., Norberg K., Hartfelder K. Social reversal of immunosenescence in honey bee workers. Exp. Gerontol. 2005;40:939–947. doi: 10.1016/j.exger.2005.08.004. PubMed DOI PMC

Brunner F.S., Schmid-Hempel P., Barribeau S.M. Immune Gene Expression in Bombus terrestris: Signatures of Infection Despite Strong Variation among Populations, Colonies, and Sister Workers. PLoS ONE. 2013;8:1–9. doi: 10.1371/journal.pone.0068181. PubMed DOI PMC

Candy D.J., Becker A., Wegener G. Coordination and integration of metabolism in insect flight. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 1997;117:497–512. doi: 10.1016/S0305-0491(97)00212-5. DOI

Duchateau M.J., Velthius H.H.W. Development and Reproductive Strategies in Bombus terrestris Colonies. Behaviour. 1988;107:186–207. doi: 10.1163/156853988X00340. DOI

Rasmont P., Coppee A., Michez D., De Meulemeester T. An overview of the Bombus terrestris (L. 1758) subspecies (Hymenoptera: Apidae) Ann. Soc. Entomol. Fr. 2008;44:243–250. doi: 10.1080/00379271.2008.10697559. DOI

Kunc M., Dobeš P., Hurychová J., Vojtek L., Poiani S.B., Danihlík J., Havlík J., Titěra D., Hyršl P. The Year of the Honey Bee (Apis mellifera L.) with Respect to Its Physiology and Immunity: A Search for Biochemical Markers of Longevity. Insects. 2019;10:244. doi: 10.3390/insects10080244. PubMed DOI PMC

Zöllner N., Kirsch K. Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulfophosphovanillin-Reaktion. Z. Gesamte Exp. Med. 1962;135:545–561. doi: 10.1007/BF02045455. DOI

Kodrík D., Socha R., Šimek P., Zemek R., Goldsworthy G.J. A new member of the AKH/RPCH family that stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera) Insect Biochem. Mol. Biol. 2000;30:489–498. doi: 10.1016/S0965-1748(00)00025-4. PubMed DOI

Číž M., Čížová H., Denev P., Kratchanova M., Slavov A., Lojek A. Different methods for control and comparison of the antioxidant properties of vegetables. Food Control. 2010;21:518–523. doi: 10.1016/j.foodcont.2009.07.017. DOI

Laughton A.M., Siva-Jothy M.T. A standardised protocol for measuring phenoloxidase and prophenoloxidase in the honey bee, Apis mellifera. Apidologie. 2011;42:140–149. doi: 10.1051/apido/2010046. DOI

Tyler E.R., Adams S., Mallon E.B. An immune response in the bumblebee, Bombus terrestris leads to increased food consumption. BMC Physiol. 2006;6:4–7. doi: 10.1186/1472-6793-6-6. PubMed DOI PMC

Roger N., Michez D., Wattiez R., Sheridan C., Vanderplanck M. Diet effects on bumblebee health. J. Insect Physiol. 2017;96:128–133. doi: 10.1016/j.jinsphys.2016.11.002. PubMed DOI

Nieh J.C., León A., Cameron S., Vandame R. Hot bumble bees at good food: Thoracic temperature of feeding Bombus wilmattae foragers is tuned to sugar concentration. J. Exp. Biol. 2006;209:4185–4192. doi: 10.1242/jeb.02528. PubMed DOI

Mayack C., Naug D. Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers. J. Insect Physiol. 2010;56:1572–1575. doi: 10.1016/j.jinsphys.2010.05.016. PubMed DOI

Darveau C.A., Billardon F., Belanger K. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: Repeatability and functional determinants in workers and drones. J. Exp. Biol. 2014;217:536–544. doi: 10.1242/jeb.091892. PubMed DOI

Toth A.L., Kantarovich S., Meisel A.F., Robinson G.E. Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 2005;208:4641–4649. doi: 10.1242/jeb.01956. PubMed DOI

Arien Y., Dag A., Zarchin S., Masci T., Shafir S. Omega-3 deficiency impairs honey bee learning. Proc. Natl. Acad. Sci. USA. 2015;112:15761–15766. doi: 10.1073/pnas.1517375112. PubMed DOI PMC

Arien Y., Dag A., Shafir S. Omega-6:3 Ratio more than absolute lipid level in diet affects associative learning in honey bees. Front. Psychol. 2018;9:1–8. doi: 10.3389/fpsyg.2018.01001. PubMed DOI PMC

Leonhardt S.D., Blüthgen N. The same, but different: Pollen foraging in honeybee and bumblebee colonies. Apidologie. 2012;43:449–464. doi: 10.1007/s13592-011-0112-y. DOI

Ruedenauer F.A., Spaethe J., Leonhardt S.D. How to know which food is good for you: Bumblebees use taste to discriminate between different concentrations of food differing in nutrient content. J. Exp. Biol. 2015;218:2233–2240. doi: 10.1242/jeb.118554. PubMed DOI

Hendriksma H.P., Toth A.L., Shafir S. Individual and colony level foraging decisions of bumble bees and honey bees in relation to balancing of nutrient needs. Front. Ecol. Evol. 2019;7:1–12. doi: 10.3389/fevo.2019.00177. DOI

Brunner F.S., Schmid-Hempel P., Barribeau S.M. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris. Proc. R. Soc. B Biol. Sci. 2014;281:20140128. doi: 10.1098/rspb.2014.0128. PubMed DOI PMC

Riddell C.E., Mallon E.B. Insect psychoneuroimmunology: Immune response reduces learning in protein starved bumblebees (Bombus terrestris) Brain. Behav. Immun. 2006;20:135–138. doi: 10.1016/j.bbi.2005.06.008. PubMed DOI

Pirk C.W.W., Boodhoo C., Human H., Nicolson S.W. The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata) Apidologie. 2010;41:62–72. doi: 10.1051/apido/2009055. DOI

Vanderplanck M., Martinet B., Carvalheiro L.G., Rasmont P., Barraud A., Renaudeau C., Michez D. Ensuring access to high-quality resources reduces the impacts of heat stress on bees. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-49025-z. PubMed DOI PMC

Shykoff J., Schmid-Hempel P. Incidence and effects of four parasites in natural populations of bumble bees in Switzerland. Apidologie. 1991;22:117–125. doi: 10.1051/apido:19910204. DOI

Sadd B.M., Kleinlogel Y., Schmid-Hempel R., Schmid-Hempel P. Trans-generational immune priming in a social insect. Biol. Lett. 2005;1:386–388. doi: 10.1098/rsbl.2005.0369. PubMed DOI PMC

Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J.L., Jiang H., Kanost M., Thompson G.J., Zou Z., Hultmark D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 2006;15:645–656. doi: 10.1111/j.1365-2583.2006.00682.x. PubMed DOI PMC

Rees J.A., Moniatte M., Bulet P. Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, apoidea) Insect Biochem. Mol. Biol. 1997;27:413–422. doi: 10.1016/S0965-1748(97)00013-1. PubMed DOI

Erler S., Popp M., Lattorff H.M.G. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris) PLoS ONE. 2011;6:1–8. doi: 10.1371/journal.pone.0018126. PubMed DOI PMC

Richter J., Helbing S., Erler S., Lattorff H.M.G. Social context-dependent immune gene expression in bumblebees (Bombus terrestris) Behav. Ecol. Sociobiol. 2012;66:791–796. doi: 10.1007/s00265-012-1327-2. DOI

Riddell C.E., Sumner S., Adams S., Mallon E.B. Pathways to immunity: Temporal dynamics of the bumblebee (Bombus terrestris) immune response against a trypanosomal gut parasite. Insect Mol. Biol. 2011;20:529–540. doi: 10.1111/j.1365-2583.2011.01084.x. PubMed DOI

Amsalem E., Grozinger C.M. Evaluating the molecular, physiological and behavioral impacts of CO2 narcosis in bumble bees (Bombus impatiens) J. Insect Physiol. 2017;101:57–65. doi: 10.1016/j.jinsphys.2017.06.014. PubMed DOI

Moret Y., Schmid-Hempel P. Immune Responses of Bumblebee Workers as a Function of Individual and Colony Age: Senescence versus Plastic Adjustment of the Immune Function. Oikos. 2009;118:371–378. doi: 10.1111/j.1600-0706.2008.17187.x. DOI

Whitehorn P.R., Tinsley M.C., Brown M.J.F., Darvill B., Goulson D. Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proc. R. Soc. B Biol. Sci. 2011;278:1195–1202. doi: 10.1098/rspb.2010.1550. PubMed DOI PMC

Lee K.P., Simpson S.J., Wilson K. Dietary protein-quality influences melanization and immune function in an insect. Funct. Ecol. 2008;22:1052–1061. doi: 10.1111/j.1365-2435.2008.01459.x. DOI

Cotter S.C., Simpson S.J., Raubenheimer D., Wilson K. Macronutrient balance mediates trade-offs between immune function and life history traits. Funct. Ecol. 2011;25:186–198. doi: 10.1111/j.1365-2435.2010.01766.x. DOI

Korner P., Schmid-Hempel P. In vivo dynamics of an immune response in the bumble bee Bombus terrestris. J. Invertebr. Pathol. 2004;87:59–66. doi: 10.1016/j.jip.2004.07.004. PubMed DOI

Nappi A.J., Christensen B.M. Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochem. Mol. Biol. 2005;35:443–459. doi: 10.1016/j.ibmb.2005.01.014. PubMed DOI

Felton G.W., Summers C.B. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 1995;29:187–197. doi: 10.1002/arch.940290208. PubMed DOI

Rzepecka-Stojko A., Stojko J., Kurek-Górecka A., Górecki M., Kabała-Dzik A., Kubina R., Moździerz A., Buszman E., Iriti M. Polyphenols from Bee Pollen: Structure, absorption, metabolism and biological activity. Molecules. 2015;20:21732–21749. doi: 10.3390/molecules201219800. PubMed DOI PMC

Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:1–15. doi: 10.1017/jns.2016.41. PubMed DOI PMC

Williams J.B., Roberts S.P., Elekonich M.M. Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms. Exp. Gerontol. 2008;43:538–549. doi: 10.1016/j.exger.2008.02.001. PubMed DOI

Strachecka A.J., Olszewski K., Paleolog J. Curcumin stimulates biochemical mechanisms of Apis mellifera resistance and extends the apian life-span. J. Apic. Sci. 2015;59:129–141. doi: 10.1515/jas-2015-0014. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phytochemical S-methyl-L-cysteine sulfoxide from Brassicaceae: a key to health or a poison for bees?

. 2024 Dec ; 14 (12) : 240219. [epub] 20241211

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...