Polyketide Derivatives in the Resistance of Gerbera hybrida to Powdery Mildew
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35069647
PubMed Central
PMC8770985
DOI
10.3389/fpls.2021.790907
Knihovny.cz E-zdroje
- Klíčová slova
- 1H NMR, Gerbera hybrida, decision tree, polyketides, powdery mildew resistance,
- Publikační typ
- časopisecké články MeSH
Powdery mildew is a common disease affecting the commercial production of gerbera flowers (Gerbera hybrida, Asteraceae). Some varieties show a certain degree of resistance to it. Our objective was to identify biomarkers of resistance to powdery mildew using an 1H nuclear magnetic resonance spectroscopy and chemometrics approach in a complex, fully factorial experiment to suggest a target for selection and breeding. Resistant varieties were found to differ from those that were susceptible in the metabolites of the polyketide pathway, such as gerberin, parasorboside, and gerberinside. A new compound probably involved in resistance, 5-hydroxyhexanoic acid 3-O-β-D-glucoside, was described for the first time. A decision tree model was built to distinguish resistant varieties, with an accuracy of 57.7%, sensitivity of 72%, and specificity of 44.44% in an independent test. Our results suggest the mechanism of resistance to powdery mildew in gerbera and provide a potential tool for resistance screening in breeding programs.
Business Unit Greenhouse Horticulture Wageningen University and Research Bleiswijk Netherlands
Department of Natural Drugs Faculty of Pharmacy Masaryk University Brno Czechia
Zobrazit více v PubMed
Allwood J. W., Ellis D. I., Goodacre R. (2008). Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol. Plant. 132, 117–135. doi: 10.1111/j.1399-3054.2007.01001.x, PMID: PubMed DOI
Bashandy H., Pietiäinen M., Carvalho E., Lim K. J., Elomaa P., Martens S., et al. . (2015). Anthocyanin biosynthesis in gerbera cultivar ‘Estelle’ and its acyanic sport ‘Ivory’. Planta 242, 601–611. doi: 10.1007/s00425-015-2349-6, PMID: PubMed DOI
Bhattarai K., Conesa A., Xiao S., Peres N. A., Clark D. G., Parajuli S., et al. . (2020). Sequencing and analysis of gerbera daisy leaf transcriptomes reveal disease resistance and susceptibility genes differentially expressed and associated with powdery mildew resistance. BMC Plant Biol. 20:539. doi: 10.1186/s12870-020-02742-4, PMID: PubMed DOI PMC
Bohlmann F., Zdero C., Heinrich F. (1973). Uber die Inhaltsstoffe der Gattung Gerbera. Chem. Ber. 106, 382–387. doi: 10.1017/CBO9781107415324.004 PubMed DOI
Bourgaud F., Hehn A., Larbat R., Doerper S., Gontier E., Kellner S., et al. . (2006). Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem. Rev. 5, 293–308. doi: 10.1007/s11101-006-9040-2 DOI
Broholm S. K., Pöllänen E., Ruokolainen S., Tähtiharju S., Kotilainen M., Albert V. A., et al. . (2010). Functional characterization of B class MADS-box transcription factors in Gerbera hybrida. J. Exp. Bot. 61, 75–85. doi: 10.1093/jxb/erp279, PMID: PubMed DOI PMC
Deng Z., Harbaugh B. K. (2010). UFGE 4141, UFGE 7014, UFGE 7015, UFGE 7023, UFGE 7032, and UFGE 7034: six new gerbera cultivars for marketing flowering plants in large containers. HortScience 45, 971–974. doi: 10.21273/HORTSCI.45.6.971 DOI
Eckermann S., Schröder G., Schmidt J., Streck D., Edrada R. A., Helariutta Y., et al. . (1998). New pathway to polyketides in plants. Nature 396, 387–390. doi: 10.1038/24652, PMID: PubMed DOI
Gachon C. M. M., Langlois-Meurinne M., Saindrenan P. (2005). Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 10, 542–549. doi: 10.1016/j.tplants.2005.09.007, PMID: PubMed DOI
Ghani M., Sharma S. K. (2019). Induction of powdery mildew resistance in gerbera (Gerbera jamesonii) through gamma irradiation. Physiol. Mol. Biol. Plants 25, 159–166. doi: 10.1007/s12298-018-0613-5, PMID: PubMed DOI PMC
He F., Wang M., Gao M., Zhao M., Bai Y., Zhao C. (2014). Chemical composition and biological activities of Gerbera anandria. Molecules 19, 4046–4057. doi: 10.3390/molecules19044046, PMID: PubMed DOI PMC
Helariutta Y., Kotilainen M., Elomaa P., Kalkkinen N., Bremer K., Teeri T. H., et al. . (1996). Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification. Proc. Natl. Acad. Sci. U. S. A. 93, 9033–9038. doi: 10.1073/pnas.93.17.9033, PMID: PubMed DOI PMC
Hothorn T., Hornik K., Zeileis A. (2006). Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15, 651–674. doi: 10.1198/106186006X133933, PMID: PubMed DOI
Inoue T., Toyonaga T., Nagumo S., Nagai M. (1989). Biosynthesis of 4-hydroxy-5-methylcoumarin in a Gerbera jamesonii hybrid. Phytochemistry 28, 2329–2330. doi: 10.1016/S0031-9422(00)97977-9 DOI
Jones P., Vogt T. (2001). Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213, 164–174. doi: 10.1007/s004250000492, PMID: PubMed DOI
Kashif A., Federica M., Eva Z., Martina R., Young H. C., Robert V. (2009). NMR metabolic fingerprinting based identification of grapevine metabolites associated with downy mildew resistance. J. Agric. Food Chem. 57, 9599–9606. doi: 10.1021/jf902069f, PMID: PubMed DOI
Kim H. K., Choi Y. H., Verpoorte R. (2010). NMR-based metabolomic analysis of plants. Nat. Protoc. 5, 536–549. doi: 10.1038/nprot.2009.237, PMID: PubMed DOI
Kloos W. E., George C. G., Sorge L. K. (2005a). Dark disk color in the flower of Gerbera hybrida is determined by a dominant gene, Dc. HortScience 40, 1992–1994. doi: 10.21273/hortsci.40.7.1992 DOI
Kloos W. E., George C. G., Sorge L. K. (2005b). Inheritance of powdery mildew resistance and leaf macrohair density in Gerbera hybrida. HortScience 40, 1246–1251. doi: 10.21273/hortsci.40.5.1246 DOI
Koskela S., Elomaa P., Helariutta Y., Kilpeläinen I., Harjunpää T., Teeri T. H., et al. . (2001). Two bioactive compounds and a novel chalcone synthaselike enzyme identified in Gerbera hybrida. Acta Hortic. 560, 271–274. doi: 10.17660/ActaHortic.2001.560.52 DOI
Koskela S., Söderholm P. P., Ainasoja M., Wennberg T., Klika K. D., Ovcharenko V. V., et al. . (2011). Polyketide derivatives active against Botrytis cinerea in Gerbera hybrida. Planta 233, 37–48. doi: 10.1007/s00425-010-1277-8, PMID: PubMed DOI
Kotsiantis S. B. (2013). Decision trees: a recent overview. Artif. Intell. Rev. 39, 261–283. doi: 10.1007/s10462-011-9272-4, PMID: PubMed DOI
Leiss K. A., Choi Y. H., Verpoorte R., Klinkhamer P. G. L. (2011). An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance. Phytochem. Rev. 10, 205–216. doi: 10.1007/s11101-010-9175-z, PMID: PubMed DOI PMC
Leiss K. A., Cristofori G., Van Steenis R., Verpoorte R., Klinkhamer P. G. L. (2013). An eco-metabolomic study of host plant resistance to Western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry 93, 63–70. doi: 10.1016/j.phytochem.2013.03.011, PMID: PubMed DOI
Leiss K. A., Maltese F., Choi Y. H., Verpoorte R., Klinkhamer P. G. L. (2009). Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol. 150, 1567–1575. doi: 10.1104/pp.109.138131, PMID: PubMed DOI PMC
Mascellani A., Natali L., Cavallini A., Mascagni F., Caruso G., Gucci R., et al. . (2021). Moderate salinity stress affects expression of main sugar metabolism and transport genes and soluble carbohydrate content in ripe fig fruits (Ficus carica l. cv. dottato). Plan. Theory 10:1861. doi: 10.3390/plants10091861, PMID: PubMed DOI PMC
Minic Z. (2008). Physiological roles of plant glycoside hydrolases. Planta 227, 723–740. doi: 10.1007/s00425-007-0668-y, PMID: PubMed DOI
Murphy C., Powlowski J., Wu M., Butler G., Tsang A. (2011). Curation of characterized glycoside hydrolases of fungal origin. Database 2011:bar020. doi: 10.1093/database/bar020, PMID: PubMed DOI PMC
Nagumo S., Toyonaga T., Inoue T., Masahiro N. (1989). New glucosides of a 4-hydroxy-5-methylcoumarin and a dihydro-α-pyrone from Gerbera jamesonii hybrida. Chem. Pharm. Bull. 37, 2621–2623. doi: 10.1248/cpb.37.2621 DOI
Numata A., Takahashi C., Fujiki R., Kitano E., Kitajima A., Takemura T. (1990). Plant constitutents biologically active to insects. VI. Antifeedants for larvae of the yellow butterfly Eurema hecabe mandarina in Osmunda japonica. Chem. Pharm. Bull. 38, 2862–2865. doi: 10.1248/cpb.38.2862, PMID: PubMed DOI
Osbourn A. E. (1996). Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8, 1821–1831. doi: 10.2307/3870232, PMID: PubMed DOI PMC
Paknikar S. K., Pai Fondekar K. P., Kirtany J. K., Natori S. (1996). 4-hydroxy-5-methylcoumarin derivatives from Diospyros kaki thunb and D. kaki var. sylvestris makino; structure and synthesis of 11-methylgerberinol. Phytochemistry 41, 931–933. doi: 10.1016/0031-9422(95)00698-2 DOI
Pang Z., Chong J., Li S., Xia J. (2020). Metaboanalystr 3.0: toward an optimized workflow for global metabolomics. Meta 10:186. doi: 10.3390/metabo10050186, PMID: PubMed DOI PMC
Pichersky E., Gang D. R. (2000). Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci. 5, 439–445. doi: 10.1016/S1360-1385(00)01741-6, PMID: PubMed DOI
Pietiäinen M., Kontturi J., Paasela T., Deng X., Ainasoja M., Nyberg P., et al. . (2016). Two polyketide synthases are necessary for 4-hydroxy-5-methylcoumarin biosynthesis in Gerbera hybrida. Plant J. 87, 548–558. doi: 10.1111/tpj.13216, PMID: PubMed DOI
R Core Team (2020). R: a language and environment for statistical computing. Available at: https://www.r-project.org/ (Accessed May 31, 2010).
Ruokolainen S., Ng Y. P., Broholm S. K., Albert V. A., Elomaa P., Teeri T. H. (2010). Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition. BMC Plant Biol. 10:128. doi: 10.1186/1471-2229-10-128, PMID: PubMed DOI PMC
Sardari S., Nishibe S., Daneshtalab M. (2000). Coumarins, the bioactive structures with antifungal property. Stud. Nat. Prod. Chem. 23, 335–393. doi: 10.1016/S1572-5995(00)80133-7 DOI
Sirikantaramas S., Yamazaki M., Saito K. (2008). Mechanisms of resistance to self-produced toxic secondary metabolites in plants. Phytochem. Rev. 7, 467–477. doi: 10.1007/s11101-007-9080-2 DOI
Song X., Deng Z. (2013). Powdery mildew resistance in gerbera: mode of inheritance, quantitative trait locus identification, and resistance responses. J. Am. Soc. Hortic. Sci. 138, 470–478. doi: 10.21273/jashs.138.6.470 DOI
Song X., Deng Z., Gong L., Hu J., Ma Q. (2012). Cloning and characterization of resistance gene candidate sequences and molecular marker development in gerbera (Gerbera hybrida). Sci. Hortic. 145, 68–75. doi: 10.1016/j.scienta.2012.07.027 DOI
Teeri T. H., Elomaa P., Kotilainen M., Albert V. A. (2006). Mining plant diversity: gerbera as a model system for plant developmental and biosynthetic research. BioEssays 28, 756–767. doi: 10.1002/bies.20439, PMID: PubMed DOI
Tschesche R., Hoppe H., Snatzke G., Walff G., Fehlhaber H.-W. (1971). Über Glykoside mit lacton-bildendem Aglykon, III. Über Parasorbosid, den glykosidischen Vorläufer der Parasorbinsäure, aus Vogelbeeren. Chem. Ber. 104, 1420–1428. doi: 10.1002/cber.19711040510 DOI
USDA (2019). Floriculture crops 2018 summary. National Agricultural Statistics Service.
Verpoorte R., Choi Y. H., Kim H. K. (2007). NMR-based metabolomics at work in phytochemistry. Phytochem. Rev. 6, 3–14. doi: 10.1007/s11101-006-9031-3, PMID: PubMed DOI
Verpoorte R., Choi Y. H., Mustafa N. R., Kim H. K. (2008). Metabolomics: back to basics. Phytochem. Rev. 7, 525–537. doi: 10.1007/s11101-008-9091-7, PMID: PubMed DOI
Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York: Springer Verlag.
Winning H., Larsen F. H., Bro R., Engelsen S. B. (2008). Quantitative analysis of NMR spectra with chemometrics. J. Magn. Reson. 190, 26–32. doi: 10.1016/j.jmr.2007.10.005, PMID: PubMed DOI
Wolfender J. L., Ndjoko K., Hostettmann K. (2003). Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectroscopy: a powerful combination for the on-line structural investigation of plant metabolites. J. Chromatogr. A 1000, 437–455. doi: 10.1016/S0021-9673(03)00303-0, PMID: PubMed DOI
Yrjönen T., Vuorela P., Klika K. D., Pihlaja K., Teeri T. H., Vuorela H. (2002). Application of centrifugal force to the extraction and separation of parasorboside and gerberin from Gerbera hybrida. Phytochem. Anal. 13, 349–353. doi: 10.1002/pca.665, PMID: PubMed DOI
Zdero C., Bohlmann F., Solomon J. (1988). Further 5-methylcoumarin derivatives from Mutisia orbignyana. Phytochemistry 27, 891–897. doi: 10.1016/0031-9422(88)84114-1 DOI