Moderate Salinity Stress Affects Expression of Main Sugar Metabolism and Transport Genes and Soluble Carbohydrate Content in Ripe Fig Fruits (Ficus carica L. cv. Dottato)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Progetto di Ricerca di Ateneo 2020: Risposta a stress ambientali e controllo ecosostenibile dei par-assiti di Ficus carica
Università di Pisa
FIGGEN/PRIMA19_00197
Ministero dell'Istruzione, dell'Università e della Ricerca
LM2018100
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34579394
PubMed Central
PMC8471620
DOI
10.3390/plants10091861
PII: plants10091861
Knihovny.cz E-zdroje
- Klíčová slova
- 1H NMR, Ficus carica L., RT-qPCR, carbohydrates metabolism, qNMR, salinity stress,
- Publikační typ
- časopisecké články MeSH
Fig trees (Ficus carica L.) are commonly grown in the Mediterranean area, where salinity is an increasing problem in coastal areas. Young, fruiting plants of cv. Dottato were subjected to moderate salt stress (100 mM NaCl added to irrigation water) for 48 days before fruit sampling. To clarify the effect of salinity stress, we investigated changes in the transcription of the main sugar metabolism-related genes involved in the synthesis, accumulation and transport of soluble carbohydrates in ripe fruits by quantitative real-time PCR as well as the content of soluble sugars by quantitative 1H nuclear magnetic resonance spectroscopy. A general increase in the transcript levels of genes involved in the transport of soluble carbohydrates was observed. Alkaline-neutral and Acid Invertases transcripts, related to the synthesis of glucose and fructose, were up-regulated in ripe fruits of NaCl-stressed plants without a change in the content of D-glucose and D-fructose. The increases in sucrose and D-sorbitol contents were likely the result of the up-regulation of the transcription of Sucrose-Synthase- and Sorbitol-Dehydrogenase-encoding genes.
Zobrazit více v PubMed
FAOSTAT Statistical Databases, Food and Agriculture Organization of the United Nations. [(accessed on 6 March 2021)]. Available online: http://www.fao.org/faostat/en/#home.
Gilani A.H., Mehmood M.H., Janbaz K.H., Khan A.U., Saeed S.A. Ethnopharmacological studies on antispasmodic and antiplatelet activities of Ficus carica. J. Ethnopharmacol. 2008;119:1–5. doi: 10.1016/j.jep.2008.05.040. PubMed DOI
Solomon A., Golubowicz S., Yablowicz Z., Grossman S., Bergman M., Gottlieb H.E., Altman A., Kerem Z., Flaishman M.A. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.) J. Agric. Food Chem. 2006;54:7717–7723. doi: 10.1021/jf060497h. PubMed DOI
Veberic R., Colaric M., Stampar F. Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem. 2008;106:153–157. doi: 10.1016/j.foodchem.2007.05.061. DOI
Allegra A., Sortino G., Inglese P., Settanni L., Todaro A., Gallotta A. The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig (Ficus carica L.) fruit. Food Packag. Shelf Life. 2017;12:135–141. doi: 10.1016/j.fpsl.2017.04.010. DOI
Allegra A., Gallotta A., Carimi F., Mercati F., Inglese P., Martinelli F. Metabolic profiling and post-harvest behavior of “Dottato” fig (Ficus carica L.) fruit covered with an edible coating from O. ficus-indica. Front. Plant Sci. 2018;9:1321. doi: 10.3389/fpls.2018.01321. PubMed DOI PMC
Golombek S.D., Lüdders P. Effects of short-term salinity on leaf gas exchange of the fig (Ficus carica L.) Plant Soil. 1993;148:21–27. doi: 10.1007/BF02185381. DOI
Vangelisti A., Zambrano L.S., Caruso G., Macheda D., Bernardi R., Usai G., Mascagni F., Giordani T., Gucci R., Cavallini A., et al. How an ancient, salt-tolerant fruit crop, Ficus carica L., copes with salinity: A transcriptome analysis. Sci. Rep. 2019;9:2561. doi: 10.1038/s41598-019-39114-4. PubMed DOI PMC
Sadder M.T., Alshomali I., Ateyyeh A., Musallam A. Physiological and molecular responses for long term salinity stress in common fig (Ficus carica L.) Physiol. Mol. Biol. Plants. 2021;27:107–117. doi: 10.1007/s12298-020-00921-z. PubMed DOI PMC
Caruso G., Gennai C., Ugolini F., Marchini F., Quartacci M.F., Gucci R. Tolerance and physiological response of young Ficus carica L. plants irrigated with saline water. Acta Hortic. 2017;1173:137–141. doi: 10.17660/ActaHortic.2017.1173.23. DOI
Tóth G., Adhikari K., Várallyay G., Tóth T., Bódis K., Stolbovoy V. Threats to Soil Quality in Europe. Office for Official Publications of the European Communities; Luxemburg: 2008. Update map of salt affected soils in the European Union; pp. 67–77.
Everard J.D., Gucci R., Kann S.C., Flore J.A., Loescher W.H. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol. 1994;106:281–292. doi: 10.1104/pp.106.1.281. PubMed DOI PMC
Gucci R., Moing A., Gravano E., Gaudillere J. Partitioning of photosynthetic carbohydrates in leaves of salt-stressed olive plants. Aust. J. Plant Physiol. 1998;25:571–579. doi: 10.1071/PP98003. DOI
Hoffman G.J., Catlin P.B., Mead R.M., Johnson R.S., Francois L.E., Goldhamer D. Yield and foliar injury responses of mature plum trees to salinity. Irrig. Sci. 1989;10:215–229. doi: 10.1007/BF00257954. DOI
Colla G., Rouphael Y., Cardarelli M., Rea E. Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience. 2006;41:622–627. doi: 10.21273/HORTSCI.41.3.622. DOI
Saied A.S., Keutgen A.J., Noga G. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. “Elsanta” and “Korona”. Sci. Hortic. (Amst.) 2005;103:289–303. doi: 10.1016/j.scienta.2004.06.015. DOI
Saito T., Matsukura C., Ban Y., Shoji K., Sugiyama M., Fukuda N., Nishimura S. Salinity stress affects assimilate metabolism at the gene-expression level during fruit development and improves fruit quality in tomato (Solanum lycopersicum L.) J. Jpn. Soc. Hortic. Sci. 2008;77:61–68. doi: 10.2503/jjshs1.77.61. DOI
Yin Y.G., Kobayashi Y., Sanuki A., Kondo S., Fukuda N., Ezura H., Sugaya S., Matsukura C. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ’Micro-Tom’) fruits in an ABA-and osmotic stress-independent manner. J. Exp. Bot. 2010;61:563–574. doi: 10.1093/jxb/erp333. PubMed DOI PMC
Vemmos S.N., Petri E., Stournaras V. Seasonal changes in photosynthetic activity and carbohydrate content in leaves and fruit of three fig cultivars (Ficus carica L.) Sci. Hortic. (Amst.) 2013;160:198–207. doi: 10.1016/j.scienta.2013.05.036. DOI
Brown P.H., Hu H. Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol-rich species. Ann. Bot. 1996;77:497–506. doi: 10.1006/anbo.1996.0060. DOI
Usai G., Mascagni F., Giordani T., Vangelisti A., Bosi E., Zuccolo A., Ceccarelli M., King R., Hassani-Pak K., Zambrano L.S., et al. Epigenetic patterns within the haplotype phased fig (Ficus carica L.) genome. Plant J. 2020;102:600–614. doi: 10.1111/tpj.14635. PubMed DOI
Usai G., Vangelisti A., Simoni S., Giordani T., Natali L., Cavallini A., Mascagni F. DNA modification patterns within the transposable elements of the fig (Ficus carica L.) genome. Plants. 2021;10:451. doi: 10.3390/plants10030451. PubMed DOI PMC
Vangelisti A., Simoni S., Usai G., Ventimiglia M., Natali L., Cavallini A., Mascagni F., Giordani T. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. BMC Plant Biol. 2021;21:221. doi: 10.1186/s12870-021-02991-x. PubMed DOI PMC
Mori K., Shirasawa K., Nogata H., Hirata C., Tashiro K., Habu T., Kim S., Himeno S., Kuhara S., Ikegami H. Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.) Sci. Rep. 2017;7:41124. doi: 10.1038/srep41124. PubMed DOI PMC
Usai G., Vangelisti A., Solorzano-Zambrano L., Mascagni F., Giordani T., Cavallini A., Natali L. Transcriptome comparison between two fig (Ficus carica L.) cultivars. Agrochimica. 2017;61:340–354. doi: 10.12871/00021857201735. DOI
Fattorini C., Bernardi R., Quartacci M.F., Mascgni F., Caruso G., Cavallini A., Gucci R., Natali L. Expression of genes involved in metabolism and transport of soluble carbohydrates during fruit ripening in two cultivars of Ficus carica L. Agrochimica. 2021;65:117–136. doi: 10.12871/00021857202122. DOI
Ikegami H., Habu T., Mori K., Nogata H., Hirata C., Hirashima K., Tashiro K., Kuhara S. De novo sequencing and comparative analysis of expressed sequence tags from gynodioecious fig (Ficus carica L.) fruits: Caprifig and common fig. Tree Genet. Genomes. 2013;9:1075–1088. doi: 10.1007/s11295-013-0622-z. DOI
Desnoues E., Gibon Y., Baldazzi V., Signoret V., Génard M., Quilot-Turion B. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biol. 2014;14:12–14. doi: 10.1186/s12870-014-0336-x. PubMed DOI PMC
Yamaki S., Moriguchi T. Seasonal fluctuation of sorbitol-related enzymes and invertase activities accompanying maturation of Japanese pear (Pyrus serotina Rehder var. culta Rehder) fruit. J. Jpn. Soc. Hortic. Sci. 1989;57:602–607. doi: 10.2503/jjshs.57.602. DOI
Smirnoff N., Cumbes Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 1989;28:1057–1060. doi: 10.1016/0031-9422(89)80182-7. DOI
Williamson J.D., Stoop J.M.H., Massel M.O., Conkling M.A., Pharr D.M. Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3. Proc. Natl. Acad. Sci. USA. 1995;92:7148–7152. doi: 10.1073/pnas.92.16.7148. PubMed DOI PMC
Jennings D.B., Ehrenshaft M., Mason Pharr D., Williamson J.D. Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc. Natl. Acad. Sci. USA. 1998;95:15129–15133. doi: 10.1073/pnas.95.25.15129. PubMed DOI PMC
Conde C., Silva P., Agasse A., Lemoine R., Delrot S., Tavares R., Gerós H. Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance. Plant Cell Physiol. 2007;48:42–53. doi: 10.1093/pcp/pcl035. PubMed DOI
Gupta B., Huang B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014;2014:701596. doi: 10.1155/2014/701596. PubMed DOI PMC
Conde C., Delrot S., Gerós H. Physiological, biochemical and molecular changes occurring during olive development and ripening. J. Plant Physiol. 2008;165:1545–1562. doi: 10.1016/j.jplph.2008.04.018. PubMed DOI
Lu S., Li T., Jiang J. Effects of salinity on sucrose metabolism during tomato fruit development. Afr. J. Biotechnol. 2010;9:842–849.
Saito T., Fukuda N., Matsukura C., Nishimura S. Effects of salinity on distribution of photosynthates and carbohydrate metabolism in tomato grown using nutrient film technique. J. Jpn. Soc. Hortic. Sci. 2009;78:90–96. doi: 10.2503/jjshs1.78.90. DOI
Lü H., Li J., Huang Y., Zhang M., Zhang S., Wu J. Genome-wide identification, expression and functional analysis of the phosphofructokinase gene family in Chinese white pear (Pyrus bretschneideri) Gene. 2019;702:133–142. doi: 10.1016/j.gene.2019.03.005. PubMed DOI
Mustroph A., Stock J., Hess N., Aldous S., Dreilich A., Grimm B. Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. Front. Plant Sci. 2013;4:125. doi: 10.3389/fpls.2013.00125. PubMed DOI PMC
Moles T.M., de Brito Francisco R., Mariotti L., Pompeiano A., Lupini A., Incrocci L., Carmassi G., Scartazza A., Pistelli L., Guglielminetti L., et al. Salinity in autumn-winter season and fruit quality of tomato landraces. Front. Plant Sci. 2019;10:1078. doi: 10.3389/fpls.2019.01078. PubMed DOI PMC
Gao Z., Sagi M., Lips S.H. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci. 1998;135:149–159. doi: 10.1016/S0168-9452(98)00085-5. DOI
Ersoy N. Changes in sugar contents of fig fruit (Ficus carica L. cv. Bursa Siyahı) during development. SDÜ Ziraat Fakültesi Derg. 2007;2:22–26.
Slatnar A., Klancar U., Stampar F., Veberic R. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. J. Agric. Food Chem. 2011;59:11696–11702. doi: 10.1021/jf202707y. PubMed DOI
Sedaghat S., Rahemi M. Enzyme activity regarding sugar and organic acid changes during developmental stages in rainfed fig (Ficus carica L.cv Sabz) Int. J. Fruit Sci. 2018;18:14–28. doi: 10.1080/15538362.2017.1367984. DOI
Lo Bianco R., Rieger M., Sung S.J.S. Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol. Plant. 2000;108:71–78. doi: 10.1034/j.1399-3054.2000.108001071.x. DOI
Li M., Li P., Ma F., Dandekar A.M., Cheng L. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Hortic. Res. 2018;5 doi: 10.1038/s41438-018-0064-8. PubMed DOI PMC
Marei N., Crane J.C. Growth and respiratory response of fig (Ficus carica L. cv. Mission) fruits to ethylene. Plant Physiol. 1971;48:249–254. doi: 10.1104/pp.48.3.249. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Kim H.K., Choi Y.H., Verpoorte R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010;5:536–549. doi: 10.1038/nprot.2009.237. PubMed DOI
Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus
Polyketide Derivatives in the Resistance of Gerbera hybrida to Powdery Mildew