Moderate Salinity Stress Affects Expression of Main Sugar Metabolism and Transport Genes and Soluble Carbohydrate Content in Ripe Fig Fruits (Ficus carica L. cv. Dottato)

. 2021 Sep 08 ; 10 (9) : . [epub] 20210908

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34579394

Grantová podpora
Progetto di Ricerca di Ateneo 2020: Risposta a stress ambientali e controllo ecosostenibile dei par-assiti di Ficus carica Università di Pisa
FIGGEN/PRIMA19_00197 Ministero dell'Istruzione, dell'Università e della Ricerca
LM2018100 Ministerstvo Školství, Mládeže a Tělovýchovy

Fig trees (Ficus carica L.) are commonly grown in the Mediterranean area, where salinity is an increasing problem in coastal areas. Young, fruiting plants of cv. Dottato were subjected to moderate salt stress (100 mM NaCl added to irrigation water) for 48 days before fruit sampling. To clarify the effect of salinity stress, we investigated changes in the transcription of the main sugar metabolism-related genes involved in the synthesis, accumulation and transport of soluble carbohydrates in ripe fruits by quantitative real-time PCR as well as the content of soluble sugars by quantitative 1H nuclear magnetic resonance spectroscopy. A general increase in the transcript levels of genes involved in the transport of soluble carbohydrates was observed. Alkaline-neutral and Acid Invertases transcripts, related to the synthesis of glucose and fructose, were up-regulated in ripe fruits of NaCl-stressed plants without a change in the content of D-glucose and D-fructose. The increases in sucrose and D-sorbitol contents were likely the result of the up-regulation of the transcription of Sucrose-Synthase- and Sorbitol-Dehydrogenase-encoding genes.

Zobrazit více v PubMed

FAOSTAT Statistical Databases, Food and Agriculture Organization of the United Nations. [(accessed on 6 March 2021)]. Available online: http://www.fao.org/faostat/en/#home.

Gilani A.H., Mehmood M.H., Janbaz K.H., Khan A.U., Saeed S.A. Ethnopharmacological studies on antispasmodic and antiplatelet activities of Ficus carica. J. Ethnopharmacol. 2008;119:1–5. doi: 10.1016/j.jep.2008.05.040. PubMed DOI

Solomon A., Golubowicz S., Yablowicz Z., Grossman S., Bergman M., Gottlieb H.E., Altman A., Kerem Z., Flaishman M.A. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.) J. Agric. Food Chem. 2006;54:7717–7723. doi: 10.1021/jf060497h. PubMed DOI

Veberic R., Colaric M., Stampar F. Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem. 2008;106:153–157. doi: 10.1016/j.foodchem.2007.05.061. DOI

Allegra A., Sortino G., Inglese P., Settanni L., Todaro A., Gallotta A. The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig (Ficus carica L.) fruit. Food Packag. Shelf Life. 2017;12:135–141. doi: 10.1016/j.fpsl.2017.04.010. DOI

Allegra A., Gallotta A., Carimi F., Mercati F., Inglese P., Martinelli F. Metabolic profiling and post-harvest behavior of “Dottato” fig (Ficus carica L.) fruit covered with an edible coating from O. ficus-indica. Front. Plant Sci. 2018;9:1321. doi: 10.3389/fpls.2018.01321. PubMed DOI PMC

Golombek S.D., Lüdders P. Effects of short-term salinity on leaf gas exchange of the fig (Ficus carica L.) Plant Soil. 1993;148:21–27. doi: 10.1007/BF02185381. DOI

Vangelisti A., Zambrano L.S., Caruso G., Macheda D., Bernardi R., Usai G., Mascagni F., Giordani T., Gucci R., Cavallini A., et al. How an ancient, salt-tolerant fruit crop, Ficus carica L., copes with salinity: A transcriptome analysis. Sci. Rep. 2019;9:2561. doi: 10.1038/s41598-019-39114-4. PubMed DOI PMC

Sadder M.T., Alshomali I., Ateyyeh A., Musallam A. Physiological and molecular responses for long term salinity stress in common fig (Ficus carica L.) Physiol. Mol. Biol. Plants. 2021;27:107–117. doi: 10.1007/s12298-020-00921-z. PubMed DOI PMC

Caruso G., Gennai C., Ugolini F., Marchini F., Quartacci M.F., Gucci R. Tolerance and physiological response of young Ficus carica L. plants irrigated with saline water. Acta Hortic. 2017;1173:137–141. doi: 10.17660/ActaHortic.2017.1173.23. DOI

Tóth G., Adhikari K., Várallyay G., Tóth T., Bódis K., Stolbovoy V. Threats to Soil Quality in Europe. Office for Official Publications of the European Communities; Luxemburg: 2008. Update map of salt affected soils in the European Union; pp. 67–77.

Everard J.D., Gucci R., Kann S.C., Flore J.A., Loescher W.H. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol. 1994;106:281–292. doi: 10.1104/pp.106.1.281. PubMed DOI PMC

Gucci R., Moing A., Gravano E., Gaudillere J. Partitioning of photosynthetic carbohydrates in leaves of salt-stressed olive plants. Aust. J. Plant Physiol. 1998;25:571–579. doi: 10.1071/PP98003. DOI

Hoffman G.J., Catlin P.B., Mead R.M., Johnson R.S., Francois L.E., Goldhamer D. Yield and foliar injury responses of mature plum trees to salinity. Irrig. Sci. 1989;10:215–229. doi: 10.1007/BF00257954. DOI

Colla G., Rouphael Y., Cardarelli M., Rea E. Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience. 2006;41:622–627. doi: 10.21273/HORTSCI.41.3.622. DOI

Saied A.S., Keutgen A.J., Noga G. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. “Elsanta” and “Korona”. Sci. Hortic. (Amst.) 2005;103:289–303. doi: 10.1016/j.scienta.2004.06.015. DOI

Saito T., Matsukura C., Ban Y., Shoji K., Sugiyama M., Fukuda N., Nishimura S. Salinity stress affects assimilate metabolism at the gene-expression level during fruit development and improves fruit quality in tomato (Solanum lycopersicum L.) J. Jpn. Soc. Hortic. Sci. 2008;77:61–68. doi: 10.2503/jjshs1.77.61. DOI

Yin Y.G., Kobayashi Y., Sanuki A., Kondo S., Fukuda N., Ezura H., Sugaya S., Matsukura C. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ’Micro-Tom’) fruits in an ABA-and osmotic stress-independent manner. J. Exp. Bot. 2010;61:563–574. doi: 10.1093/jxb/erp333. PubMed DOI PMC

Vemmos S.N., Petri E., Stournaras V. Seasonal changes in photosynthetic activity and carbohydrate content in leaves and fruit of three fig cultivars (Ficus carica L.) Sci. Hortic. (Amst.) 2013;160:198–207. doi: 10.1016/j.scienta.2013.05.036. DOI

Brown P.H., Hu H. Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol-rich species. Ann. Bot. 1996;77:497–506. doi: 10.1006/anbo.1996.0060. DOI

Usai G., Mascagni F., Giordani T., Vangelisti A., Bosi E., Zuccolo A., Ceccarelli M., King R., Hassani-Pak K., Zambrano L.S., et al. Epigenetic patterns within the haplotype phased fig (Ficus carica L.) genome. Plant J. 2020;102:600–614. doi: 10.1111/tpj.14635. PubMed DOI

Usai G., Vangelisti A., Simoni S., Giordani T., Natali L., Cavallini A., Mascagni F. DNA modification patterns within the transposable elements of the fig (Ficus carica L.) genome. Plants. 2021;10:451. doi: 10.3390/plants10030451. PubMed DOI PMC

Vangelisti A., Simoni S., Usai G., Ventimiglia M., Natali L., Cavallini A., Mascagni F., Giordani T. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. BMC Plant Biol. 2021;21:221. doi: 10.1186/s12870-021-02991-x. PubMed DOI PMC

Mori K., Shirasawa K., Nogata H., Hirata C., Tashiro K., Habu T., Kim S., Himeno S., Kuhara S., Ikegami H. Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.) Sci. Rep. 2017;7:41124. doi: 10.1038/srep41124. PubMed DOI PMC

Usai G., Vangelisti A., Solorzano-Zambrano L., Mascagni F., Giordani T., Cavallini A., Natali L. Transcriptome comparison between two fig (Ficus carica L.) cultivars. Agrochimica. 2017;61:340–354. doi: 10.12871/00021857201735. DOI

Fattorini C., Bernardi R., Quartacci M.F., Mascgni F., Caruso G., Cavallini A., Gucci R., Natali L. Expression of genes involved in metabolism and transport of soluble carbohydrates during fruit ripening in two cultivars of Ficus carica L. Agrochimica. 2021;65:117–136. doi: 10.12871/00021857202122. DOI

Ikegami H., Habu T., Mori K., Nogata H., Hirata C., Hirashima K., Tashiro K., Kuhara S. De novo sequencing and comparative analysis of expressed sequence tags from gynodioecious fig (Ficus carica L.) fruits: Caprifig and common fig. Tree Genet. Genomes. 2013;9:1075–1088. doi: 10.1007/s11295-013-0622-z. DOI

Desnoues E., Gibon Y., Baldazzi V., Signoret V., Génard M., Quilot-Turion B. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biol. 2014;14:12–14. doi: 10.1186/s12870-014-0336-x. PubMed DOI PMC

Yamaki S., Moriguchi T. Seasonal fluctuation of sorbitol-related enzymes and invertase activities accompanying maturation of Japanese pear (Pyrus serotina Rehder var. culta Rehder) fruit. J. Jpn. Soc. Hortic. Sci. 1989;57:602–607. doi: 10.2503/jjshs.57.602. DOI

Smirnoff N., Cumbes Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 1989;28:1057–1060. doi: 10.1016/0031-9422(89)80182-7. DOI

Williamson J.D., Stoop J.M.H., Massel M.O., Conkling M.A., Pharr D.M. Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3. Proc. Natl. Acad. Sci. USA. 1995;92:7148–7152. doi: 10.1073/pnas.92.16.7148. PubMed DOI PMC

Jennings D.B., Ehrenshaft M., Mason Pharr D., Williamson J.D. Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proc. Natl. Acad. Sci. USA. 1998;95:15129–15133. doi: 10.1073/pnas.95.25.15129. PubMed DOI PMC

Conde C., Silva P., Agasse A., Lemoine R., Delrot S., Tavares R., Gerós H. Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance. Plant Cell Physiol. 2007;48:42–53. doi: 10.1093/pcp/pcl035. PubMed DOI

Gupta B., Huang B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014;2014:701596. doi: 10.1155/2014/701596. PubMed DOI PMC

Conde C., Delrot S., Gerós H. Physiological, biochemical and molecular changes occurring during olive development and ripening. J. Plant Physiol. 2008;165:1545–1562. doi: 10.1016/j.jplph.2008.04.018. PubMed DOI

Lu S., Li T., Jiang J. Effects of salinity on sucrose metabolism during tomato fruit development. Afr. J. Biotechnol. 2010;9:842–849.

Saito T., Fukuda N., Matsukura C., Nishimura S. Effects of salinity on distribution of photosynthates and carbohydrate metabolism in tomato grown using nutrient film technique. J. Jpn. Soc. Hortic. Sci. 2009;78:90–96. doi: 10.2503/jjshs1.78.90. DOI

Lü H., Li J., Huang Y., Zhang M., Zhang S., Wu J. Genome-wide identification, expression and functional analysis of the phosphofructokinase gene family in Chinese white pear (Pyrus bretschneideri) Gene. 2019;702:133–142. doi: 10.1016/j.gene.2019.03.005. PubMed DOI

Mustroph A., Stock J., Hess N., Aldous S., Dreilich A., Grimm B. Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. Front. Plant Sci. 2013;4:125. doi: 10.3389/fpls.2013.00125. PubMed DOI PMC

Moles T.M., de Brito Francisco R., Mariotti L., Pompeiano A., Lupini A., Incrocci L., Carmassi G., Scartazza A., Pistelli L., Guglielminetti L., et al. Salinity in autumn-winter season and fruit quality of tomato landraces. Front. Plant Sci. 2019;10:1078. doi: 10.3389/fpls.2019.01078. PubMed DOI PMC

Gao Z., Sagi M., Lips S.H. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci. 1998;135:149–159. doi: 10.1016/S0168-9452(98)00085-5. DOI

Ersoy N. Changes in sugar contents of fig fruit (Ficus carica L. cv. Bursa Siyahı) during development. SDÜ Ziraat Fakültesi Derg. 2007;2:22–26.

Slatnar A., Klancar U., Stampar F., Veberic R. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. J. Agric. Food Chem. 2011;59:11696–11702. doi: 10.1021/jf202707y. PubMed DOI

Sedaghat S., Rahemi M. Enzyme activity regarding sugar and organic acid changes during developmental stages in rainfed fig (Ficus carica L.cv Sabz) Int. J. Fruit Sci. 2018;18:14–28. doi: 10.1080/15538362.2017.1367984. DOI

Lo Bianco R., Rieger M., Sung S.J.S. Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol. Plant. 2000;108:71–78. doi: 10.1034/j.1399-3054.2000.108001071.x. DOI

Li M., Li P., Ma F., Dandekar A.M., Cheng L. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Hortic. Res. 2018;5 doi: 10.1038/s41438-018-0064-8. PubMed DOI PMC

Marei N., Crane J.C. Growth and respiratory response of fig (Ficus carica L. cv. Mission) fruits to ethylene. Plant Physiol. 1971;48:249–254. doi: 10.1104/pp.48.3.249. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Kim H.K., Choi Y.H., Verpoorte R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010;5:536–549. doi: 10.1038/nprot.2009.237. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace