Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910235
National Agency for Agricultural Research
CZ.02.1.01/0.0/0.0/16_019/0000845
European Regional Development Fund
LM2018100
Ministry of Education, Youth, and Sports of the Czech Republic
MUNI/A/1654/2020
Masaryk University, Specific research
PubMed
36009288
PubMed Central
PMC9405179
DOI
10.3390/antiox11081569
PII: antiox11081569
Knihovny.cz E-zdroje
- Klíčová slova
- Indian oyster mushroom, basidiomycetes, bioactivity, cyclooxygenase-2, immunomodulatory effect, inflammation, oyster mushroom, pink oyster mushroom, radical scavenging effect, secondary metabolites,
- Publikační typ
- časopisecké články MeSH
Within the group of higher fungi, edible medicinal mushrooms have a long history of being used as food and in folk medicine. These species contain biologically active substances with many potential beneficial effects on human health. The Pleurotus genus is representative of medicinal mushrooms because Pleurotus ostreatus is one of the most commonly cultivated culinary mushrooms. In our study, we focused on lesser-known species in the genus Pleurotus and measured their antioxidant and anti-inflammatory activity. We prepared extracts of the mushrooms and analyzed them using HPLC-HRMS, GC-MS, and 1H-NMR. Significant differences in biological activities were found among the Pleurotus spp. extracts. A MeOH extract of P. flabellatus was the most active as a radical scavenger with the highest ORAC, while a chloroform extract had significant anti-inflammatory COX-2 activity. The 80% MeOH extract of P. flabellatus contained the highest amounts of ergosterol, ergothioneine, and mannitol. The 80% MeOH extract of P. ostreatus Florida was the most active in the NF-κB inhibition assay and had the highest content of β-glucans (43.3% by dry weight). Given the antioxidant and anti-inflammatory properties of P. flabellatus, the potential therapeutic usefulness of this species is worth evaluating through in-depth investigations and confirmation by clinical trials.
Zobrazit více v PubMed
Roncero-Ramos I., Delgado-Andrade C. The Beneficial Role of Edible Mushrooms in Human Health. Curr. Opin. Food Sci. 2017;14:122–128. doi: 10.1016/j.cofs.2017.04.002. DOI
Guillamón E., García-Lafuente A., Lozano M., D’Arrigo M., Rostagno M.A., Villares A., Martínez J.A. Edible Mushrooms: Role in the Prevention of Cardiovascular Diseases. Fitoterapia. 2010;81:715–723. doi: 10.1016/j.fitote.2010.06.005. PubMed DOI
Jo W.-S., Hossain M.A., Park S.-C. Toxicological Profiles of Poisonous, Edible, and Medicinal Mushrooms. Mycobiology. 2014;42:215–220. doi: 10.5941/MYCO.2014.42.3.215. PubMed DOI PMC
Wasser S.P. Current Findings, Future Trends, and Unsolved Problems in Studies of Medicinal Mushrooms. Appl. Microbiol. Biotechnol. 2011;89:1323–1332. doi: 10.1007/s00253-010-3067-4. PubMed DOI
Patel Y., Narian R., Singh V.K. Medicinal Properties of Pleurotus Species (Oyster Mushroom): A Review. 2219-4312World J. Fungal Plant Biol. 2012;3:1–12. doi: 10.5829/idosi.wjfpb.2012.3.1.303. DOI
Hobbs C. Medicinal Mushrooms: An Exploration of Tradition, Healing, and Culture. Botanica Press; Williams, OR, USA: 2003. (Herbs and Health Series).
Rama Shankar G.S., Lavekar S.D., Sharma B.K. Traditional healing practice and folk medicines used by Mishing community of North East India. J. Ayurveda Integr. Med. 2012;3:124–129. doi: 10.4103/0975-9476.100171. PubMed DOI PMC
Catalogue of Life. [(accessed on 29 August 2021)]. Available online: https://www.catalogueoflife.org/col/browse/tree/id/857ebe7fdb1404352630eb1d4da99cf1.
Deepalakshmi K., Mirunalini S. Pleurotus Ostreatus: An Oyster Mushroom with Nutritional and Medicinal Properties. J. Biochem. Technol. 2014;5:718–726.
Enshasy H., Maftoun P., Johari H.J., Soltani M., Malik R., Othman N. The Edible Mushroom Pleurotus Spp.: I. Biodiversity and Nutritional Values. Int. J. Biotechnol. Wellness Ind. 2015;4:67–83. doi: 10.6000/1927-3037.2015.04.02.4. DOI
Jedinak A., Dudhgaonkar S., Wu Q., Simon J., Sliva D. Anti-Inflammatory Activity of Edible Oyster Mushroom Is Mediated through the Inhibition of NF-ΚB and AP-1 Signaling. Nutr. J. 2011;10:52. doi: 10.1186/1475-2891-10-52. PubMed DOI PMC
Golak-Siwulska I., Kałużewicz A., Spiżewski T., Siwulski M., Sobieralski K. Bioactive Compounds and Medicinal Properties of Oyster Mushrooms ( Pleurotus sp.) Folia Hortic. 2018;30:191–201. doi: 10.2478/fhort-2018-0012. DOI
Klaus A., Wan-Mohtar W.A.A.Q.I., Nikolić B., Cvetković S., Vunduk J. Pink Oyster Mushroom Pleurotus Flabellatus Mycelium Produced by an Airlift Bioreactor—the Evidence of Potent in Vitro Biological Activities. World J. Microbiol. Biotechnol. 2021;37:17. doi: 10.1007/s11274-020-02980-6. PubMed DOI
Murugesan A.K., Gunasagaran K.S. Purification and Characterization of a Synergistic Bioactive Lectin from Pleurotus Flabellatus (PFL-L) with Potent Antibacterial and in-Vitro Radical Scavenging Activity. Anal. Biochem. 2021;635:114450. doi: 10.1016/j.ab.2021.114450. PubMed DOI
Radzi M.P.M.F., Azizah M., Maininah T., Sumaiyah A. Growth, Yield And Antioxidant Activity of Grey Oyster Mushroom (Pleurotus Pulmonarius) Grown in Sawdust Substrate With The Supplementation Of Alkaline Materials. JAPS J. Anim. Plant Sci. 2021;31:1699–1711.
Oyetayo V.O., Ogidi C.O., Bayode S.O., Enikanselu F.F. Evaluation of Biological Efficiency, Nutrient Contents and Antioxidant Activity of Pleurotus Pulmonarius Enriched with Zinc and Iron. Indian Phytopathol. 2021;74:901–910. doi: 10.1007/s42360-021-00410-7. DOI
Nguyen T.K., Im K.H., Choi J., Shin P.G., Lee T.S. Evaluation of Antioxidant, Anti-Cholinesterase, and Anti-Inflammatory Effects of Culinary Mushroom Pleurotus Pulmonarius. Mycobiology. 2016;44:291–301. doi: 10.5941/MYCO.2016.44.4.291. PubMed DOI PMC
Xu W.W., Li B., Lai E.T.C., Chen L., Huang J.J.H., Cheung A.L.M., Cheung P.C.K. Water Extract from Pleurotus Pulmonarius with Antioxidant Activity Exerts In Vivo Chemoprophylaxis and Chemosensitization for Liver Cancer. Nutr. Cancer. 2014;66:989–998. doi: 10.1080/01635581.2014.936950. PubMed DOI
Pumtes P., Rojsuntornkitti K., Kongbangkerd T., Jittrepotch N. Effects of Different Extracting Conditions on Antioxidant Activities of Pleurotus flabellatus. Int. Food Res. J. 2016;23:173–179.
Smiderle F.R., Olsen L.M., Carbonero E.R., Baggio C.H., Freitas C.S., Marcon R., Santos A.R.S., Gorin P.A.J., Iacomini M. Anti-Inflammatory and Analgesic Properties in a Rodent Model of a (1→3),(1→6)-Linked β-Glucan Isolated from Pleurotus Pulmonarius. Eur. J. Pharmacol. 2008;597:86–91. doi: 10.1016/j.ejphar.2008.08.028. PubMed DOI
Adebayo E., Oloke J., Olusola M., Ajani R., Bora T. Antimicrobial and Anti-Inflammatory Potential of Polysaccharide from Pleurotus Pulmonarius LAU 09. Afr. J. Microbiol. Res. 2012;6:3315–3323. doi: 10.5897/AJMR12.213. DOI
Pandey A.T., Pandey I., Kerkar P., Singh M.P. Antimicrobial Activity and Mycochemical Profile of Methanol Extract from Pleurotus Flabellatus. Vegetos. 2021;34:619–629. doi: 10.1007/s42535-021-00242-w. DOI
Damaris Chinwendu O. Antioxidant and Antimicrobial Activities of Oyster Mushroom. Am. J. Food Sci. Ant Technol. 2017;5:64–69. doi: 10.12691/ajfst-5-2-6. DOI
Díaz-Godínez G., Téllez-Téllez M., Rodríguez A., Obregón-Barbosa V., Acosta-Urdapilleta M.D.L., Villegas E. Enzymatic, Antioxidant, Antimicrobial, and Insecticidal Activities of Pleurotus Pulmonarius and Pycnoporus Cinnabarinus Grown Separately in an Airlift Reactor. BioResources. 2016;11:4186–4200. doi: 10.15376/biores.11.2.4186-4200. DOI
Kumar K. Role of Edible Mushrooms as Functional Foods—A Review. South Asian J. Food Technol. Environ. 2015;1:5454–6445. doi: 10.46370/sajfte.2015.v01i03and04.02. DOI
Sarangi I., Ghosh D., Bhutia S.K., Mallick S.K., Maiti T.K. Anti-Tumor and Immunomodulating Effects of Pleurotus Ostreatus Mycelia-Derived Proteoglycans. Int. Immunopharmacol. 2006;6:1287–1297. doi: 10.1016/j.intimp.2006.04.002. PubMed DOI
Xia F., Fan J., Zhu M., Tong H. Antioxidant Effects of a Water-Soluble Proteoglycan Isolated from the Fruiting Bodies of Pleurotus Ostreatus. J. Taiwan Inst. Chem. Eng. 2011;42:402–407. doi: 10.1016/j.jtice.2010.08.012. DOI
Reis F.S., Martins A., Barros L., Ferreira I.C.F.R. Antioxidant Properties and Phenolic Profile of the Most Widely Appreciated Cultivated Mushrooms: A Comparative Study between in Vivo and in Vitro Samples. Food Chem. Toxicol. 2012;50:1201–1207. doi: 10.1016/j.fct.2012.02.013. PubMed DOI
Chen S.-Y., Ho K.-J., Hsieh Y.-J., Wang L.-T., Mau J.-L. Contents of Lovastatin, γ-Aminobutyric Acid and Ergothioneine in Mushroom Fruiting Bodies and Mycelia. LWT. 2012;47:274–278. doi: 10.1016/j.lwt.2012.01.019. DOI
Calabretti A., Mang S.M., Becce A., Castronuovo D., Cardone L., Candido V., Camele I. Comparison of Bioactive Substances Content between Commercial and Wild-Type Isolates of Pleurotus Eryngii. Sustainability. 2021;13:3777. doi: 10.3390/su13073777. DOI
Baek J., Roh H.-S., Baek K.-H., Lee S., Lee S., Song S.-S., Kim K.H. Bioactivity-Based Analysis and Chemical Characterization of Cytotoxic Constituents from Chaga Mushroom (Inonotus Obliquus) That Induce Apoptosis in Human Lung Adenocarcinoma Cells. J. Ethnopharmacol. 2018;224:63–75. doi: 10.1016/j.jep.2018.05.025. PubMed DOI
Kim H.K., Choi Y.H., Verpoorte R. NMR-Based Metabolomic Analysis of Plants. Nat. Protoc. 2010;5:536–549. doi: 10.1038/nprot.2009.237. PubMed DOI
Pedneault K., Angers P., Avis T.J., Gosselin A., Tweddell R.J. Fatty Acid Profiles of Polar and Non-Polar Lipids of Pleurotus Ostreatus and P. Cornucopiae Var. ‘Citrino-Pileatus’ Grown at Different Temperatures. Mycol. Res. 2007;111:1228–1234. doi: 10.1016/j.mycres.2007.06.014. PubMed DOI
Mascellani A., Natali L., Cavallini A., Mascagni F., Caruso G., Gucci R., Havlik J., Bernardi R. Moderate Salinity Stress Affects Expression of Main Sugar Metabolism and Transport Genes and Soluble Carbohydrate Content in Ripe Fig Fruits (Ficus Carica L. Cv. Dottato) Plants. 2021;10:1861. doi: 10.3390/plants10091861. PubMed DOI PMC
Sharma O.P., Bhat T.K. DPPH Antioxidant Assay Revisited. Food Chem. 2009;113:1202–1205. doi: 10.1016/j.foodchem.2008.08.008. DOI
Ou B., Hampsch-Woodill M., Prior R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001;49:4619–4626. doi: 10.1021/jf010586o. PubMed DOI
Held P. Performing Oxygen Radical Absorbance Capacity Assays with Synergy HT: ORAC Antioxidant Tests. Appl. Note. [(accessed on 12 August 2022)]. Available online: https://www.biotek.com/resources/docs/ORAC_Assay_Application_Note.pdf.
Hošek J., Bartos M., Chudík S., Dall’Acqua S., Innocenti G., Kartal M., Kokoška L., Kollár P., Kutil Z., Landa P., et al. Natural Compound Cudraflavone B Shows Promising Anti-Inflammatory Properties in Vitro. J. Nat. Prod. 2011;74:614–619. doi: 10.1021/np100638h. PubMed DOI
Wolfe K.L., Liu R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007;55:8896–8907. doi: 10.1021/jf0715166. PubMed DOI
Malanik M., Treml J., Lelaková V., Nykodymová D., Oravec M., Marek J., Šmejkal K. Anti-Inflammatory and Antioxidant Properties of Chemical Constituents of Broussonetia Papyrifera. Bioorganic Chem. 2020;104:104298. doi: 10.1016/j.bioorg.2020.104298. PubMed DOI
McCleary B.V., Draga A. Measurement of β-Glucan in Mushrooms and Mycelial Products. J. Aoac Int. 2016;99:364–373. doi: 10.5740/jaoacint.15-0289. PubMed DOI
Alam N., Amin R., Khan A., Ara I., Shim M.J., Lee M.W., Lee T.S. Nutritional Analysis of Cultivated Mushrooms in Bangladesh—Pleurotus Ostreatus, Pleurotus Sajor-Caju, Pleurotus Florida and Calocybe Indica. Mycobiology. 2008;36:228. doi: 10.4489/MYCO.2008.36.4.228. PubMed DOI PMC
Chaiharn M., Phutdhawong W.S., Amornlerdpison D., Phutdhawong W. Antibacterial, Antioxidant Properties and Bioactive Compounds of Thai Cultivated Mushroom Extracts against Food-Borne Bacterial Strains. Chiang Mai J. Sci. 2018;45:1713–1727.
Muan C., Chonju H. Volatile components of oyster mushrooms (Pleurotus sp.) cultivated in Korea. Korean J. Mycol. (Korea Repub.) 1992;19:299–305.
Lin P., Yan Z.-F., Kook M., Li C.-T., Yi T.-H. Genetic and Chemical Diversity of Edible Mushroom Pleurotus Species. BioMed Res. Int. 2022;2022:6068185. doi: 10.1155/2022/6068185. PubMed DOI PMC
Avni S., Ezove N., Hanani H., Yadid I., Karpovsky M., Hayby H., Gover O., Hadar Y., Schwartz B., Danay O. Olive Mill Waste Enhances α-Glucan Content in the Edible Mushroom Pleurotus Eryngii. Int. J. Mol. Sci. 2017;18:1564. doi: 10.3390/ijms18071564. PubMed DOI PMC
Lam Y.S., Okello E.J. Determination of Lovastatin, β-Glucan, Total Polyphenols, and Antioxidant Activity in Raw and Processed Oyster Culinary-Medicinal Mushroom, Pleurotus Ostreatus (Higher Basidiomycetes) Int. J. Med. Mushrooms. 2015;17:117–128. doi: 10.1615/IntJMedMushrooms.v17.i2.30. PubMed DOI
Treml J., Večeřová P., Herczogová P., Šmejkal K. Direct and Indirect Antioxidant Effects of Selected Plant Phenolics in Cell-Based Assays. Molecules. 2021;26:2534. doi: 10.3390/molecules26092534. PubMed DOI PMC
Bakir T., Karadeniz M., Unal S. Investigation of Antioxidant Activities of Pleurotus Ostreatus Stored at Different Temperatures. Food Sci. Nutr. 2018;6:1040–1044. doi: 10.1002/fsn3.644. PubMed DOI PMC
Halliwell B., Cheah I.K., Tang R.M.Y. Ergothioneine—A Diet-derived Antioxidant with Therapeutic Potential. FEBS Lett. 2018;592:3357–3366. doi: 10.1002/1873-3468.13123. PubMed DOI
Liang C.-H., Ho K.-J., Huang L.-Y., Tsai C.-H., Lin S.-Y., Mau J.-L. Antioxidant Properties of Fruiting Bodies, Mycelia, and Fermented Products of the Culinary-Medicinal King Oyster Mushroom, Pleurotus Eryngii (Higher Basidiomycetes), with High Ergothioneine Content. Int. J. Med. Mushrooms. 2013;15:267–275. doi: 10.1615/IntJMedMushr.v15.i3.40. PubMed DOI
Kalaras M.D., Richie J.P., Calcagnotto A., Beelman R.B. Mushrooms: A Rich Source of the Antioxidants Ergothioneine and Glutathione. Food Chem. 2017;233:429–433. doi: 10.1016/j.foodchem.2017.04.109. PubMed DOI
Permatasari W., Dayanti D., Khaerunnisa I., Winarni S. Literatur Review The New Super Antioxidant, Ergothioneine In Pleurotus Ostreatus. Int. J. Health Educ. &Amp; Soc. (IJHES) 2020;3:23–33. doi: 10.1234/ijhes.v3i10.122. DOI
Dubost N.J., Beelman R.B., Peterson D., Royse D.J. Identification and Quantification of Ergothioneine in Cultivated Mushrooms by Liquid Chromatography-Mass Spectroscopy. Int. J. Med. Mushrooms. 2006;8:215–222. doi: 10.1615/IntJMedMushr.v8.i3.30. DOI
Tsiapali E., Whaley S., Kalbfleisch J., Ensley H.E., Browder I.W., Williams D.L. Glucans Exhibit Weak Antioxidant Activity, but Stimulate Macrophage Free Radical Activity. Free. Radic. Biol. Med. 2001;30:393–402. doi: 10.1016/S0891-5849(00)00485-8. PubMed DOI
Mizunoe Y., Kobayashi M., Sudo Y., Watanabe S., Yasukawa H., Natori D., Hoshino A., Negishi A., Okita N., Komatsu M., et al. Trehalose Protects against Oxidative Stress by Regulating the Keap1–Nrf2 and Autophagy Pathways. Redox Biol. 2018;15:115–124. doi: 10.1016/j.redox.2017.09.007. PubMed DOI PMC
Radbakhsh S., Ganjali S., Moallem S.A., Guest P.C., Sahebkar A. Natural Products and Human Diseases. Springer; Berlin, Germany: 2021. Antioxidant Effects of Trehalose in an Experimental Model of Type 2 Diabetes; pp. 473–480. PubMed
Liu J.-H., Chen M.-M., Huang J.-W., Wann H., Ho L.-K., Pan W.H.T., Chen Y.-C., Liu C.-M., Yeh M.-Y., Tsai S.-K., et al. Therapeutic Effects and Mechanisms of Action of Mannitol During H2O2-Induced Oxidative Stress in Human Retinal Pigment Epithelium Cells. J. Ocul. Pharmacol. Ther. 2010;26:249–257. doi: 10.1089/jop.2009.0127. PubMed DOI
Pelle E., Mammone T., Marenus K., Maes D., Huang X., Frenkel K. Ultraviolet-B-Induced Oxidative DNA Base Damage in Primary Normal Human Epidermal Keratinocytes and Inhibition by a Hydroxyl Radical Scavenger. J. Investig. Dermatol. 2003;121:177–183. doi: 10.1046/j.1523-1747.2003.12330.x. PubMed DOI
Meza-Menchaca T., Poblete-Naredo I., Albores-Medina A., Pedraza-Chaverri J., Quiroz-Figueroa F.R., Cruz-Gregorio A., Zepeda R.C., Melgar-Lalanne G., Lagunes I., Trigos Á. Ergosterol Peroxide Isolated from Oyster Medicinal Mushroom, Pleurotus Ostreatus (Agaricomycetes), Potentially Induces Radiosensitivity in Cervical Cancer. Int. J. Med. Mushrooms. 2020;22:1109–1119. doi: 10.1615/IntJMedMushrooms.2020036673. PubMed DOI
Sinthupoom N., Prachayasittikul V., Prachayasittikul S., Ruchirawat S., Prachayasittikul V. Nicotinic Acid and Derivatives as Multifunctional Pharmacophores for Medical Applications. Eur. Food Res. Technol. 2015;240:1–17. doi: 10.1007/s00217-014-2354-1. DOI
Tupe R.S., Tupe S.G., Agte V.V. Dietary Nicotinic Acid Supplementation Improves Hepatic Zinc Uptake and Offers Hepatoprotection against Oxidative Damage. Br. J. Nutr. 2011;105:1741–1749. doi: 10.1017/S0007114510005520. PubMed DOI
Arauz J., Rivera-Espinoza Y., Shibayama M., Favari L., Flores-Beltrán R.E., Muriel P. Nicotinic Acid Prevents Experimental Liver Fibrosis by Attenuating the Prooxidant Process. Int. Immunopharmacol. 2015;28:244–251. doi: 10.1016/j.intimp.2015.05.045. PubMed DOI
Liu C., Zhao S., Zhu C., Gao Q., Bai J., Si J., Chen Y. Ergosterol Ameliorates Renal Inflammatory Responses in Mice Model of Diabetic Nephropathy. Biomed. Pharmacother. 2020;128:110252. doi: 10.1016/j.biopha.2020.110252. PubMed DOI
Xiong M., Huang Y., Liu Y., Huang M., Song G., Ming Q., Ma X., Yang J., Deng S., Wen Y., et al. Antidiabetic Activity of Ergosterol from Pleurotus Ostreatus in KK-Ay Mice with Spontaneous Type 2 Diabetes Mellitus. Mol. Nutr. Food Res. 2018;62:1700444. doi: 10.1002/mnfr.201700444. PubMed DOI
Taofiq O., Silva A.R., Costa C., Ferreira I., Nunes J., Prieto M.A., Simal-Gandara J., Barros L., Ferreira I.C.F.R. Optimization of Ergosterol Extraction from Pleurotus Mushrooms Using Response Surface Methodology. Food Funct. 2020;11:5887–5897. doi: 10.1039/D0FO00301H. PubMed DOI
Bekiaris G., Tagkouli D., Koutrotsios G., Kalogeropoulos N., Zervakis G.I. Pleurotus Mushrooms Content in Glucans and Ergosterol Assessed by ATR-FTIR Spectroscopy and Multivariate Analysis. Foods. 2020;9:535. doi: 10.3390/foods9040535. PubMed DOI PMC
Alexandre T.R., Lima M.L., Galuppo M.K., Mesquita J.T., do Nascimento M.A., dos Santos A.L., Sartorelli P., Pimenta D.C., Tempone A.G. Ergosterol Isolated from the Basidiomycete Pleurotus Salmoneostramineus Affects Trypanosoma Cruzi Plasma Membrane and Mitochondria. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017;23:30. doi: 10.1186/s40409-017-0120-0. PubMed DOI PMC
Agrawal D., Yin K. Vitamin D and Inflammatory Diseases. J. Inflamm. Res. 2014:69–87. doi: 10.2147/JIR.S63898. PubMed DOI PMC
Du B., Lin C., Bian Z., Xu B. An Insight into Anti-Inflammatory Effects of Fungal Beta-Glucans. Trends Food Sci. Technol. 2015;41:49–59. doi: 10.1016/j.tifs.2014.09.002. DOI
Deo G.S., Khatra J., Buttar S., Li W.M., Tackaberry L.E., Massicotte H.B., Egger K.N., Reimer K., Lee C.H. Antiproliferative, Immunostimulatory, and Anti-Inflammatory Activities of Extracts Derived from Mushrooms Collected in Haida Gwaii, British Columbia (Canada) Int. J. Med. Mushrooms. 2019;21:629–643. doi: 10.1615/IntJMedMushrooms.2019031193. PubMed DOI
Echigo R., Shimohata N., Karatsu K., Yano F., Kayasuga-Kariya Y., Fujisawa A., Ohto T., Kita Y., Nakamura M., Suzuki S., et al. Trehalose Treatment Suppresses Inflammation, Oxidative Stress, and Vasospasm Induced by Experimental Subarachnoid Hemorrhage. J. Transl. Med. 2012;10:80. doi: 10.1186/1479-5876-10-80. PubMed DOI PMC
Collins J., Robinson C., Danhof H., Knetsch C.W., van Leeuwen H.C., Lawley T.D., Auchtung J.M., Britton R.A. Dietary Trehalose Enhances Virulence of Epidemic Clostridium Difficile. Nature. 2018;553:291–294. doi: 10.1038/nature25178. PubMed DOI PMC
Jayasuriya W.J.A.B.N., Handunnetti S.M., Wanigatunge C.A., Fernando G.H., Abeytunga D.T.U., Suresh T.S. Anti-Inflammatory Activity of Pleurotus Ostreatus, a Culinary Medicinal Mushroom, in Wistar Rats. Evid.-Based Complement. Altern. Med. 2020;2020:6845383. doi: 10.1155/2020/6845383. PubMed DOI PMC