Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus

. 2022 Aug 13 ; 11 (8) : . [epub] 20220813

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36009288

Grantová podpora
QK1910235 National Agency for Agricultural Research
CZ.02.1.01/0.0/0.0/16_019/0000845 European Regional Development Fund
LM2018100 Ministry of Education, Youth, and Sports of the Czech Republic
MUNI/A/1654/2020 Masaryk University, Specific research

Within the group of higher fungi, edible medicinal mushrooms have a long history of being used as food and in folk medicine. These species contain biologically active substances with many potential beneficial effects on human health. The Pleurotus genus is representative of medicinal mushrooms because Pleurotus ostreatus is one of the most commonly cultivated culinary mushrooms. In our study, we focused on lesser-known species in the genus Pleurotus and measured their antioxidant and anti-inflammatory activity. We prepared extracts of the mushrooms and analyzed them using HPLC-HRMS, GC-MS, and 1H-NMR. Significant differences in biological activities were found among the Pleurotus spp. extracts. A MeOH extract of P. flabellatus was the most active as a radical scavenger with the highest ORAC, while a chloroform extract had significant anti-inflammatory COX-2 activity. The 80% MeOH extract of P. flabellatus contained the highest amounts of ergosterol, ergothioneine, and mannitol. The 80% MeOH extract of P. ostreatus Florida was the most active in the NF-κB inhibition assay and had the highest content of β-glucans (43.3% by dry weight). Given the antioxidant and anti-inflammatory properties of P. flabellatus, the potential therapeutic usefulness of this species is worth evaluating through in-depth investigations and confirmation by clinical trials.

Zobrazit více v PubMed

Roncero-Ramos I., Delgado-Andrade C. The Beneficial Role of Edible Mushrooms in Human Health. Curr. Opin. Food Sci. 2017;14:122–128. doi: 10.1016/j.cofs.2017.04.002. DOI

Guillamón E., García-Lafuente A., Lozano M., D’Arrigo M., Rostagno M.A., Villares A., Martínez J.A. Edible Mushrooms: Role in the Prevention of Cardiovascular Diseases. Fitoterapia. 2010;81:715–723. doi: 10.1016/j.fitote.2010.06.005. PubMed DOI

Jo W.-S., Hossain M.A., Park S.-C. Toxicological Profiles of Poisonous, Edible, and Medicinal Mushrooms. Mycobiology. 2014;42:215–220. doi: 10.5941/MYCO.2014.42.3.215. PubMed DOI PMC

Wasser S.P. Current Findings, Future Trends, and Unsolved Problems in Studies of Medicinal Mushrooms. Appl. Microbiol. Biotechnol. 2011;89:1323–1332. doi: 10.1007/s00253-010-3067-4. PubMed DOI

Patel Y., Narian R., Singh V.K. Medicinal Properties of Pleurotus Species (Oyster Mushroom): A Review. 2219-4312World J. Fungal Plant Biol. 2012;3:1–12. doi: 10.5829/idosi.wjfpb.2012.3.1.303. DOI

Hobbs C. Medicinal Mushrooms: An Exploration of Tradition, Healing, and Culture. Botanica Press; Williams, OR, USA: 2003. (Herbs and Health Series).

Rama Shankar G.S., Lavekar S.D., Sharma B.K. Traditional healing practice and folk medicines used by Mishing community of North East India. J. Ayurveda Integr. Med. 2012;3:124–129. doi: 10.4103/0975-9476.100171. PubMed DOI PMC

Catalogue of Life. [(accessed on 29 August 2021)]. Available online: https://www.catalogueoflife.org/col/browse/tree/id/857ebe7fdb1404352630eb1d4da99cf1.

Deepalakshmi K., Mirunalini S. Pleurotus Ostreatus: An Oyster Mushroom with Nutritional and Medicinal Properties. J. Biochem. Technol. 2014;5:718–726.

Enshasy H., Maftoun P., Johari H.J., Soltani M., Malik R., Othman N. The Edible Mushroom Pleurotus Spp.: I. Biodiversity and Nutritional Values. Int. J. Biotechnol. Wellness Ind. 2015;4:67–83. doi: 10.6000/1927-3037.2015.04.02.4. DOI

Jedinak A., Dudhgaonkar S., Wu Q., Simon J., Sliva D. Anti-Inflammatory Activity of Edible Oyster Mushroom Is Mediated through the Inhibition of NF-ΚB and AP-1 Signaling. Nutr. J. 2011;10:52. doi: 10.1186/1475-2891-10-52. PubMed DOI PMC

Golak-Siwulska I., Kałużewicz A., Spiżewski T., Siwulski M., Sobieralski K. Bioactive Compounds and Medicinal Properties of Oyster Mushrooms ( Pleurotus sp.) Folia Hortic. 2018;30:191–201. doi: 10.2478/fhort-2018-0012. DOI

Klaus A., Wan-Mohtar W.A.A.Q.I., Nikolić B., Cvetković S., Vunduk J. Pink Oyster Mushroom Pleurotus Flabellatus Mycelium Produced by an Airlift Bioreactor—the Evidence of Potent in Vitro Biological Activities. World J. Microbiol. Biotechnol. 2021;37:17. doi: 10.1007/s11274-020-02980-6. PubMed DOI

Murugesan A.K., Gunasagaran K.S. Purification and Characterization of a Synergistic Bioactive Lectin from Pleurotus Flabellatus (PFL-L) with Potent Antibacterial and in-Vitro Radical Scavenging Activity. Anal. Biochem. 2021;635:114450. doi: 10.1016/j.ab.2021.114450. PubMed DOI

Radzi M.P.M.F., Azizah M., Maininah T., Sumaiyah A. Growth, Yield And Antioxidant Activity of Grey Oyster Mushroom (Pleurotus Pulmonarius) Grown in Sawdust Substrate With The Supplementation Of Alkaline Materials. JAPS J. Anim. Plant Sci. 2021;31:1699–1711.

Oyetayo V.O., Ogidi C.O., Bayode S.O., Enikanselu F.F. Evaluation of Biological Efficiency, Nutrient Contents and Antioxidant Activity of Pleurotus Pulmonarius Enriched with Zinc and Iron. Indian Phytopathol. 2021;74:901–910. doi: 10.1007/s42360-021-00410-7. DOI

Nguyen T.K., Im K.H., Choi J., Shin P.G., Lee T.S. Evaluation of Antioxidant, Anti-Cholinesterase, and Anti-Inflammatory Effects of Culinary Mushroom Pleurotus Pulmonarius. Mycobiology. 2016;44:291–301. doi: 10.5941/MYCO.2016.44.4.291. PubMed DOI PMC

Xu W.W., Li B., Lai E.T.C., Chen L., Huang J.J.H., Cheung A.L.M., Cheung P.C.K. Water Extract from Pleurotus Pulmonarius with Antioxidant Activity Exerts In Vivo Chemoprophylaxis and Chemosensitization for Liver Cancer. Nutr. Cancer. 2014;66:989–998. doi: 10.1080/01635581.2014.936950. PubMed DOI

Pumtes P., Rojsuntornkitti K., Kongbangkerd T., Jittrepotch N. Effects of Different Extracting Conditions on Antioxidant Activities of Pleurotus flabellatus. Int. Food Res. J. 2016;23:173–179.

Smiderle F.R., Olsen L.M., Carbonero E.R., Baggio C.H., Freitas C.S., Marcon R., Santos A.R.S., Gorin P.A.J., Iacomini M. Anti-Inflammatory and Analgesic Properties in a Rodent Model of a (1→3),(1→6)-Linked β-Glucan Isolated from Pleurotus Pulmonarius. Eur. J. Pharmacol. 2008;597:86–91. doi: 10.1016/j.ejphar.2008.08.028. PubMed DOI

Adebayo E., Oloke J., Olusola M., Ajani R., Bora T. Antimicrobial and Anti-Inflammatory Potential of Polysaccharide from Pleurotus Pulmonarius LAU 09. Afr. J. Microbiol. Res. 2012;6:3315–3323. doi: 10.5897/AJMR12.213. DOI

Pandey A.T., Pandey I., Kerkar P., Singh M.P. Antimicrobial Activity and Mycochemical Profile of Methanol Extract from Pleurotus Flabellatus. Vegetos. 2021;34:619–629. doi: 10.1007/s42535-021-00242-w. DOI

Damaris Chinwendu O. Antioxidant and Antimicrobial Activities of Oyster Mushroom. Am. J. Food Sci. Ant Technol. 2017;5:64–69. doi: 10.12691/ajfst-5-2-6. DOI

Díaz-Godínez G., Téllez-Téllez M., Rodríguez A., Obregón-Barbosa V., Acosta-Urdapilleta M.D.L., Villegas E. Enzymatic, Antioxidant, Antimicrobial, and Insecticidal Activities of Pleurotus Pulmonarius and Pycnoporus Cinnabarinus Grown Separately in an Airlift Reactor. BioResources. 2016;11:4186–4200. doi: 10.15376/biores.11.2.4186-4200. DOI

Kumar K. Role of Edible Mushrooms as Functional Foods—A Review. South Asian J. Food Technol. Environ. 2015;1:5454–6445. doi: 10.46370/sajfte.2015.v01i03and04.02. DOI

Sarangi I., Ghosh D., Bhutia S.K., Mallick S.K., Maiti T.K. Anti-Tumor and Immunomodulating Effects of Pleurotus Ostreatus Mycelia-Derived Proteoglycans. Int. Immunopharmacol. 2006;6:1287–1297. doi: 10.1016/j.intimp.2006.04.002. PubMed DOI

Xia F., Fan J., Zhu M., Tong H. Antioxidant Effects of a Water-Soluble Proteoglycan Isolated from the Fruiting Bodies of Pleurotus Ostreatus. J. Taiwan Inst. Chem. Eng. 2011;42:402–407. doi: 10.1016/j.jtice.2010.08.012. DOI

Reis F.S., Martins A., Barros L., Ferreira I.C.F.R. Antioxidant Properties and Phenolic Profile of the Most Widely Appreciated Cultivated Mushrooms: A Comparative Study between in Vivo and in Vitro Samples. Food Chem. Toxicol. 2012;50:1201–1207. doi: 10.1016/j.fct.2012.02.013. PubMed DOI

Chen S.-Y., Ho K.-J., Hsieh Y.-J., Wang L.-T., Mau J.-L. Contents of Lovastatin, γ-Aminobutyric Acid and Ergothioneine in Mushroom Fruiting Bodies and Mycelia. LWT. 2012;47:274–278. doi: 10.1016/j.lwt.2012.01.019. DOI

Calabretti A., Mang S.M., Becce A., Castronuovo D., Cardone L., Candido V., Camele I. Comparison of Bioactive Substances Content between Commercial and Wild-Type Isolates of Pleurotus Eryngii. Sustainability. 2021;13:3777. doi: 10.3390/su13073777. DOI

Baek J., Roh H.-S., Baek K.-H., Lee S., Lee S., Song S.-S., Kim K.H. Bioactivity-Based Analysis and Chemical Characterization of Cytotoxic Constituents from Chaga Mushroom (Inonotus Obliquus) That Induce Apoptosis in Human Lung Adenocarcinoma Cells. J. Ethnopharmacol. 2018;224:63–75. doi: 10.1016/j.jep.2018.05.025. PubMed DOI

Kim H.K., Choi Y.H., Verpoorte R. NMR-Based Metabolomic Analysis of Plants. Nat. Protoc. 2010;5:536–549. doi: 10.1038/nprot.2009.237. PubMed DOI

Pedneault K., Angers P., Avis T.J., Gosselin A., Tweddell R.J. Fatty Acid Profiles of Polar and Non-Polar Lipids of Pleurotus Ostreatus and P. Cornucopiae Var. ‘Citrino-Pileatus’ Grown at Different Temperatures. Mycol. Res. 2007;111:1228–1234. doi: 10.1016/j.mycres.2007.06.014. PubMed DOI

Mascellani A., Natali L., Cavallini A., Mascagni F., Caruso G., Gucci R., Havlik J., Bernardi R. Moderate Salinity Stress Affects Expression of Main Sugar Metabolism and Transport Genes and Soluble Carbohydrate Content in Ripe Fig Fruits (Ficus Carica L. Cv. Dottato) Plants. 2021;10:1861. doi: 10.3390/plants10091861. PubMed DOI PMC

Sharma O.P., Bhat T.K. DPPH Antioxidant Assay Revisited. Food Chem. 2009;113:1202–1205. doi: 10.1016/j.foodchem.2008.08.008. DOI

Ou B., Hampsch-Woodill M., Prior R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001;49:4619–4626. doi: 10.1021/jf010586o. PubMed DOI

Held P. Performing Oxygen Radical Absorbance Capacity Assays with Synergy HT: ORAC Antioxidant Tests. Appl. Note. [(accessed on 12 August 2022)]. Available online: https://www.biotek.com/resources/docs/ORAC_Assay_Application_Note.pdf.

Hošek J., Bartos M., Chudík S., Dall’Acqua S., Innocenti G., Kartal M., Kokoška L., Kollár P., Kutil Z., Landa P., et al. Natural Compound Cudraflavone B Shows Promising Anti-Inflammatory Properties in Vitro. J. Nat. Prod. 2011;74:614–619. doi: 10.1021/np100638h. PubMed DOI

Wolfe K.L., Liu R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007;55:8896–8907. doi: 10.1021/jf0715166. PubMed DOI

Malanik M., Treml J., Lelaková V., Nykodymová D., Oravec M., Marek J., Šmejkal K. Anti-Inflammatory and Antioxidant Properties of Chemical Constituents of Broussonetia Papyrifera. Bioorganic Chem. 2020;104:104298. doi: 10.1016/j.bioorg.2020.104298. PubMed DOI

McCleary B.V., Draga A. Measurement of β-Glucan in Mushrooms and Mycelial Products. J. Aoac Int. 2016;99:364–373. doi: 10.5740/jaoacint.15-0289. PubMed DOI

Alam N., Amin R., Khan A., Ara I., Shim M.J., Lee M.W., Lee T.S. Nutritional Analysis of Cultivated Mushrooms in Bangladesh—Pleurotus Ostreatus, Pleurotus Sajor-Caju, Pleurotus Florida and Calocybe Indica. Mycobiology. 2008;36:228. doi: 10.4489/MYCO.2008.36.4.228. PubMed DOI PMC

Chaiharn M., Phutdhawong W.S., Amornlerdpison D., Phutdhawong W. Antibacterial, Antioxidant Properties and Bioactive Compounds of Thai Cultivated Mushroom Extracts against Food-Borne Bacterial Strains. Chiang Mai J. Sci. 2018;45:1713–1727.

Muan C., Chonju H. Volatile components of oyster mushrooms (Pleurotus sp.) cultivated in Korea. Korean J. Mycol. (Korea Repub.) 1992;19:299–305.

Lin P., Yan Z.-F., Kook M., Li C.-T., Yi T.-H. Genetic and Chemical Diversity of Edible Mushroom Pleurotus Species. BioMed Res. Int. 2022;2022:6068185. doi: 10.1155/2022/6068185. PubMed DOI PMC

Avni S., Ezove N., Hanani H., Yadid I., Karpovsky M., Hayby H., Gover O., Hadar Y., Schwartz B., Danay O. Olive Mill Waste Enhances α-Glucan Content in the Edible Mushroom Pleurotus Eryngii. Int. J. Mol. Sci. 2017;18:1564. doi: 10.3390/ijms18071564. PubMed DOI PMC

Lam Y.S., Okello E.J. Determination of Lovastatin, β-Glucan, Total Polyphenols, and Antioxidant Activity in Raw and Processed Oyster Culinary-Medicinal Mushroom, Pleurotus Ostreatus (Higher Basidiomycetes) Int. J. Med. Mushrooms. 2015;17:117–128. doi: 10.1615/IntJMedMushrooms.v17.i2.30. PubMed DOI

Treml J., Večeřová P., Herczogová P., Šmejkal K. Direct and Indirect Antioxidant Effects of Selected Plant Phenolics in Cell-Based Assays. Molecules. 2021;26:2534. doi: 10.3390/molecules26092534. PubMed DOI PMC

Bakir T., Karadeniz M., Unal S. Investigation of Antioxidant Activities of Pleurotus Ostreatus Stored at Different Temperatures. Food Sci. Nutr. 2018;6:1040–1044. doi: 10.1002/fsn3.644. PubMed DOI PMC

Halliwell B., Cheah I.K., Tang R.M.Y. Ergothioneine—A Diet-derived Antioxidant with Therapeutic Potential. FEBS Lett. 2018;592:3357–3366. doi: 10.1002/1873-3468.13123. PubMed DOI

Liang C.-H., Ho K.-J., Huang L.-Y., Tsai C.-H., Lin S.-Y., Mau J.-L. Antioxidant Properties of Fruiting Bodies, Mycelia, and Fermented Products of the Culinary-Medicinal King Oyster Mushroom, Pleurotus Eryngii (Higher Basidiomycetes), with High Ergothioneine Content. Int. J. Med. Mushrooms. 2013;15:267–275. doi: 10.1615/IntJMedMushr.v15.i3.40. PubMed DOI

Kalaras M.D., Richie J.P., Calcagnotto A., Beelman R.B. Mushrooms: A Rich Source of the Antioxidants Ergothioneine and Glutathione. Food Chem. 2017;233:429–433. doi: 10.1016/j.foodchem.2017.04.109. PubMed DOI

Permatasari W., Dayanti D., Khaerunnisa I., Winarni S. Literatur Review The New Super Antioxidant, Ergothioneine In Pleurotus Ostreatus. Int. J. Health Educ. &Amp; Soc. (IJHES) 2020;3:23–33. doi: 10.1234/ijhes.v3i10.122. DOI

Dubost N.J., Beelman R.B., Peterson D., Royse D.J. Identification and Quantification of Ergothioneine in Cultivated Mushrooms by Liquid Chromatography-Mass Spectroscopy. Int. J. Med. Mushrooms. 2006;8:215–222. doi: 10.1615/IntJMedMushr.v8.i3.30. DOI

Tsiapali E., Whaley S., Kalbfleisch J., Ensley H.E., Browder I.W., Williams D.L. Glucans Exhibit Weak Antioxidant Activity, but Stimulate Macrophage Free Radical Activity. Free. Radic. Biol. Med. 2001;30:393–402. doi: 10.1016/S0891-5849(00)00485-8. PubMed DOI

Mizunoe Y., Kobayashi M., Sudo Y., Watanabe S., Yasukawa H., Natori D., Hoshino A., Negishi A., Okita N., Komatsu M., et al. Trehalose Protects against Oxidative Stress by Regulating the Keap1–Nrf2 and Autophagy Pathways. Redox Biol. 2018;15:115–124. doi: 10.1016/j.redox.2017.09.007. PubMed DOI PMC

Radbakhsh S., Ganjali S., Moallem S.A., Guest P.C., Sahebkar A. Natural Products and Human Diseases. Springer; Berlin, Germany: 2021. Antioxidant Effects of Trehalose in an Experimental Model of Type 2 Diabetes; pp. 473–480. PubMed

Liu J.-H., Chen M.-M., Huang J.-W., Wann H., Ho L.-K., Pan W.H.T., Chen Y.-C., Liu C.-M., Yeh M.-Y., Tsai S.-K., et al. Therapeutic Effects and Mechanisms of Action of Mannitol During H2O2-Induced Oxidative Stress in Human Retinal Pigment Epithelium Cells. J. Ocul. Pharmacol. Ther. 2010;26:249–257. doi: 10.1089/jop.2009.0127. PubMed DOI

Pelle E., Mammone T., Marenus K., Maes D., Huang X., Frenkel K. Ultraviolet-B-Induced Oxidative DNA Base Damage in Primary Normal Human Epidermal Keratinocytes and Inhibition by a Hydroxyl Radical Scavenger. J. Investig. Dermatol. 2003;121:177–183. doi: 10.1046/j.1523-1747.2003.12330.x. PubMed DOI

Meza-Menchaca T., Poblete-Naredo I., Albores-Medina A., Pedraza-Chaverri J., Quiroz-Figueroa F.R., Cruz-Gregorio A., Zepeda R.C., Melgar-Lalanne G., Lagunes I., Trigos Á. Ergosterol Peroxide Isolated from Oyster Medicinal Mushroom, Pleurotus Ostreatus (Agaricomycetes), Potentially Induces Radiosensitivity in Cervical Cancer. Int. J. Med. Mushrooms. 2020;22:1109–1119. doi: 10.1615/IntJMedMushrooms.2020036673. PubMed DOI

Sinthupoom N., Prachayasittikul V., Prachayasittikul S., Ruchirawat S., Prachayasittikul V. Nicotinic Acid and Derivatives as Multifunctional Pharmacophores for Medical Applications. Eur. Food Res. Technol. 2015;240:1–17. doi: 10.1007/s00217-014-2354-1. DOI

Tupe R.S., Tupe S.G., Agte V.V. Dietary Nicotinic Acid Supplementation Improves Hepatic Zinc Uptake and Offers Hepatoprotection against Oxidative Damage. Br. J. Nutr. 2011;105:1741–1749. doi: 10.1017/S0007114510005520. PubMed DOI

Arauz J., Rivera-Espinoza Y., Shibayama M., Favari L., Flores-Beltrán R.E., Muriel P. Nicotinic Acid Prevents Experimental Liver Fibrosis by Attenuating the Prooxidant Process. Int. Immunopharmacol. 2015;28:244–251. doi: 10.1016/j.intimp.2015.05.045. PubMed DOI

Liu C., Zhao S., Zhu C., Gao Q., Bai J., Si J., Chen Y. Ergosterol Ameliorates Renal Inflammatory Responses in Mice Model of Diabetic Nephropathy. Biomed. Pharmacother. 2020;128:110252. doi: 10.1016/j.biopha.2020.110252. PubMed DOI

Xiong M., Huang Y., Liu Y., Huang M., Song G., Ming Q., Ma X., Yang J., Deng S., Wen Y., et al. Antidiabetic Activity of Ergosterol from Pleurotus Ostreatus in KK-Ay Mice with Spontaneous Type 2 Diabetes Mellitus. Mol. Nutr. Food Res. 2018;62:1700444. doi: 10.1002/mnfr.201700444. PubMed DOI

Taofiq O., Silva A.R., Costa C., Ferreira I., Nunes J., Prieto M.A., Simal-Gandara J., Barros L., Ferreira I.C.F.R. Optimization of Ergosterol Extraction from Pleurotus Mushrooms Using Response Surface Methodology. Food Funct. 2020;11:5887–5897. doi: 10.1039/D0FO00301H. PubMed DOI

Bekiaris G., Tagkouli D., Koutrotsios G., Kalogeropoulos N., Zervakis G.I. Pleurotus Mushrooms Content in Glucans and Ergosterol Assessed by ATR-FTIR Spectroscopy and Multivariate Analysis. Foods. 2020;9:535. doi: 10.3390/foods9040535. PubMed DOI PMC

Alexandre T.R., Lima M.L., Galuppo M.K., Mesquita J.T., do Nascimento M.A., dos Santos A.L., Sartorelli P., Pimenta D.C., Tempone A.G. Ergosterol Isolated from the Basidiomycete Pleurotus Salmoneostramineus Affects Trypanosoma Cruzi Plasma Membrane and Mitochondria. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017;23:30. doi: 10.1186/s40409-017-0120-0. PubMed DOI PMC

Agrawal D., Yin K. Vitamin D and Inflammatory Diseases. J. Inflamm. Res. 2014:69–87. doi: 10.2147/JIR.S63898. PubMed DOI PMC

Du B., Lin C., Bian Z., Xu B. An Insight into Anti-Inflammatory Effects of Fungal Beta-Glucans. Trends Food Sci. Technol. 2015;41:49–59. doi: 10.1016/j.tifs.2014.09.002. DOI

Deo G.S., Khatra J., Buttar S., Li W.M., Tackaberry L.E., Massicotte H.B., Egger K.N., Reimer K., Lee C.H. Antiproliferative, Immunostimulatory, and Anti-Inflammatory Activities of Extracts Derived from Mushrooms Collected in Haida Gwaii, British Columbia (Canada) Int. J. Med. Mushrooms. 2019;21:629–643. doi: 10.1615/IntJMedMushrooms.2019031193. PubMed DOI

Echigo R., Shimohata N., Karatsu K., Yano F., Kayasuga-Kariya Y., Fujisawa A., Ohto T., Kita Y., Nakamura M., Suzuki S., et al. Trehalose Treatment Suppresses Inflammation, Oxidative Stress, and Vasospasm Induced by Experimental Subarachnoid Hemorrhage. J. Transl. Med. 2012;10:80. doi: 10.1186/1479-5876-10-80. PubMed DOI PMC

Collins J., Robinson C., Danhof H., Knetsch C.W., van Leeuwen H.C., Lawley T.D., Auchtung J.M., Britton R.A. Dietary Trehalose Enhances Virulence of Epidemic Clostridium Difficile. Nature. 2018;553:291–294. doi: 10.1038/nature25178. PubMed DOI PMC

Jayasuriya W.J.A.B.N., Handunnetti S.M., Wanigatunge C.A., Fernando G.H., Abeytunga D.T.U., Suresh T.S. Anti-Inflammatory Activity of Pleurotus Ostreatus, a Culinary Medicinal Mushroom, in Wistar Rats. Evid.-Based Complement. Altern. Med. 2020;2020:6845383. doi: 10.1155/2020/6845383. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...