Direct and Indirect Antioxidant Effects of Selected Plant Phenolics in Cell-Based Assays
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33926137
PubMed Central
PMC8123583
DOI
10.3390/molecules26092534
PII: molecules26092534
Knihovny.cz E-zdroje
- Klíčová slova
- CAA, Nrf2-ARE, antioxidants, catalase, glucose toxicity, plant phenolics, superoxide dismutase,
- MeSH
- antioxidační responzivní elementy MeSH
- antioxidancia chemie farmakologie MeSH
- antitumorózní látky chemie farmakologie MeSH
- biologické markery MeSH
- exprese genu MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- fenoly chemie farmakologie MeSH
- glukosa MeSH
- lidé MeSH
- molekulární struktura MeSH
- oxidační stres MeSH
- rostlinné extrakty chemie farmakologie MeSH
- superoxid dismutáza 1 genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- antitumorózní látky MeSH
- biologické markery MeSH
- faktor 2 související s NF-E2 MeSH
- fenoly MeSH
- glukosa MeSH
- NFE2L2 protein, human MeSH Prohlížeč
- rostlinné extrakty MeSH
- SOD1 protein, human MeSH Prohlížeč
- superoxid dismutáza 1 MeSH
Background: Oxidative stress is a key factor in the pathophysiology of many diseases. This study aimed to verify the antioxidant activity of selected plant phenolics in cell-based assays and determine their direct or indirect effects. Methods: The cellular antioxidant assay (CAA) assay was employed for direct scavenging assays. In the indirect approach, the influence of each test substance on the gene and protein expression and activity of selected antioxidant enzymes was observed. One assay also dealt with activation of the Nrf2-ARE pathway. The overall effect of each compound was measured using a glucose oxidative stress protection assay. Results: Among the test compounds, acteoside showed the highest direct scavenging activity and no effect on the expression of antioxidant enzymes. It increased only the activity of catalase. Diplacone was less active in direct antioxidant assays but positively affected enzyme expression and catalase activity. Morusin showed no antioxidant activity in the CAA assay. Similarly, pomiferin had only mild antioxidant activity and proved rather cytotoxic. Conclusions: Of the four selected phenolics, only acteoside and diplacone demonstrated antioxidant effects in cell-based assays.
Zobrazit více v PubMed
Niki E. Oxidative Stress and Antioxidants: Distress or Eustress? Arch. Biochem. Biophys. 2016;595:19–24. doi: 10.1016/j.abb.2015.11.017. PubMed DOI
Treml J., Šmejkal K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016;15:720–738. doi: 10.1111/1541-4337.12204. PubMed DOI
Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI
Sies H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035. PubMed DOI PMC
López-Alarcón C., Denicola A. Evaluating the Antioxidant Capacity of Natural Products: A Review on Chemical and Cellular-Based Assays. Anal. Chim. Acta. 2013;763:1–10. doi: 10.1016/j.aca.2012.11.051. PubMed DOI
Jung K.-A., Kwak M.-K. The Nrf2 System as a Potential Target for the Development of Indirect Antioxidants. Molecules. 2010;15:7266–7291. doi: 10.3390/molecules15107266. PubMed DOI PMC
Reisman S.A., Yeager R.L., Yamamoto M., Klaassen C.D. Increased Nrf2 Activation in Livers from Keap1-Knockdown Mice Increases Expression of Cytoprotective Genes That Detoxify Electrophiles More than Those That Detoxify Reactive Oxygen Species. Toxicol. Sci. 2009;108:35–47. doi: 10.1093/toxsci/kfn267. PubMed DOI PMC
Ma Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320. PubMed DOI PMC
Chen C., Yu R., Owuor E.D., Kong A.N. Activation of Antioxidant-Response Element (ARE), Mitogen-Activated Protein Kinases (MAPKs) and Caspases by Major Green Tea Polyphenol Components during Cell Survival and Death. Arch. Pharm. Res. 2000;23:605–612. doi: 10.1007/BF02975249. PubMed DOI
Kweon M.-H., In Park Y., Sung H.-C., Mukhtar H. The Novel Antioxidant 3-O-Caffeoyl-1-Methylquinic Acid Induces Nrf2-Dependent Phase II Detoxifying Genes and Alters Intracellular Glutathione Redox. Free Radic. Biol. Med. 2006;40:1349–1361. doi: 10.1016/j.freeradbiomed.2005.12.002. PubMed DOI
Surh Y.-J., Kundu J.K., Na H.-K. Nrf2 as a Master Redox Switch in Turning on the Cellular Signaling Involved in the Induction of Cytoprotective Genes by Some Chemopreventive Phytochemicals. Planta Med. 2008;74:1526–1539. doi: 10.1055/s-0028-1088302. PubMed DOI
Lunder M., Roškar I., Hošek J., Štrukelj B. Silver Fir (Abies Alba) Extracts Inhibit Enzymes Involved in Blood Glucose Management and Protect against Oxidative Stress in High Glucose Environment. Plant Foods Hum. Nutr. 2019;74:47–53. doi: 10.1007/s11130-018-0698-6. PubMed DOI
Chandrasekaran K., Swaminathan K., Chatterjee S., Dey A. Apoptosis in HepG2 Cells Exposed to High Glucose. Toxicol. In Vitro. 2010;24:387–396. doi: 10.1016/j.tiv.2009.10.020. PubMed DOI
Xu D.-P., Li Y., Meng X., Zhou T., Zhou Y., Zheng J., Zhang J.-J., Li H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017;18:96. doi: 10.3390/ijms18010096. PubMed DOI PMC
Tsao R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231. PubMed DOI PMC
Koo K.A., Kim S.H., Oh T.H., Kim Y.C. Acteoside and Its Aglycones Protect Primary Cultures of Rat Cortical Cells from Glutamate-Induced Excitotoxicity. Life Sci. 2006;79:709–716. doi: 10.1016/j.lfs.2006.02.019. PubMed DOI
Šmejkal K., Grycová L., Marek R., Lemière F., Jankovská D., Forejtníková H., Vančo J., Suchý V. C-Geranyl Compounds from Paulownia Tomentosa Fruits. J. Nat. Prod. 2007;70:1244–1248. doi: 10.1021/np070063w. PubMed DOI
Veselá D., Kubınová R., Muselık J., Žemlička M., Suchý V. Antioxidative and EROD Activities of Osajin and Pomiferin. Fitoterapia. 2004;75:209–211. doi: 10.1016/j.fitote.2003.12.005. PubMed DOI
Cheng P.-S., Hu C.-C., Wang C.-J., Lee Y.-J., Chung W.-C., Tseng T.-H. Involvement of the Antioxidative Property of Morusin in Blocking Phorbol Ester–Induced Malignant Transformation of JB6 P+ Mouse Epidermal Cells. Chem.-Biol. Interact. 2017;264:34–42. doi: 10.1016/j.cbi.2017.01.009. PubMed DOI
Šmejkal K., Babula P., Šlapetová T., Brognara E., Dall’Acqua S., Žemlička M., Innocenti G., Cvačka J. Cytotoxic Activity of C-Geranyl Compounds from Paulownia Tomentosa Fruits. Planta Med. 2008;74:1488–1491. doi: 10.1055/s-2008-1081339. PubMed DOI
Hošek J., Bartos M., Chudík S., Dall’Acqua S., Innocenti G., Kartal M., Kokoška L., Kollár P., Kutil Z., Landa P., et al. Natural Compound Cudraflavone B Shows Promising Anti-Inflammatory Properties In Vitro. J. Nat. Prod. 2011;74:614–619. doi: 10.1021/np100638h. PubMed DOI
Hošek J., Závalová V., Šmejkal K., Bartoš M. Effect of Diplacone on LPS-Induced Inflammatory Gene Expression in Macrophages. Folia Biol. (Praha) 2010;56:124–130. PubMed
Zelová H., Hanáková Z., Čermáková Z., Šmejkal K., Dalĺ Acqua S., Babula P., Cvačka J., Hošek J. Evaluation of Anti-Inflammatory Activity of Prenylated Substances Isolated from Morus Alba and Morus Nigra. J. Nat. Prod. 2014;77:1297–1303. doi: 10.1021/np401025f. PubMed DOI
Kollar P., Bárta T., Hošek J., Souček K., Závalová V.M., Artinian S., Talhouk R., Šmejkal K., Suchý P., Hampl A. Prenylated Flavonoids from Morus Alba L. Cause Inhibition of G1/S Transition in THP-1 Human Leukemia Cells and Prevent the Lipopolysaccharide-Induced Inflammatory Response. Evid.-Based Complement. Altern. Med. 2013;2013 doi: 10.1155/2013/350519. PubMed DOI PMC
Lee K.-W., Kim H.J., Lee Y.S., Park H.-J., Choi J.-W., Ha J., Lee K.-T. Acteoside Inhibits Human Promyelocytic HL-60 Leukemia Cell Proliferation via Inducing Cell Cycle Arrest at G0/G1 Phase and Differentiation into Monocyte. Carcinogenesis. 2007;28:1928–1936. doi: 10.1093/carcin/bgm126. PubMed DOI
Sgarbossa A., Dal Bosco M., Pressi G., Cuzzocrea S., Dal Toso R., Menegazzi M. Phenylpropanoid Glycosides from Plant Cell Cultures Induce Heme Oxygenase 1 Gene Expression in a Human Keratinocyte Cell Line by Affecting the Balance of NRF2 and BACH1 Transcription Factors. Chem.-Biol. Interact. 2012;199:87–95. doi: 10.1016/j.cbi.2012.06.006. PubMed DOI
Nam S.-Y., Kim H.-M., Jeong H.-J. Attenuation of IL-32-Induced Caspase-1 and Nuclear Factor-ΚB Activations by Acteoside. Int. Immunopharmacol. 2015;29:574–582. doi: 10.1016/j.intimp.2015.09.026. PubMed DOI
Speranza L., Franceschelli S., Pesce M., Reale M., Menghini L., Vinciguerra I., Lutiis M.A.D., Felaco M., Grilli A. Antiinflammatory Effects in THP-1 Cells Treated with Verbascoside. Phytother. Res. 2010;24:1398–1404. doi: 10.1002/ptr.3173. PubMed DOI
Son I.H., Chung I.-M., Lee S.I., Yang H.D., Moon H.-I. Pomiferin, Histone Deacetylase Inhibitor Isolated from the Fruits of Maclura Pomifera. Bioorg. Med. Chem. Lett. 2007;17:4753–4755. doi: 10.1016/j.bmcl.2007.06.060. PubMed DOI
Yang R., Hanwell H., Zhang J., Tsao R., Meckling K.A. Antiproliferative Activity of Pomiferin in Normal (MCF-10A) and Transformed (MCF-7) Breast Epithelial Cells. J. Agric. Food Chem. 2011;59:13328–13336. doi: 10.1021/jf202898g. PubMed DOI
Halliwell B., Gutteridge J. Free Radicals in Biology and Medicine. 4th ed. Oxford University Press; Oxford, UK: 2007.
Siciliano T., Bader A., Vassallo A., Braca A., Morelli I., Pizza C., De T. Secondary Metabolites from Ballota Undulata (Lamiaceae) Biochem. Syst. Ecol. 2005;33:341–351. doi: 10.1016/j.bse.2004.10.013. DOI
Li X., Xie Y., Li K., Wu A., Xie H., Guo Q., Xue P., Maleshibek Y., Zhao W., Guo J., et al. Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry. Molecules. 2018;23:498. doi: 10.3390/molecules23020498. PubMed DOI PMC
Lee H.-D., Kim J.H., Pang Q.Q., Jung P.-M., Cho E.J., Lee S. Antioxidant Activity and Acteoside Analysis of Abeliophyllum Distichum. Antioxidants. 2020;9:1148. doi: 10.3390/antiox9111148. PubMed DOI PMC
Kalyanaraman B., Darley-Usmar V., Davies K.J.A., Dennery P.A., Forman H.J., Grisham M.B., Mann G.E., Moore K., Roberts L.J., Ischiropoulos H. Measuring Reactive Oxygen and Nitrogen Species with Fluorescent Probes: Challenges and Limitations. Free Radic. Biol. Med. 2012;52:1–6. doi: 10.1016/j.freeradbiomed.2011.09.030. PubMed DOI PMC
Hošek J., Toniolo A., Neuwirth O., Bolego C. Prenylated and Geranylated Flavonoids Increase Production of Reactive Oxygen Species in Mouse Macrophages but Inhibit the Inflammatory Response. J. Nat. Prod. 2013;76:1586–1591. doi: 10.1021/np400242e. PubMed DOI
Orhan I.E., Senol F.S., Demirci B., Dvorska M., Smejkal K., Zemlicka M. Antioxidant Potential of Some Natural and Semi-Synthetic Flavonoid Derivatives and the Extracts from Maclura Pomifera (Rafin.) Schneider (Osage Orange) and Its Essential Oil Composition. Turk. J. Chem. 2016;41:403–411. doi: 10.1515/tjb-2016-0125. DOI
Bozkurt İ., Dilek E., Erol H.S., Çakir A., Hamzaoğlu E., Koç M., Keleş O.N., Halici M.B. Investigation on the Effects of Pomiferin from Maclura Pomifera on Indomethacin-Induced Gastric Ulcer: An Experimental Study in Rats. Med. Chem. Res. 2017;26:2048–2056. doi: 10.1007/s00044-017-1913-y. DOI
Hwang H.-S., Winkler-Moser J.K., Tisserat B., Harry-O’kuru R.E., Berhow M.A., Liu S.X. Antioxidant Activity of Osage Orange Extract in Soybean Oil and Fish Oil during Storage. J. Am. Oil Chem. Soc. 2021;98:73–87. doi: 10.1002/aocs.12458. DOI
Treml J., Šmejkal K., Hošek J., Žemlička M. Determination of Antioxidant Activity Using Oxidative Damage to Plasmid DNA—Pursuit of Solvent Optimization. Chem. Pap. 2013;67:484–489. doi: 10.2478/s11696-013-0334-8. DOI
Zima A., Hošek J., Treml J., Muselík J., Suchý P., Pražanová G., Lopes A., Žemlička M. Antiradical and Cytoprotective Activities of Several C-Geranyl-Substituted Flavanones from Paulownia Tomentosa Fruit. Molecules. 2010;15:6035–6049. doi: 10.3390/molecules15096035. PubMed DOI PMC
Moon H.-I., Jeong M.H., Jo W.S. Protective Activity of C-Geranylflavonoid Analogs from Paulownia Tomentosa against DNA Damage in 137Cs Irradiated AHH-1Cells. Nat. Prod. Comm. 2014;9 doi: 10.1177/1934578X1400900919. PubMed DOI
Malaník M., Treml J., Leláková V., Nykodýmová D., Oravec M., Marek J., Šmejkal K. Anti-Inflammatory and Antioxidant Properties of Chemical Constituents of Broussonetia Papyrifera. Bioorg. Chem. 2020;104:104298. doi: 10.1016/j.bioorg.2020.104298. PubMed DOI
Lee H.J., Lyu D.H., Koo U., Nam K.-W., Hong S.S., Kim K.O., Kim K.H., Lee D., Mar W. Protection of Prenylated Flavonoids from Mori Cortex Radicis (Moraceae) against Nitric Oxide-Induced Cell Death in Neuroblastoma SH-SY5Y Cells. Arch. Pharm. Res. 2012;35:163–170. doi: 10.1007/s12272-012-0118-7. PubMed DOI
Yang Z.-G., Matsuzaki K., Takamatsu S., Kitanaka S. Inhibitory Effects of Constituents from Morus Alba Var. Multicaulis on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells. Molecules. 2011;16:6010–6022. doi: 10.3390/molecules16076010. PubMed DOI PMC
Ko H.-H., Wang J.-J., Lin H.-C., Wang J.-P., Lin C.-N. Chemistry and Biological Activities of Constituents from Morus Australis. Biochim. Biophys. Acta Gen. Subj. 1999;1428:293–299. doi: 10.1016/S0304-4165(99)00084-7. PubMed DOI
Kawahito S., Kitahata H., Oshita S. Problems Associated with Glucose Toxicity: Role of Hyperglycemia-Induced Oxidative Stress. World J. Gastroenterol. 2009;15:4137–4142. doi: 10.3748/wjg.15.4137. PubMed DOI PMC
Burgos-Morón E., Abad-Jiménez Z., Martínez de Marañón A., Iannantuoni F., Escribano-López I., López-Domènech S., Salom C., Jover A., Mora V., Roldan I., et al. Relationship between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J. Clin. Med. 2019;8:1385. doi: 10.3390/jcm8091385. PubMed DOI PMC
El-Marasy S.A., El-Shenawy S.M., Moharram F.A., El-Sherbeeny N.A. Antidiabetic and Antioxidant Effects of Acteoside from Jacaranda Mimosifolia Family Biognoniaceae in Streptozotocin–Nicotinamide Induced Diabetes in Rats. Open Access Maced. J. Med. Sci. 2020;8:125–133. doi: 10.3889/oamjms.2020.3325. DOI
Yu S.Y., Lee I.-S., Jung S.-H., Lee Y.M., Lee Y.-R., Kim J.-H., Sun H., Kim J.S. Caffeoylated Phenylpropanoid Glycosides from Brandisia Hancei Inhibit Advanced Glycation End Product Formation and Aldose Reductase In Vitro and Vessel Dilation in Larval Zebrafish In Vivo. Planta Med. 2013;79:1705–1709. doi: 10.1055/s-0033-1351101. PubMed DOI
Milkovic L., Cipak Gasparovic A., Cindric M., Mouthuy P.-A., Zarkovic N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells. 2019;8:793. doi: 10.3390/cells8080793. PubMed DOI PMC
Huan S.K.-H., Wang K.-T., Lee C.-J., Sung C.-H., Chien T.-Y., Wang C.-C. Wu-Chia-Pi Solution Attenuates Carbon Tetrachloride-Induced Hepatic Injury through the Antioxidative Abilities of Its Components Acteoside and Quercetin. Molecules. 2012;17:14673–14684. doi: 10.3390/molecules171214673. PubMed DOI PMC
Carocho M., Ferreira I.C.F.R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013;51:15–25. doi: 10.1016/j.fct.2012.09.021. PubMed DOI
Galati G., O’Brien P.J. Potential Toxicity of Flavonoids and Other Dietary Phenolics: Significance for Their Chemopreventive and Anticancer Properties. Free Radic. Biol. Med. 2004;37:287–303. doi: 10.1016/j.freeradbiomed.2004.04.034. PubMed DOI
Procházková D., Boušová I., Wilhelmová N. Antioxidant and Prooxidant Properties of Flavonoids. Fitoterapia. 2011;82:513–523. doi: 10.1016/j.fitote.2011.01.018. PubMed DOI
Kanner J. Polyphenols by Generating H2O2, Affect Cell Redox Signaling, Inhibit PTPs and Activate Nrf2 Axis for Adaptation and Cell Surviving: In Vitro, In Vivo and Human Health. Antioxidants. 2020;9:797. doi: 10.3390/antiox9090797. PubMed DOI PMC
Treml J., Leláková V., Šmejkal K., Paulíčková T., Labuda Š., Granica S., Havlík J., Jankovská D., Padrtová T., Hošek J. Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System. Biomolecules. 2019;9:468. doi: 10.3390/biom9090468. PubMed DOI PMC
Hanáková Z., Hošek J., Babula P., Dall’Acqua S., Václavík J., Šmejkal K. C-Geranylated Flavanones from Paulownia Tomentosa Fruits as Potential Anti-Inflammatory Compounds Acting via Inhibition of TNF-α Production. J. Nat. Prod. 2015;78:850–863. doi: 10.1021/acs.jnatprod.5b00005. PubMed DOI
Wolfe K.L., Liu R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007;55:8896–8907. doi: 10.1021/jf0715166. PubMed DOI
Treml J., Šalamúnová P., Hanuš J., Hošek J. The Effect of Curcumin Encapsulation into Yeast Glucan Particles on Antioxidant Enzyme Expression In Vitro. Food Funct. 2021 doi: 10.1039/D0FO03237A. PubMed DOI
Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus