Direct and Indirect Antioxidant Effects of Selected Plant Phenolics in Cell-Based Assays

. 2021 Apr 26 ; 26 (9) : . [epub] 20210426

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33926137

Background: Oxidative stress is a key factor in the pathophysiology of many diseases. This study aimed to verify the antioxidant activity of selected plant phenolics in cell-based assays and determine their direct or indirect effects. Methods: The cellular antioxidant assay (CAA) assay was employed for direct scavenging assays. In the indirect approach, the influence of each test substance on the gene and protein expression and activity of selected antioxidant enzymes was observed. One assay also dealt with activation of the Nrf2-ARE pathway. The overall effect of each compound was measured using a glucose oxidative stress protection assay. Results: Among the test compounds, acteoside showed the highest direct scavenging activity and no effect on the expression of antioxidant enzymes. It increased only the activity of catalase. Diplacone was less active in direct antioxidant assays but positively affected enzyme expression and catalase activity. Morusin showed no antioxidant activity in the CAA assay. Similarly, pomiferin had only mild antioxidant activity and proved rather cytotoxic. Conclusions: Of the four selected phenolics, only acteoside and diplacone demonstrated antioxidant effects in cell-based assays.

Zobrazit více v PubMed

Niki E. Oxidative Stress and Antioxidants: Distress or Eustress? Arch. Biochem. Biophys. 2016;595:19–24. doi: 10.1016/j.abb.2015.11.017. PubMed DOI

Treml J., Šmejkal K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016;15:720–738. doi: 10.1111/1541-4337.12204. PubMed DOI

Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI

Sies H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017;11:613–619. doi: 10.1016/j.redox.2016.12.035. PubMed DOI PMC

López-Alarcón C., Denicola A. Evaluating the Antioxidant Capacity of Natural Products: A Review on Chemical and Cellular-Based Assays. Anal. Chim. Acta. 2013;763:1–10. doi: 10.1016/j.aca.2012.11.051. PubMed DOI

Jung K.-A., Kwak M.-K. The Nrf2 System as a Potential Target for the Development of Indirect Antioxidants. Molecules. 2010;15:7266–7291. doi: 10.3390/molecules15107266. PubMed DOI PMC

Reisman S.A., Yeager R.L., Yamamoto M., Klaassen C.D. Increased Nrf2 Activation in Livers from Keap1-Knockdown Mice Increases Expression of Cytoprotective Genes That Detoxify Electrophiles More than Those That Detoxify Reactive Oxygen Species. Toxicol. Sci. 2009;108:35–47. doi: 10.1093/toxsci/kfn267. PubMed DOI PMC

Ma Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320. PubMed DOI PMC

Chen C., Yu R., Owuor E.D., Kong A.N. Activation of Antioxidant-Response Element (ARE), Mitogen-Activated Protein Kinases (MAPKs) and Caspases by Major Green Tea Polyphenol Components during Cell Survival and Death. Arch. Pharm. Res. 2000;23:605–612. doi: 10.1007/BF02975249. PubMed DOI

Kweon M.-H., In Park Y., Sung H.-C., Mukhtar H. The Novel Antioxidant 3-O-Caffeoyl-1-Methylquinic Acid Induces Nrf2-Dependent Phase II Detoxifying Genes and Alters Intracellular Glutathione Redox. Free Radic. Biol. Med. 2006;40:1349–1361. doi: 10.1016/j.freeradbiomed.2005.12.002. PubMed DOI

Surh Y.-J., Kundu J.K., Na H.-K. Nrf2 as a Master Redox Switch in Turning on the Cellular Signaling Involved in the Induction of Cytoprotective Genes by Some Chemopreventive Phytochemicals. Planta Med. 2008;74:1526–1539. doi: 10.1055/s-0028-1088302. PubMed DOI

Lunder M., Roškar I., Hošek J., Štrukelj B. Silver Fir (Abies Alba) Extracts Inhibit Enzymes Involved in Blood Glucose Management and Protect against Oxidative Stress in High Glucose Environment. Plant Foods Hum. Nutr. 2019;74:47–53. doi: 10.1007/s11130-018-0698-6. PubMed DOI

Chandrasekaran K., Swaminathan K., Chatterjee S., Dey A. Apoptosis in HepG2 Cells Exposed to High Glucose. Toxicol. In Vitro. 2010;24:387–396. doi: 10.1016/j.tiv.2009.10.020. PubMed DOI

Xu D.-P., Li Y., Meng X., Zhou T., Zhou Y., Zheng J., Zhang J.-J., Li H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017;18:96. doi: 10.3390/ijms18010096. PubMed DOI PMC

Tsao R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231. PubMed DOI PMC

Koo K.A., Kim S.H., Oh T.H., Kim Y.C. Acteoside and Its Aglycones Protect Primary Cultures of Rat Cortical Cells from Glutamate-Induced Excitotoxicity. Life Sci. 2006;79:709–716. doi: 10.1016/j.lfs.2006.02.019. PubMed DOI

Šmejkal K., Grycová L., Marek R., Lemière F., Jankovská D., Forejtníková H., Vančo J., Suchý V. C-Geranyl Compounds from Paulownia Tomentosa Fruits. J. Nat. Prod. 2007;70:1244–1248. doi: 10.1021/np070063w. PubMed DOI

Veselá D., Kubınová R., Muselık J., Žemlička M., Suchý V. Antioxidative and EROD Activities of Osajin and Pomiferin. Fitoterapia. 2004;75:209–211. doi: 10.1016/j.fitote.2003.12.005. PubMed DOI

Cheng P.-S., Hu C.-C., Wang C.-J., Lee Y.-J., Chung W.-C., Tseng T.-H. Involvement of the Antioxidative Property of Morusin in Blocking Phorbol Ester–Induced Malignant Transformation of JB6 P+ Mouse Epidermal Cells. Chem.-Biol. Interact. 2017;264:34–42. doi: 10.1016/j.cbi.2017.01.009. PubMed DOI

Šmejkal K., Babula P., Šlapetová T., Brognara E., Dall’Acqua S., Žemlička M., Innocenti G., Cvačka J. Cytotoxic Activity of C-Geranyl Compounds from Paulownia Tomentosa Fruits. Planta Med. 2008;74:1488–1491. doi: 10.1055/s-2008-1081339. PubMed DOI

Hošek J., Bartos M., Chudík S., Dall’Acqua S., Innocenti G., Kartal M., Kokoška L., Kollár P., Kutil Z., Landa P., et al. Natural Compound Cudraflavone B Shows Promising Anti-Inflammatory Properties In Vitro. J. Nat. Prod. 2011;74:614–619. doi: 10.1021/np100638h. PubMed DOI

Hošek J., Závalová V., Šmejkal K., Bartoš M. Effect of Diplacone on LPS-Induced Inflammatory Gene Expression in Macrophages. Folia Biol. (Praha) 2010;56:124–130. PubMed

Zelová H., Hanáková Z., Čermáková Z., Šmejkal K., Dalĺ Acqua S., Babula P., Cvačka J., Hošek J. Evaluation of Anti-Inflammatory Activity of Prenylated Substances Isolated from Morus Alba and Morus Nigra. J. Nat. Prod. 2014;77:1297–1303. doi: 10.1021/np401025f. PubMed DOI

Kollar P., Bárta T., Hošek J., Souček K., Závalová V.M., Artinian S., Talhouk R., Šmejkal K., Suchý P., Hampl A. Prenylated Flavonoids from Morus Alba L. Cause Inhibition of G1/S Transition in THP-1 Human Leukemia Cells and Prevent the Lipopolysaccharide-Induced Inflammatory Response. Evid.-Based Complement. Altern. Med. 2013;2013 doi: 10.1155/2013/350519. PubMed DOI PMC

Lee K.-W., Kim H.J., Lee Y.S., Park H.-J., Choi J.-W., Ha J., Lee K.-T. Acteoside Inhibits Human Promyelocytic HL-60 Leukemia Cell Proliferation via Inducing Cell Cycle Arrest at G0/G1 Phase and Differentiation into Monocyte. Carcinogenesis. 2007;28:1928–1936. doi: 10.1093/carcin/bgm126. PubMed DOI

Sgarbossa A., Dal Bosco M., Pressi G., Cuzzocrea S., Dal Toso R., Menegazzi M. Phenylpropanoid Glycosides from Plant Cell Cultures Induce Heme Oxygenase 1 Gene Expression in a Human Keratinocyte Cell Line by Affecting the Balance of NRF2 and BACH1 Transcription Factors. Chem.-Biol. Interact. 2012;199:87–95. doi: 10.1016/j.cbi.2012.06.006. PubMed DOI

Nam S.-Y., Kim H.-M., Jeong H.-J. Attenuation of IL-32-Induced Caspase-1 and Nuclear Factor-ΚB Activations by Acteoside. Int. Immunopharmacol. 2015;29:574–582. doi: 10.1016/j.intimp.2015.09.026. PubMed DOI

Speranza L., Franceschelli S., Pesce M., Reale M., Menghini L., Vinciguerra I., Lutiis M.A.D., Felaco M., Grilli A. Antiinflammatory Effects in THP-1 Cells Treated with Verbascoside. Phytother. Res. 2010;24:1398–1404. doi: 10.1002/ptr.3173. PubMed DOI

Son I.H., Chung I.-M., Lee S.I., Yang H.D., Moon H.-I. Pomiferin, Histone Deacetylase Inhibitor Isolated from the Fruits of Maclura Pomifera. Bioorg. Med. Chem. Lett. 2007;17:4753–4755. doi: 10.1016/j.bmcl.2007.06.060. PubMed DOI

Yang R., Hanwell H., Zhang J., Tsao R., Meckling K.A. Antiproliferative Activity of Pomiferin in Normal (MCF-10A) and Transformed (MCF-7) Breast Epithelial Cells. J. Agric. Food Chem. 2011;59:13328–13336. doi: 10.1021/jf202898g. PubMed DOI

Halliwell B., Gutteridge J. Free Radicals in Biology and Medicine. 4th ed. Oxford University Press; Oxford, UK: 2007.

Siciliano T., Bader A., Vassallo A., Braca A., Morelli I., Pizza C., De T. Secondary Metabolites from Ballota Undulata (Lamiaceae) Biochem. Syst. Ecol. 2005;33:341–351. doi: 10.1016/j.bse.2004.10.013. DOI

Li X., Xie Y., Li K., Wu A., Xie H., Guo Q., Xue P., Maleshibek Y., Zhao W., Guo J., et al. Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry. Molecules. 2018;23:498. doi: 10.3390/molecules23020498. PubMed DOI PMC

Lee H.-D., Kim J.H., Pang Q.Q., Jung P.-M., Cho E.J., Lee S. Antioxidant Activity and Acteoside Analysis of Abeliophyllum Distichum. Antioxidants. 2020;9:1148. doi: 10.3390/antiox9111148. PubMed DOI PMC

Kalyanaraman B., Darley-Usmar V., Davies K.J.A., Dennery P.A., Forman H.J., Grisham M.B., Mann G.E., Moore K., Roberts L.J., Ischiropoulos H. Measuring Reactive Oxygen and Nitrogen Species with Fluorescent Probes: Challenges and Limitations. Free Radic. Biol. Med. 2012;52:1–6. doi: 10.1016/j.freeradbiomed.2011.09.030. PubMed DOI PMC

Hošek J., Toniolo A., Neuwirth O., Bolego C. Prenylated and Geranylated Flavonoids Increase Production of Reactive Oxygen Species in Mouse Macrophages but Inhibit the Inflammatory Response. J. Nat. Prod. 2013;76:1586–1591. doi: 10.1021/np400242e. PubMed DOI

Orhan I.E., Senol F.S., Demirci B., Dvorska M., Smejkal K., Zemlicka M. Antioxidant Potential of Some Natural and Semi-Synthetic Flavonoid Derivatives and the Extracts from Maclura Pomifera (Rafin.) Schneider (Osage Orange) and Its Essential Oil Composition. Turk. J. Chem. 2016;41:403–411. doi: 10.1515/tjb-2016-0125. DOI

Bozkurt İ., Dilek E., Erol H.S., Çakir A., Hamzaoğlu E., Koç M., Keleş O.N., Halici M.B. Investigation on the Effects of Pomiferin from Maclura Pomifera on Indomethacin-Induced Gastric Ulcer: An Experimental Study in Rats. Med. Chem. Res. 2017;26:2048–2056. doi: 10.1007/s00044-017-1913-y. DOI

Hwang H.-S., Winkler-Moser J.K., Tisserat B., Harry-O’kuru R.E., Berhow M.A., Liu S.X. Antioxidant Activity of Osage Orange Extract in Soybean Oil and Fish Oil during Storage. J. Am. Oil Chem. Soc. 2021;98:73–87. doi: 10.1002/aocs.12458. DOI

Treml J., Šmejkal K., Hošek J., Žemlička M. Determination of Antioxidant Activity Using Oxidative Damage to Plasmid DNA—Pursuit of Solvent Optimization. Chem. Pap. 2013;67:484–489. doi: 10.2478/s11696-013-0334-8. DOI

Zima A., Hošek J., Treml J., Muselík J., Suchý P., Pražanová G., Lopes A., Žemlička M. Antiradical and Cytoprotective Activities of Several C-Geranyl-Substituted Flavanones from Paulownia Tomentosa Fruit. Molecules. 2010;15:6035–6049. doi: 10.3390/molecules15096035. PubMed DOI PMC

Moon H.-I., Jeong M.H., Jo W.S. Protective Activity of C-Geranylflavonoid Analogs from Paulownia Tomentosa against DNA Damage in 137Cs Irradiated AHH-1Cells. Nat. Prod. Comm. 2014;9 doi: 10.1177/1934578X1400900919. PubMed DOI

Malaník M., Treml J., Leláková V., Nykodýmová D., Oravec M., Marek J., Šmejkal K. Anti-Inflammatory and Antioxidant Properties of Chemical Constituents of Broussonetia Papyrifera. Bioorg. Chem. 2020;104:104298. doi: 10.1016/j.bioorg.2020.104298. PubMed DOI

Lee H.J., Lyu D.H., Koo U., Nam K.-W., Hong S.S., Kim K.O., Kim K.H., Lee D., Mar W. Protection of Prenylated Flavonoids from Mori Cortex Radicis (Moraceae) against Nitric Oxide-Induced Cell Death in Neuroblastoma SH-SY5Y Cells. Arch. Pharm. Res. 2012;35:163–170. doi: 10.1007/s12272-012-0118-7. PubMed DOI

Yang Z.-G., Matsuzaki K., Takamatsu S., Kitanaka S. Inhibitory Effects of Constituents from Morus Alba Var. Multicaulis on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells. Molecules. 2011;16:6010–6022. doi: 10.3390/molecules16076010. PubMed DOI PMC

Ko H.-H., Wang J.-J., Lin H.-C., Wang J.-P., Lin C.-N. Chemistry and Biological Activities of Constituents from Morus Australis. Biochim. Biophys. Acta Gen. Subj. 1999;1428:293–299. doi: 10.1016/S0304-4165(99)00084-7. PubMed DOI

Kawahito S., Kitahata H., Oshita S. Problems Associated with Glucose Toxicity: Role of Hyperglycemia-Induced Oxidative Stress. World J. Gastroenterol. 2009;15:4137–4142. doi: 10.3748/wjg.15.4137. PubMed DOI PMC

Burgos-Morón E., Abad-Jiménez Z., Martínez de Marañón A., Iannantuoni F., Escribano-López I., López-Domènech S., Salom C., Jover A., Mora V., Roldan I., et al. Relationship between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues. J. Clin. Med. 2019;8:1385. doi: 10.3390/jcm8091385. PubMed DOI PMC

El-Marasy S.A., El-Shenawy S.M., Moharram F.A., El-Sherbeeny N.A. Antidiabetic and Antioxidant Effects of Acteoside from Jacaranda Mimosifolia Family Biognoniaceae in Streptozotocin–Nicotinamide Induced Diabetes in Rats. Open Access Maced. J. Med. Sci. 2020;8:125–133. doi: 10.3889/oamjms.2020.3325. DOI

Yu S.Y., Lee I.-S., Jung S.-H., Lee Y.M., Lee Y.-R., Kim J.-H., Sun H., Kim J.S. Caffeoylated Phenylpropanoid Glycosides from Brandisia Hancei Inhibit Advanced Glycation End Product Formation and Aldose Reductase In Vitro and Vessel Dilation in Larval Zebrafish In Vivo. Planta Med. 2013;79:1705–1709. doi: 10.1055/s-0033-1351101. PubMed DOI

Milkovic L., Cipak Gasparovic A., Cindric M., Mouthuy P.-A., Zarkovic N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells. 2019;8:793. doi: 10.3390/cells8080793. PubMed DOI PMC

Huan S.K.-H., Wang K.-T., Lee C.-J., Sung C.-H., Chien T.-Y., Wang C.-C. Wu-Chia-Pi Solution Attenuates Carbon Tetrachloride-Induced Hepatic Injury through the Antioxidative Abilities of Its Components Acteoside and Quercetin. Molecules. 2012;17:14673–14684. doi: 10.3390/molecules171214673. PubMed DOI PMC

Carocho M., Ferreira I.C.F.R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013;51:15–25. doi: 10.1016/j.fct.2012.09.021. PubMed DOI

Galati G., O’Brien P.J. Potential Toxicity of Flavonoids and Other Dietary Phenolics: Significance for Their Chemopreventive and Anticancer Properties. Free Radic. Biol. Med. 2004;37:287–303. doi: 10.1016/j.freeradbiomed.2004.04.034. PubMed DOI

Procházková D., Boušová I., Wilhelmová N. Antioxidant and Prooxidant Properties of Flavonoids. Fitoterapia. 2011;82:513–523. doi: 10.1016/j.fitote.2011.01.018. PubMed DOI

Kanner J. Polyphenols by Generating H2O2, Affect Cell Redox Signaling, Inhibit PTPs and Activate Nrf2 Axis for Adaptation and Cell Surviving: In Vitro, In Vivo and Human Health. Antioxidants. 2020;9:797. doi: 10.3390/antiox9090797. PubMed DOI PMC

Treml J., Leláková V., Šmejkal K., Paulíčková T., Labuda Š., Granica S., Havlík J., Jankovská D., Padrtová T., Hošek J. Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System. Biomolecules. 2019;9:468. doi: 10.3390/biom9090468. PubMed DOI PMC

Hanáková Z., Hošek J., Babula P., Dall’Acqua S., Václavík J., Šmejkal K. C-Geranylated Flavanones from Paulownia Tomentosa Fruits as Potential Anti-Inflammatory Compounds Acting via Inhibition of TNF-α Production. J. Nat. Prod. 2015;78:850–863. doi: 10.1021/acs.jnatprod.5b00005. PubMed DOI

Wolfe K.L., Liu R.H. Cellular Antioxidant Activity (CAA) Assay for Assessing Antioxidants, Foods, and Dietary Supplements. J. Agric. Food Chem. 2007;55:8896–8907. doi: 10.1021/jf0715166. PubMed DOI

Treml J., Šalamúnová P., Hanuš J., Hošek J. The Effect of Curcumin Encapsulation into Yeast Glucan Particles on Antioxidant Enzyme Expression In Vitro. Food Funct. 2021 doi: 10.1039/D0FO03237A. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus

. 2022 Aug 13 ; 11 (8) : . [epub] 20220813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...