Antiradical and cytoprotective activities of several C-geranyl-substituted flavanones from Paulownia tomentosa fruit
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20877208
PubMed Central
PMC6257673
DOI
10.3390/molecules15096035
PII: molecules15096035
Knihovny.cz E-zdroje
- MeSH
- cytoprotekce účinky léků MeSH
- experimentální diabetes mellitus farmakoterapie MeSH
- flavanony izolace a purifikace farmakologie MeSH
- myši MeSH
- ovoce chemie MeSH
- scavengery volných radikálů izolace a purifikace farmakologie MeSH
- Scrophulariaceae chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flavanony MeSH
- scavengery volných radikálů MeSH
Antiradical and cytoprotective activities of several flavanones isolated from Paulownia tomentosa (Thunb.) Steud. (Scrophulariaceae) have been evaluated using different in vitro and in vivo methods. The capacity of flavanones to scavenge radicals was measured in vitro by means of DPPH and ABTS assays, the inhibition of hydroxyl radicals produced in Fenton reactions, FRAP, scavenging superoxide radicals using enzymatic and nonenzymatic assays and the inhibition of peroxynitrite-induced nitration of tyrosine. The in vivo testing involved measuring the cytoprotective effect of chosen flavanones against alloxan-induced diabetes in mice. The activity of tested compounds was expressed either as a Trolox® equivalent or was compared with rutin or morine as known antioxidant compounds. The highest activity in most tests was observed for diplacone and 3´-O-methyl-5´-hydroxydiplacone, and the structure vs. the antioxidant activity relationship of geranyl or prenyl-substituted flavonoids with different substitutions at the B and C ring was discussed.
Zobrazit více v PubMed
Cadenas E. Biochemistry of oxygen toxicity. Ann. Rev. Biochem. 1989;58:79–110. doi: 10.1146/annurev.bi.58.070189.000455. PubMed DOI
Sies H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997;82:291–295. PubMed
Mates J.M., Perez-Gomez C., De Castro I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999;32:595–603. doi: 10.1016/S0009-9120(99)00075-2. PubMed DOI
McCall M.R., Frei B. Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radical Biol. Med. 1999;26:1034–1053. doi: 10.1016/S0891-5849(98)00302-5. PubMed DOI
Pietta P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000;63:1035–1042. doi: 10.1021/np9904509. PubMed DOI
Šmejkal K., Holubová P., Zima A, Muselík J., Dvorská M. Antiradical activity of Paulownia tomentosa (Scrophulariaceae) extracts. Molecules. 2007;12:1210–1219. doi: 10.3390/12061210. PubMed DOI PMC
Havsteen B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002;96:67–202. doi: 10.1016/S0163-7258(02)00298-X. PubMed DOI
Rice-Evans C.A., Miller N.J., Paganga G. Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI
Šmejkal K., Grycová L., Marek R., Jankovská D., Forejtníková H., Vančo J., Suchý V. C-geranyl compounds from Paulownia tomentosa fruits. J. Nat. Prod. 2007;70:1244–1248. doi: 10.1021/np070063w. PubMed DOI
Šmejkal K., Chudík S., Klouček P., Marek R., Cvačka J., Urbanová M., Julínek O., Kokoška L., Šlapetová T., Holubová P., Zima A., Dvorská M. Antibacterial C-geranyl flavonoids from Paulownia tomentosa fruits. J. Nat. Prod. 2008;71:706–709. PubMed
Asai T., Hara N., Kobayashi S., Kohshima S., Fujimoto Y. Geranylated flavanones from the secretion on the surface of the immature fruits of Paulownia tomentosa. Phytochemistry. 2008;69:1234–1241. doi: 10.1016/j.phytochem.2007.11.011. PubMed DOI
Van den Berg R., Haenen G.R.M.M., Van den Berg H., Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999;66:511–517. doi: 10.1016/S0308-8146(99)00089-8. DOI
Cao G., Sofic E., Prior R.L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radical Biol. Med. 1997;22:749–760. doi: 10.1016/S0891-5849(96)00351-6. PubMed DOI
Sekher Pannala A., Chan T.S., O’Brien P.J., Rice-Evans C.A. Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem. Biophys. Res. Commun. 2001;282:1161–1168. doi: 10.1006/bbrc.2001.4705. PubMed DOI
Dugas A.J., Jr., Castaneda-Acosta J., Bonin G.C., Price K.L., Fischer N.H., Winston G.W. Evaluation of the total peroxyl radical scavenging capacity of flavonoids: structure-activity relationships. J. Nat. Prod. 2000;63:327–331. doi: 10.1021/np990352n. PubMed DOI
Heim K.E., Tagliaferro A.R., Bobilya D.J. Flavonoid antioxidants: chemistry, metabolism and structure activity relationships. J. Nutr. Biochem. 2002;13:572–584. doi: 10.1016/S0955-2863(02)00208-5. PubMed DOI
Firuzi O., Lacanna A., Petrucci R., Marrosu G., Saso L. Evaluation of the antioxidant activity of flavonoids by “ferric reducingantioxidant power” assay and cyclic voltammetry. Biochim. Biophys. Acta. 2005;1721:174–184. doi: 10.1016/j.bbagen.2004.11.001. PubMed DOI
Muselík J., García-Alonso M., Martín-López M.P., Žemlička M., Rivas-Gonzalo J.C. Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins and pyranoanthocyanins. Int. J. Mol. Sci. 2007;8:797–809. doi: 10.3390/i8080797. DOI
Cos P., Li Y., Calomme M., Jia P.H., Cimanga K., Van Poel B., Pieters L, Vlietinck A.J., Van den Berghe D. Structure-Activity Relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod. 1998;61:71–76. doi: 10.1021/np970237h. PubMed DOI
Borges F., Fernandes E. Progress towards the discovery of XO inhibitors. Curr. Med. Chem. 2002;24:195–217. doi: 10.2174/0929867023371229. PubMed DOI
Yao H., Liao Z.X., Wu Q, Lei G.Q., Liu Z.J., Chen D.F, Chen J.K., Zhou T.S. Antioxidative flavanone glycosides from the branches and leaves of Viscum coloratum. Chem. Pharm. Bull. 2006;54:133–135. doi: 10.1248/cpb.54.133. PubMed DOI
Valentaõ P., Fernandes E., Carvalho F., Andrade P.B., Seabra R.M., Bastos M.L. Antioxidant activity of Centaurium erythraea infusion evidenced by its superoxide radical scavenging and xanthine oxidase inhibitory activity. J. Agric. Food Chem. 2001;49:3476–3479. doi: 10.1021/jf001145s. PubMed DOI
Gutteridge J.M.C. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 1986;201:291–295. doi: 10.1016/0014-5793(86)80626-3. PubMed DOI
Kang J.H. Oxidative damage of DNA by the reaction of amino acid with methylglyoxal in the presence of Fe(III) Int. J. Biol. Macromol. 2003;33:43–48. doi: 10.1016/S0141-8130(03)00064-3. PubMed DOI
Prakash D., Suri S., Upadhyay G., Singh B.N. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int. J. Food Sci. Nutr. 2007;58:18–28. doi: 10.1080/09637480601093269. PubMed DOI
Szkudelski T. The Mechanism of Alloxan and Streptozocin Action in B Cells of the Rat Pancreas. Physiol. Res. 2001;50:536–546. PubMed
Rahimi R., Nikfar S., Larijani B., Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed. Pharmacother. 2005;59:365–373. doi: 10.1016/j.biopha.2005.07.002. PubMed DOI
Soto C., Recoba R., Barron H., Alvarez C., Favari L. Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas. Comp. Biochem. Physiol. - Part C Toxicol. Pharmacol. 2003;136:205–212. PubMed
Rice-Evans C, Packer P. Flavonoids in Health and Disease. 2nd. CRC Press; New York, NY, USA: 2003. pp. 329–334.
Šmejkal K., Svačinová J., Šlapetová T., Schneiderová K., Dall’Acqua S., Innocenti G., Závalová V., Kollár P., Chudík S., Marek R., Julínek O., Urbanová M., Kartal M., Csöllei M., Doležal K. Cytotoxic activities of several geranyl-substituted flavanones. J. Nat. Prod. 2010;73:568–572. doi: 10.1021/np900681y. PubMed DOI
Brand-Williams W., Cuvelier M.E., Berset C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Food Sci. Technol. 1995;28:25–30.
Arnao M.B., Cano A., Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001;73:239–244. doi: 10.1016/S0308-8146(00)00324-1. DOI
Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of „antioxidant power“: the FRAP assay. Anal. Biochem. 1996;239:70–76. PubMed
Vančo J., Marek J., Trávníček Z., Račanská E., Muselík H., Švajnelová O. Synthesis, structural characterization, antiradical and antidiabetic activities of copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and β-alanine. J. Inorg. Biochem. 2008;102:595–605. doi: 10.1016/j.jinorgbio.2007.10.003. PubMed DOI
Subash S., Subramanian P. Morin a flavonoid exerts antioxidant potential in chronic hyperammonemic rats: a biochemical and histopathological study. Mol. Cell Biochem. 2009;327:153–161. doi: 10.1007/s11010-009-0053-1. PubMed DOI
Prenylated Flavonoids in Topical Infections and Wound Healing
Direct and Indirect Antioxidant Effects of Selected Plant Phenolics in Cell-Based Assays
Phytochemical profile of Paulownia tomentosa (Thunb). Steud