Prenylated Flavonoids in Topical Infections and Wound Healing

. 2022 Jul 13 ; 27 (14) : . [epub] 20220713

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35889363

Grantová podpora
APVV-19-0056 Slovak Research and Development Agency
VEGA-1/0284/20 Grant Agency of Ministry of Education, Science, Research, and Sport of Slovakia (VEGA)

The review presents prenylated flavonoids as potential therapeutic agents for the treatment of topical skin infections and wounds, as they can restore the balance in the wound microenvironment. A thorough two-stage search of scientific papers published between 2000 and 2022 was conducted, with independent assessment of results by two reviewers. The main criteria were an MIC (minimum inhibitory concentration) of up to 32 µg/mL, a microdilution/macrodilution broth method according to CLSI (Clinical and Laboratory Standards Institute) or EUCAST (European Committee on Antimicrobial Susceptibility Testing), pathogens responsible for skin infections, and additional antioxidant, anti-inflammatory, and low cytotoxic effects. A total of 127 structurally diverse flavonoids showed promising antimicrobial activity against pathogens affecting wound healing, predominantly Staphylococcus aureus strains, but only artocarpin, diplacone, isobavachalcone, licochalcone A, sophoraflavanone G, and xanthohumol showed multiple activity, including antimicrobial, antioxidant, and anti-inflammatory along with low cytotoxicity important for wound healing. Although prenylated flavonoids appear to be promising in wound therapy of humans, and also animals, their activity was measured only in vitro and in vivo. Future studies are, therefore, needed to establish rational dosing according to MIC and MBC (minimum bactericidal concentration) values, test potential toxicity to human cells, measure healing kinetics, and consider formulation in smart drug release systems and/or delivery technologies to increase their bioavailability.

Zobrazit více v PubMed

Grice E.A., Segre J.A. The Skin Microbiome. Nat. Rev. Microbiol. 2011;9:244–253. doi: 10.1038/nrmicro2537. PubMed DOI PMC

Pilehvar-Soltanahmadi Y., Dadashpour M., Mohajeri A., Fattahi A., Sheervalilou R., Zarghami N. An Overview on Application of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings. Mini-Rev. Med. Chem. 2017;18:414–427. doi: 10.2174/1389557517666170308112147. PubMed DOI

Andreu V., Mendoza G., Arruebo M., Irusta S. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds. Materials. 2015;8:5154–5193. doi: 10.3390/ma8085154. PubMed DOI PMC

Álvarez-Martínez F.J., Barrajón-Catalán E., Herranz-López M., Micol V. Antibacterial Plant Compounds, Extracts and Essential Oils: An Updated Review on Their Effects and Putative Mechanisms of Action. Phytomedicine. 2021;90:153626. doi: 10.1016/j.phymed.2021.153626. PubMed DOI

Rodrigues M., Kosaric N., Bonham C.A., Gurtner G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019;99:665–706. doi: 10.1152/physrev.00067.2017. PubMed DOI PMC

Schultz G., Sibbald G., Falanga V., Ayello E., Dowsett C., Harding K., Romanelli M., Stacey M., Teot L., Vanscheidt W. Wound Bed Preparation: A Systematic Approach to Chronic Wounds. Wound Repair Regen. 2003;11((Suppl. S1)):S1–S28. doi: 10.1046/j.1524-475X.11.s2.1.x. PubMed DOI

Kumar V., Abbas A., Fausto N., Aster J.C. Robbins and Cotran Pathologic Basis of Disease. 8th ed. Elsevier Inc.; Philadelphia, PA, USA: 2010.

Scalise A., Bianchi A., Tartaglione C., Bolletta E., Pierangeli M., Torresetti M., Marazzi M., Di Benedetto G. Microenvironment and Microbiology of Skin Wounds: The Role of Bacterial Biofilms and Related Factors. Semin. Vasc. Surg. 2015;28:151–159. doi: 10.1053/j.semvascsurg.2016.01.003. PubMed DOI

Percival S.L., Emanuel C., Cutting K.F., Williams D.W. Microbiology of the Skin and the Role of Biofilms in Infection. Int. Wound J. 2012;9:14–32. doi: 10.1111/j.1742-481X.2011.00836.x. PubMed DOI PMC

Simões D., Miguel S.P., Ribeiro M.P., Coutinho P., Mendonça A.G., Correia I.J. Recent Advances on Antimicrobial Wound Dressing: A Review. Eur. J. Pharm. Biopharm. 2018;127:130–141. doi: 10.1016/j.ejpb.2018.02.022. PubMed DOI

Ayton M. Wound Care: Wounds That Won’t Heal. Nurs. Times. 1985;81:16–19. PubMed

Lowy F. The Chromosome, as Well as the Extrachromosomal El- Ements. 6 These Genes Are Transferred between Staphy-Lococcal Strains, Species, or Other Gram-Positive Bacte-Rial Species through the Extrachromosomal Elements. N. Engl. J. Med. 1998;339:520–532. doi: 10.1056/NEJM199808203390806. PubMed DOI

Cardona A.F., Wilson S.E. Skin and Soft-Tissue Infections: A Critical Review and the Role of Telavancin in Their Treatment. Clin. Infect. Dis. 2015;61((Suppl. S2)):S69–S78. doi: 10.1093/cid/civ528. PubMed DOI

Daeschlein G. Antimicrobial and Antiseptic Strategies in Wound Management. Int. Wound J. 2013;10((Suppl. S1)):9–14. doi: 10.1111/iwj.12175. PubMed DOI PMC

Foster A.P. Staphylococcal Skin Disease in Livestock. Vet. Dermatol. 2012;23:342–352. doi: 10.1111/j.1365-3164.2012.01093.x. PubMed DOI

Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2020. [(accessed on 3 March 2021)]. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2018-trends-2010-2018-tenth-esvac-report_en.pdf.

Voss A., Loeffen F., Bakker J., Klaassen C., Wulf M. Methicillin-Resistant Staphylococcus aureus in Pig Farming. Emerg. Infect. Dis. 2005;11:1965–1966. doi: 10.3201/eid1112.050428. PubMed DOI PMC

Van Boeckel T.P., Brower C., Gilbert M., Grenfell B.T., Levin S.A., Robinson T.P., Teillant A., Laxminarayan R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA. 2015;112:5649–5654. doi: 10.1073/pnas.1503141112. PubMed DOI PMC

Mala L., Lalouckova K., Skrivanova E. Bacterial Skin Infections in Livestock and Plant-Based Alternatives to Their Antibiotic Treatment. Animals. 2021;11:2473. doi: 10.3390/ani11082473. PubMed DOI PMC

Contreras G.A., Rodríguez J.M. Mastitis: Comparative Etiology and Epidemiology. J. Mammary Gland Biol. Neoplasia. 2011;16:339–356. doi: 10.1007/s10911-011-9234-0. PubMed DOI

Cheng W.N., Han S.G. Bovine Mastitis: Risk Factors, Therapeutic Strategies, and Alternative Treatments—A Review. Asian-Australas. J. Anim. Sci. 2020;33:1699–1713. doi: 10.5713/ajas.20.0156. PubMed DOI PMC

Mushtaq S., Shah A.M.A., Shah A.M.A., Lone S.A., Hussain A., Hassan Q.P., Ali M.N. Bovine Mastitis: An Appraisal of Its Alternative Herbal Cure. Microb. Pathog. 2018;114:357–361. doi: 10.1016/j.micpath.2017.12.024. PubMed DOI

Hossain M.K., Paul S., Hossain M.M., Islam M.R., Alam M.G.S. Bovine Mastitis and Its Therapeutic Strategy Doing Antibiotic Sensitivity Test. Austin J. Vet. Sci. Anim. Husb. 2017;4:1030. doi: 10.26420/austinjvetscianimhusb.2017.1030. DOI

Gilbert F.B., Cunha P., Jensen K., Glass E.J., Foucras G., Robert-Granié C., Rupp R., Rainard P. Differential Response of Bovine Mammary Epithelial Cells to Staphylococcus aureus or Escherichia coli Agonists of the Innate Immune System. Vet. Res. 2013;44:40. doi: 10.1186/1297-9716-44-40. PubMed DOI PMC

Amini B., Baghchesaraie H., Faghihi M.H.O. Effect of Different Sub MIC Concentrations of Penicillin, Vancomycin and Ceftazidime on Morphology and Some Biochemical Properties of Staphylococcus aureus and Pseudomonas Aeruginosa Isolates. Iran. J. Microbiol. 2009;1:43–47.

Lopes T.S., Fontoura P.S., Oliveira A., Rizzo F.A., Silveira S., Streck A.F. Use of Plant Extracts and Essential Oils in the Control of Bovine Mastitis. Res. Vet. Sci. 2020;131:186–193. doi: 10.1016/j.rvsc.2020.04.025. PubMed DOI

Ruegg P.L. A 100-Year Review: Mastitis Detection, Management, and Prevention. J. Dairy Sci. 2017;100:10381–10397. doi: 10.3168/jds.2017-13023. PubMed DOI

Ibrahim N., Wong S.K., Mohamed I.N., Mohamed N., Chin K.Y., Ima-Nirwana S., Shuid A.N. Wound Healing Properties of Selected Natural Products. Int. J. Environ. Res. Public Health. 2018;15:2360. doi: 10.3390/ijerph15112360. PubMed DOI PMC

Tsala D.E., Amadou D., Habtemariam S. Natural Wound Healing and Bioactive Natural Products. Phytopharmacology. 2013;4:532–560.

Bittner Fialová S., Rendeková K., Mučaji P., Nagy M., Slobodníková L. Antibacterial Activity of Medicinal Plants and Their Constituents in the Context of Skin and Wound Infections, Considering European Legislation and Folk Medicine—A Review. Int. J. Mol. Sci. 2021;22:10746. doi: 10.3390/ijms221910746. PubMed DOI PMC

Amparo T.R., Seibert J.B., de Abreu Vieira P.M., Teixeira L.F.M., dos Santos O.D.H., de Souza G.H.B. Herbal Medicines to the Treatment of Skin and Soft Tissue Infections: Advantages of the Multi-Targets Action. Phyther. Res. 2020;34:94–103. doi: 10.1002/ptr.6519. PubMed DOI

Thorne C.H., Chung K.C., Gosain A.K., Gurtner G.C., Mehrara B.J., Rubin J.P., Spear S.L. Grabb and Smith’s Plastic Surgery. 7th ed. Wolters Kluwer Health Adis (ESP); London, UK: 2013.

Seow Y.X., Yeo C.R., Chung H.L., Yuk H.G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2014;54:625–644. doi: 10.1080/10408398.2011.599504. PubMed DOI

Barradas T.N., de Holanda e Silva K.G. Nanoemulsions of Essential Oils to Improve Solubility, Stability and Permeability: A Review. Environ. Chem. Lett. 2021;19:1153–1171. doi: 10.1007/s10311-020-01142-2. DOI

De Luca I., Pedram P., Moeini A., Cerruti P., Peluso G., Di Salle A., Germann N. Nanotechnology Development for Formulating Essential Oils in Wound Dressing Materials to Promote the Wound-Healing Process: A Review. Appl. Sci. 2021;11:1713. doi: 10.3390/app11041713. DOI

Maheshwari R.K., Singh A.K., Gaddipati J., Srimal R.C. Multiple Biological Activities of Curcumin: A Short Review. Life Sci. 2006;78:2081–2087. doi: 10.1016/j.lfs.2005.12.007. PubMed DOI

Zorofchian Moghadamtousi S., Abdul Kadir H., Hassandarvish P., Tajik H., Abubakar S., Zandi K. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. BioMed Res. Int. 2014;2014:186864. doi: 10.1155/2014/186864. PubMed DOI PMC

FDA (Food and Drug Administration) Nda 21-902 Veregen. [(accessed on 14 June 2022)]; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/021902s002lbl.pdf.

Chamcheu J.C., Siddiqui I.A., Adhami V.M., Esnault S., Bharali D.J., Babatunde A.S., Adame S., Massey R.J., Wood G.S., Longley B.J., et al. Chitosan-Based Nanoformulated (-)-Epigallocatechin-3-Gallate (EGCG) Modulates Human Keratinocyte-Induced Responses and Alleviates Imiquimod-Induced Murine Psoriasiform Dermatitis. Int. J. Nanomed. 2018;13:4189–4206. doi: 10.2147/IJN.S165966. PubMed DOI PMC

Koch W., Zagórska J., Marzec Z., Kukula-Koch W. Applications of Tea (Camellia sinensis) and Its Active Constituents in Cosmetics. Molecules. 2019;24:4277. doi: 10.3390/molecules24234277. PubMed DOI PMC

Silva J., Vanat P., Marques-da-Silva D., Rodrigues J.R., Lagoa R. Metal Alginates for Polyphenol Delivery Systems: Studies on Crosslinking Ions and Easy-to-Use Patches for Release of Protective Flavonoids in Skin. Bioact. Mater. 2020;5:447–457. doi: 10.1016/j.bioactmat.2020.03.012. PubMed DOI PMC

Amer S.S., Mamdouh W., Nasr M., ElShaer A., Polycarpou E., Abdel-Aziz R.T.A., Sammour O.A. Quercetin Loaded Cosm-Nutraceutical Electrospun Composite Nanofibers for Acne Alleviation: Preparation, Characterization and Experimental Clinical Appraisal. Int. J. Pharm. 2022;612:121309. doi: 10.1016/j.ijpharm.2021.121309. PubMed DOI

Dias A.M.A., Braga M.E.M., Seabra I.J., Ferreira P., Gil M.H., De Sousa H.C. Development of Natural-Based Wound Dressings Impregnated with Bioactive Compounds and Using Supercritical Carbon Dioxide. Int. J. Pharm. 2011;408:9–19. doi: 10.1016/j.ijpharm.2011.01.063. PubMed DOI

Dyja R., Jankowski A. The Effect of Additives on Release and in Vitro Skin Retention of Flavonoids from Emulsion and Gel Semisolid Formulations. Int. J. Cosmet. Sci. 2017;39:442–449. doi: 10.1111/ics.12395. PubMed DOI

Roy P., Parveen S., Ghosh P., Ghatak K., Dasgupta S. Flavonoid Loaded Nanoparticles as an Effective Measure to Combat Oxidative Stress in Ribonuclease A. Biochimie. 2019;162:185–197. doi: 10.1016/j.biochi.2019.04.023. PubMed DOI

Pool H., Quintanar D., Figueroa J.D.D., Marinho Mano C., Bechara J.E.H., Godínez L.A., Mendoza S. Antioxidant Effects of Quercetin and Catechin Encapsulated into PLGA Nanoparticles. J. Nanomater. 2012;2012:145380. doi: 10.1155/2012/145380. DOI

Hou M., Sun R., Hupe M., Kim P.L., Park K., Crumrine D., Lin T.K., Santiago J.L., Mauro T.M., Elias P.M., et al. Topical Apigenin Improves Epidermal Permeability Barrier Homoeostasis in Normal Murine Skin by Divergent Mechanisms. Exp. Dermatol. 2013;22:210–215. doi: 10.1111/exd.12102. PubMed DOI PMC

Anwar A., Masri A., Rao K., Rajendran K., Khan N.A., Shah M.R., Siddiqui R. Antimicrobial Activities of Green Synthesized Gums-Stabilized Nanoparticles Loaded with Flavonoids. Sci. Rep. 2019;9:3122. doi: 10.1038/s41598-019-39528-0. PubMed DOI PMC

Domínguez-Villegas V., Clares-Naveros B., García-López M.L., Calpena-Campmany A.C., Bustos-Zagal P., Garduño-Ramírez M.L. Development and Characterization of Two Nano-Structured Systems for Topical Application of Flavanones Isolated from Eysenhardtia Platycarpa. Colloids Surf. B Biointerfaces. 2014;116:183–192. doi: 10.1016/j.colsurfb.2013.12.009. PubMed DOI

Brown D.G., Lister T., May-Dracka T.L. New Natural Products as New Leads for Antibacterial Drug Discovery. Bioorganic Med. Chem. Lett. 2014;24:413–418. doi: 10.1016/j.bmcl.2013.12.059. PubMed DOI

Gomes F., Henriques M. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Curr. Microbiol. 2016;72:377–382. doi: 10.1007/s00284-015-0958-8. PubMed DOI

Lewis K., Ausubel F. Prospects for Plant-Derived Antibacterials. Nat. Biotechnol. 2006;24:1504–1507. doi: 10.1038/nbt1206-1504. PubMed DOI

Falcone Ferreyra M.L., Rius S.P., Casati P. Flavonoids: Biosynthesis, Biological Functions, and Biotechnological Applications. Front. Plant Sci. 2012;3:222. doi: 10.3389/fpls.2012.00222. PubMed DOI PMC

Górniak I., Bartoszewski R., Króliczewski J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019;18:241–272. doi: 10.1007/s11101-018-9591-z. DOI

Sarbu L.G., Bahrin L.G., Babii C., Stefan M., Birsa M.L. Synthetic Flavonoids with Antimicrobial Activity: A Review. J. Appl. Microbiol. 2019;127:1282–1290. doi: 10.1111/jam.14271. PubMed DOI

Carvalho M.T.B., Araújo-Filho H.G., Barreto A.S., Quintans-Júnior L.J., Quintans J.S.S., Barreto R.S.S. Wound Healing Properties of Flavonoids: A Systematic Review Highlighting the Mechanisms of Action. Phytomedicine. 2021;90:153636. doi: 10.1016/j.phymed.2021.153636. PubMed DOI

Nagula R.L., Wairkar S. Recent Advances in Topical Delivery of Flavonoids: A Review. J. Control. Release. 2019;296:190–201. doi: 10.1016/j.jconrel.2019.01.029. PubMed DOI

Yuan G., Guan Y., Yi H., Lai S., Sun Y., Cao S. Antibacterial Activity and Mechanism of Plant Flavonoids to Gram-Positive Bacteria Predicted from Their Lipophilicities. Sci. Rep. 2021;11:10471. doi: 10.1038/s41598-021-90035-7. PubMed DOI PMC

Yang X., Jiang Y., Yang J., He J., Sun J., Chen F., Zhang M., Yang B. Prenylated Flavonoids, Promising Nutraceuticals with Impressive Biological Activities. Trends Food Sci. Technol. 2015;44:93–104. doi: 10.1016/j.tifs.2015.03.007. DOI

Chen X., Mukwaya E., Wong M.S., Zhang Y. A Systematic Review on Biological Activities of Prenylated Flavonoids. Pharm. Biol. 2014;52:655–660. doi: 10.3109/13880209.2013.853809. PubMed DOI

Barron D., Ibrahim R.K. Isoprenylated Flavonoids—A Survey. Phytochemistry. 1996;43:921–982. doi: 10.1016/S0031-9422(96)00344-5. DOI

Šmejkal K. Cytotoxic potential of C-prenylated flavonoids. Phytochem. Rev. 2014;13:245–275. doi: 10.1007/s11101-013-9308-2. DOI

Chen Y., Zhao J., Qiu Y., Yuan H., Khan S.I., Hussain N., Iqbal Choudhary M., Zeng F., Guo D.A., Khan I.A., et al. Prenylated Flavonoids from the Stems and Roots of Tripterygium wilfordii. Fitoterapia. 2017;119:64–68. doi: 10.1016/j.fitote.2017.04.003. PubMed DOI

Al-Rehaily A.J., Albishi O.A., El-Olemy M.M., Mossa J.S. Flavonoids and Terpenoids from Helichrysum forskahlii. Phytochemistry. 2008;69:1910–1914. doi: 10.1016/j.phytochem.2008.03.025. PubMed DOI

Sun Q., Wang D., Li F.F., Yao G.D., Li X., Li L.Z., Huang X.X., Song S.J. Cytotoxic Prenylated Flavones from the Stem and Root Bark of Daphne giraldii. Bioorganic Med. Chem. Lett. 2016;26:3968–3972. doi: 10.1016/j.bmcl.2016.07.002. PubMed DOI

Chang S.K., Jiang Y., Yang B. An Update of Prenylated Phenolics: Food Sources, Chemistry and Health Benefits. Trends Food Sci. Technol. 2021;108:197–213. doi: 10.1016/j.tifs.2020.12.022. DOI

Mukai R. Prenylation Enhances the Biological Activity of Dietary Flavonoids by Altering Their Bioavailability. Biosci. Biotechnol. Biochem. 2018;82:207–215. doi: 10.1080/09168451.2017.1415750. PubMed DOI

Hatano T., Shintani Y., Aga Y., Shiota S., Tsuchiya T., Yoshida T. Phenolic Constituents of Licorice. VIII. Structures of Glicophenone and Glicoisoflavanone, and Effects of Licorice Phenolics on Methicillin-Resistant Staphylococcus aureus. Chem. Pharm. Bull. 2000;48:1286–1292. doi: 10.1248/cpb.48.1286. PubMed DOI

Dong W.K., Yeon S.C., Son K.H., Hyeun W.C., Ju S.K., Sam S.K., Hyun P.K. Effects of Sophoraflavanone G, a Prenylated Flavonoid from Sophora flavescens, on Cyclooxygenase-2 and in Vivo Inflammatory Response. Arch. Pharm. Res. 2002;25:329–335. doi: 10.1007/bf02976635. PubMed DOI

Cushnie T.P.T., Lamb A.J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC

Wu D., Kong Y., Han C., Chen J., Hu L., Jiang H., Shen X. D-Alanine:D-Alanine Ligase as a New Target for the Flavonoids Quercetin and Apigenin. Int. J. Antimicrob. Agents. 2008;32:421–426. doi: 10.1016/j.ijantimicag.2008.06.010. PubMed DOI

Sirk T.W., Brown E.F., Sum A.K., Friedman M. Molecular Dynamics Study on the Biophysical Interactions of Seven Green Tea Catechins with Lipid Bilayers of Cell Membranes. J. Agric. Food Chem. 2008;56:7750–7758. doi: 10.1021/jf8013298. PubMed DOI

Kusuda M., Inada K., Ogawa T.O., Yoshida T., Shiota S., Tsuchiya T., Hatano T. Polyphenolic Constituent Structures of Zanthoxylum piperitum Fruit and the Antibacterial Effects of Its Polymeric Procyanidin on Methicillin-Resistant Staphylococcus aureus. Biosci. Biotechnol. Biochem. 2006;70:1423–1431. doi: 10.1271/bbb.50669. PubMed DOI

Arakawa H., Kanemitsu M., Tajima N., Maeda M. Chemiluminescence Assay for Catechin Based on Generation of Hydrogen Peroxide in Basic Solution. Anal. Chim. Acta. 2002;472:75–82. doi: 10.1016/S0003-2670(02)00982-0. DOI

Arakawa H., Maeda M., Okubo S., Shimamura T. Role of Hydrogen Peroxide in Bactericidal Action of Catechin. Biol. Pharm. Bull. 2004;27:277–281. doi: 10.1248/bpb.27.277. PubMed DOI

Ikigai H., Nakae T., Hara Y., Shimamura T. Bactericidal Catechins Damage the Lipid Bilayer. BBA-Biomembr. 1993;1147:132–136. doi: 10.1016/0005-2736(93)90323-R. PubMed DOI

Miura Y.H., Tomita I., Watanabe T., Hirayama T., Fukui S. Active Oxygens Generation by Flavonoids. Biol. Pharm. Bull. 1998;21:93–96. doi: 10.1248/bpb.21.93. PubMed DOI

Cushnie T.P.T., Lamb A.J. Detection of Galangin-Induced Cytoplasmic Membrane Damage in Staphylococcus aureus by Measuring Potassium Loss. J. Ethnopharmacol. 2005;101:243–248. doi: 10.1016/j.jep.2005.04.014. PubMed DOI

Mirzoeva O.K., Grishanin R.N., Calder P.C. Antimicrobial Action of Propolis and Some of Its Components: The Effects on Growth, Membrane Potential and Motility of Bacteria. Microbiol. Res. 1997;152:239–246. doi: 10.1016/S0944-5013(97)80034-1. PubMed DOI

Tsuchiya H., Iinuma M. Reduction of Membrane Fluidity by Antibacterial Sophoraflavanone G Isolated from Sophora exigua. Phytomedicine. 2000;7:161–165. doi: 10.1016/S0944-7113(00)80089-6. PubMed DOI

Haraguchi H., Tanimoto K., Tamura Y., Mizutani K., Kinoshita T. Mode of Antibacterial Action of Retrochalcones from Glycyrrhiza inflata. Phytochemistry. 1998;48:125–129. doi: 10.1016/S0031-9422(97)01105-9. PubMed DOI

Chinnam N., Dadi P.K., Sabri S.A., Ahmad M., Kabir M.A., Ahmad Z. Dietary Bioflavonoids Inhibit Escherichia coli ATP Synthase in a Differential Manner. Int. J. Biol. Macromol. 2010;46:478–486. doi: 10.1016/j.ijbiomac.2010.03.009. PubMed DOI PMC

Bensasson R.V., Zoete V., Jossang A., Bodo B., Arimondo P.B., Land E.J. Potency of Inhibition of Human DNA Topoisomerase i by Flavones Assessed through Physicochemical Parameters. Free Radic. Biol. Med. 2011;51:1406–1410. doi: 10.1016/j.freeradbiomed.2011.06.021. PubMed DOI

Ohemeng K.A., Schwender C.F., Fu K.P., Barrett J.F. DNA Gyrase Inhibitory and Antibacterial Activity of Some Flavones(1) Bioorganic Med. Chem. Lett. 1993;3:225–230. doi: 10.1016/S0960-894X(01)80881-7. DOI

Bernard F.X., Sablé S., Cameron B., Provost J., Desnottes J.F., Crouzet J., Blanche F. Glycosylated Flavones as Selective Inhibitors of Topoisomerase IV. Antimicrob. Agents Chemother. 1997;41:992–998. doi: 10.1128/AAC.41.5.992. PubMed DOI PMC

Xu H., Ziegelin G., Schröder W., Frank J., Ayora S., Alonso J.C., Lanka E., Saenger W. Flavones Inhibit the Hexameric Replicative Helicase RepA. Nucleic Acids Res. 2001;29:5058–5066. doi: 10.1093/nar/29.24.5058. PubMed DOI PMC

Mori A., Nishino C., Enoki N., Tawata S. Antibacterial Activity and Mode of Action of Plant Flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry. 1987;26:2231–2234. doi: 10.1016/S0031-9422(00)84689-0. DOI

Navarro-Martínez M.D., Navarro-Perán E., Cabezas-Herrera J., Ruiz-Gómez J., García-Cánovas F., Rodríguez-López J.N. Antifolate Activity of Epigallocatechin Gallate against Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2005;49:2914–2920. doi: 10.1128/AAC.49.7.2914-2920.2005. PubMed DOI PMC

Havsteen B.H. The Biochemistry and Medical Significance of the Flavonoids. Pharmacol. Ther. 2002;96:67–202. doi: 10.1016/S0163-7258(02)00298-X. PubMed DOI

Tasdemir D., Lack G., Brun R., Rüedi P., Scapozza L., Perozzo R. Inhibition of Plasmodium falciparum Fatty Acid Biosynthesis: Evaluation of FabG, FabZ, and FabI as Drug Targets for Flavonoids. J. Med. Chem. 2006;49:3345–3353. doi: 10.1021/jm0600545. PubMed DOI

Cushnie T.P.T., Lamb A.J. Recent Advances in Understanding the Antibacterial Properties of Flavonoids. Int. J. Antimicrob. Agents. 2011;38:99–107. doi: 10.1016/j.ijantimicag.2011.02.014. PubMed DOI

Vikram A., Jayaprakasha G.K., Jesudhasan P.R., Pillai S.D., Patil B.S. Suppression of Bacterial Cell-Cell Signalling, Biofilm Formation and Type III Secretion System by Citrus Flavonoids. J. Appl. Microbiol. 2010;109:515–527. doi: 10.1111/j.1365-2672.2010.04677.x. PubMed DOI

Lee J.H., Regmi S.C., Kim J.A., Cho M.H., Yun H., Lee C.S., Lee J. Apple Flavonoid Phloretin Inhibits Escherichia coli O157:H7 Biofilm Formation and Ameliorates Colon Inflammation in Rats. Infect. Immun. 2011;79:4819–4827. doi: 10.1128/IAI.05580-11. PubMed DOI PMC

Budzyńska A., Rózalski M., Karolczak W., Wieckowska-Szakiel M., Sadowska B., Rózalska B. Synthetic 3-Arylidenefl Avanones as Inhibitors of the Initial Stages of biofilm formation by Staphylococcus aureus and Enterococcus faecalis. Z. Naturforschung. C J. Biosci. 2011;66:104–114. doi: 10.1515/znc-2011-3-403. PubMed DOI

Echeverría J., Opazo J., Mendoza L., Urzúa A., Wilkens M. Structure-Activity and Lipophilicity Relationships of Selected Antibacterial Natural Flavones and Flavanones of Chilean Flora. Molecules. 2017;22:608. doi: 10.3390/molecules22040608. PubMed DOI PMC

Madan S., Singh G.N., Kohli K., Ali M., Kumar Y., Singh R.M., Prakash O. Isoflavonoids from Flemingia strobilifera (L.) R. Br. Roots. Acta Pol. Pharm.-Drug Res. 2009;66:297–303. PubMed

Xie Y., Yang W., Tang F., Chen X., Ren L. Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Curr. Med. Chem. 2014;22:132–149. doi: 10.2174/0929867321666140916113443. PubMed DOI

Navrátilová A., Schneiderová K., Veselá D., Hanáková Z., Fontana A., Dall’acqua S., Cvačka J., Innocenti G., Novotná J., Urbanová M., et al. Minor C-Geranylated Flavanones from Paulownia tomentosa Fruits with MRSA Antibacterial Activity. Phytochemistry. 2013;89:104–113. doi: 10.1016/j.phytochem.2013.01.002. PubMed DOI

Farhadi F., Khameneh B., Iranshahi M., Iranshahy M. Antibacterial Activity of Flavonoids and Their Structure–Activity Relationship: An Update Review. Phyther. Res. 2019;33:13–40. doi: 10.1002/ptr.6208. PubMed DOI

Alcaráz L.E., Blanco S.E., Puig O.N., Tomás F., Ferretti F.H. Antibacterial Activity of Flavonoids against Methicillin-Resistant Staphylococcus aureus Strains. J. Theor. Biol. 2000;205:231–240. doi: 10.1006/jtbi.2000.2062. PubMed DOI

Tran T.D., Nguyen T.T.N., Do T.H., Huynh T.N.P., Tran C.D., Thai K.M. Synthesis and Antibacterial Activity of Some Heterocyclic Chalcone Analogues Alone and in Combination with Antibiotics. Molecules. 2012;17:6684–6696. doi: 10.3390/molecules17066684. PubMed DOI PMC

Manner S., Skogman M., Goeres D., Vuorela P., Fallarero A. Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms. Int. J. Mol. Sci. 2013;14:19434–19451. doi: 10.3390/ijms141019434. PubMed DOI PMC

Oh I., Yang W.Y., Chung S.C., Kim T.Y., Oh K.B., Shin J. In Vitro Sortase A Inhibitory and Antimicrobial Activity of Flavonoids Isolated from the Roots of Sophora flavescens. Arch. Pharm. Res. 2011;34:217–222. doi: 10.1007/s12272-011-0206-0. PubMed DOI

Tsuchiya H., Sato M., Miyazaki T., Fujiwara S., Tanigaki S., Ohyama M., Tanaka T., Iinuma M. Comparative Study on the Antibacterial Activity of Phytochemical Flavanones against Methicillin-Resistant Staphylococcus aureus. J. Ethnopharmacol. 1996;50:27–34. doi: 10.1016/0378-8741(96)85514-0. PubMed DOI

Idowu T.O., Ogundaini A.O., Salau A.O., Obuotor E.M., Bezabih M., Abegaz B.M. Doubly Linked, A-Type Proanthocyanidin Trimer and Other Constituents of Ixora coccinea Leaves and Their Antioxidant and Antibacterial Properties. Phytochemistry. 2010;71:2092–2098. doi: 10.1016/j.phytochem.2010.08.018. PubMed DOI

Mayer R., Stecher G., Wuerzner R., Silva R.C., Sultana T., Trojer L., Feuerstein I., Krieg C., Abel G., Popp M., et al. Proanthocyanidins: Target Compounds as Antibacterial Agents. J. Agric. Food Chem. 2008;56:6959–6966. doi: 10.1021/jf800832r. PubMed DOI

Lee J.H., Kim Y.G., Khadke S.K., Yamano A., Woo J.T., Lee J. Antimicrobial and Antibiofilm Activities of Prenylated Flavanones from Macaranga tanarius. Phytomedicine. 2019;63:153033. doi: 10.1016/j.phymed.2019.153033. PubMed DOI

Muharini R., Diaz A., Ebrahim W., Mándi A., Kurtán T., Rehberg N., Kalscheuer R., Hartmann R., Orfali R.S., Lin W., et al. Antibacterial and Cytotoxic Phenolic Metabolites from the Fruits of Amorpha fruticosa. J. Nat. Prod. 2017;80:169–180. doi: 10.1021/acs.jnatprod.6b00809. PubMed DOI

Meier D., Hernández M.V., van Geelen L., Muharini R., Proksch P., Bandow J.E., Kalscheuer R. The Plant-Derived Chalcone Xanthoangelol Targets the Membrane of Gram-Positive Bacteria. Bioorganic Med. Chem. 2019;27:115151. doi: 10.1016/j.bmc.2019.115151. PubMed DOI

Nanayakkara N.P.D., Burandt C.L., Jacob M.R. Flavonoids with Activity against Methicillin-Resistant Staphylococcus aureus from Dalea scandens var. Paucifolia. Planta Med. 2002;68:519–522. doi: 10.1055/s-2002-32554. PubMed DOI

Belofsky G., Percivill D., Lewis K., Tegos G.P., Ekart J. Phenolic Metabolites of Dalea Versicolor That Enhance Antibiotic Activity against Model Pathogenic Bacteria. J. Nat. Prod. 2004;67:481–484. doi: 10.1021/np030409c. PubMed DOI

Belofsky G., Aronica M., Foss E., Diamond J., Santana F., Darley J., Dowd P.F., Coleman C.M., Ferreira D. Antimicrobial and Antiinsectan Phenolic Metabolites of Dalea searlsiae. J. Nat. Prod. 2014;77:1140–1149. doi: 10.1021/np401083g. PubMed DOI PMC

Yusook K., Weeranantanapan O., Hua Y., Kumkrai P., Chudapongse N. Lupinifolin from Derris Reticulata Possesses Bactericidal Activity on Staphylococcus aureus by Disrupting Bacterial Cell Membrane. J. Nat. Med. 2017;71:357–366. doi: 10.1007/s11418-016-1065-2. PubMed DOI

Sohn H.Y., Son K.H., Kwon C.S., Kwon G.S., Kang S.S. Antimicrobial and Cytotoxic Activity of 18 Prenylated Flavonoids Isolated from Medicinal Plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine. 2004;11:666–672. doi: 10.1016/j.phymed.2003.09.005. PubMed DOI

Chukwujekwu J.C., Van Heerden F.R., Van Staden J. Antibacterial Activity of Flavonoids from the Stem Bark of Erythrina caffra Thunb. Phyther. Res. 2011;25:46–48. doi: 10.1002/ptr.3159. PubMed DOI

Sadgrove N.J., Oliveira T.B., Khumalo G.P., van Vuuren S.F., van Wyk B.E. Antimicrobial Isoflavones and Derivatives from Erythrina (Fabaceae): Structure Activity Perspective (SAR & QSAR) on Experimental and Mined Values against Staphylococcus aureus. Antibiotics. 2020;9:223. doi: 10.3390/antibiotics9050223. PubMed DOI PMC

Salvatore M.J., King A.B., Graham A.C., Onishi H.R., Bartizal K.F., Abruzzo G.K., Gill C.J., Ramjit H.G., Pitzenberger S.M., Witherup K.M. Antibacterial Activity of Lonchocarpol A. J. Nat. Prod. 1998;61:640–642. doi: 10.1021/np9703961. PubMed DOI

Raksat A., Maneerat W., Andersen R.J., Pyne S.G., Laphookhieo S. Antibacterial Prenylated Isoflavonoids from the Stems of Millettia extensa. J. Nat. Prod. 2018;81:1835–1840. doi: 10.1021/acs.jnatprod.8b00321. PubMed DOI

Raksat A., Maneerat W., Rujanapun N., Andersen R.J., Pyne S.G., Laphookhieo S. Antibacterial and Inhibitory Activities against Nitric Oxide Production of Coumaronochromones and Prenylated Isoflavones from Millettia extensa. J. Nat. Prod. 2019;82:2343–2348. doi: 10.1021/acs.jnatprod.9b00216. PubMed DOI

Dzoyem J.P., Tchamgoue J., Tchouankeu J.C., Kouam S.F., Choudhary M.I., Bakowsky U. Antibacterial Activity and Cytotoxicity of Flavonoids Compounds Isolated from Pseudarthria hookeri Wight & Arn. (Fabaceae) S. Afr. J. Bot. 2018;114:100–103. doi: 10.1016/j.sajb.2017.11.001. DOI

Yin S., Fan C.Q., Wang Y., Dong L., Yue J.M. Antibacterial Prenylflavone Derivatives from Psoralea corylifolia, and Their Structure-Activity Relationship Study. Bioorganic Med. Chem. 2004;12:4387–4392. doi: 10.1016/j.bmc.2004.06.014. PubMed DOI

Edziri H., Mastouri M., Mahjoub M.A., Mighri Z., Mahjoub A., Verschaeve L. Antibacterial, Antifungal and Cytotoxic Activities of Two Flavonoids from Retama Raetam Flowers. Molecules. 2012;17:7284–7293. doi: 10.3390/molecules17067284. PubMed DOI PMC

Chan B.C.L., Yu H., Wong C.W., Lui S.L., Jolivalt C., Ganem-Elbaz C., Paris J.M., Morleo B., Litaudon M., Lau C.B.S., et al. Quick Identification of Kuraridin, a Noncytotoxic Anti-MRSA (Methicillin-Resistant Staphylococcus aureus) Agent from Sophora flavescens Using High-Speed Counter-Current Chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012;880:157–162. doi: 10.1016/j.jchromb.2011.11.039. PubMed DOI

Chen L., Cheng X., Shi W., Lu Q., Liang V., Heber D., Ma L. Letters to the Editor Inhibition of Growth of Streptococcus mutans, Methicillin-Resistant Staphylococcus. J. Clin. Microbiol. 2005;43:3574–3575. doi: 10.1128/JCM.43.7.3574-3575.2005. PubMed DOI PMC

Cha J.-D., Moon S.-E., Kim J.-Y., Jung E.-K., Lee Y.-S. Antibacterial Activity of Sophoraflavanone G Isolated from the Roots of Sophora flavescens against Methicillin-Resistant Staphylococcus aureus. Phytother. Res. 2009;23:1326–1331. doi: 10.1002/ptr.2540. PubMed DOI

Lee G.S., Kim E.S., Cho S.I., Kim J.H., Choi G., Ju Y.S., Park S.H., Jeong S.-I., Kim H.J. Antibacterial and Synergistic Activity of Prenylated Chalcone Isolated from the Roots of Sophora flavescens. J. Appl. Biol. Chem. 2010;53:290–296. doi: 10.3839/jksabc.2010.045. DOI

Daus M., Chaithada P., Phongpaichit S., Watanapokasin R., Carroll A.R., Mahabusarakam W. New Prenylated Dihydrochalcones from the Leaves of Artocarpus elasticus. Phytochem. Lett. 2017;19:226–230. doi: 10.1016/j.phytol.2017.01.007. DOI

Dej-Adisai S., Meechai I., Puripattanavong J., Kummee S. Antityrosinase and Antimicrobial Activities from Thai Medicinal Plants. Arch. Pharm. Res. 2014;37:473–483. doi: 10.1007/s12272-013-0198-z. PubMed DOI

Radwan M.M., Rodriguez-Guzman R., Manly S.P., Jacob M., Ross S.A. Sepicanin A-A New Geranyl Flavanone from Artocarpus Sepicanus with Activity against Methicillin-Resistant Staphylococcus aureus (MRSA) Phytochem. Lett. 2009;2:141–143. doi: 10.1016/j.phytol.2009.04.002. PubMed DOI PMC

Kuete V., Simo I.K., Ngameni B., Bigoga J.D., Watchueng J., Kapguep R.N., Etoa F.X., Tchaleu B.N., Beng V.P. Antimicrobial Activity of the Methanolic Extract, Fractions and Four Flavonoids from the Twigs of Dorstenia angusticornis Engl. (Moraceae) J. Ethnopharmacol. 2007;112:271–277. doi: 10.1016/j.jep.2007.03.008. PubMed DOI

Dzoyem J.P., Hamamoto H., Ngameni B., Ngadjui B.T., Sekimizu K. Antimicrobial Action Mechanism of Flavonoids from Dorstenia Species. Drug Discov. Ther. 2013;7:66–72. doi: 10.5582/ddt.2013.v7.2.66. PubMed DOI

Mbaveng A.T., Ngameni B., Kuete V., Simo I.K., Ambassa P., Roy R., Bezabih M., Etoa F.X., Ngadjui B.T., Abegaz B.M., et al. Antimicrobial Activity of the Crude Extracts and Five Flavonoids from the Twigs of Dorstenia barteri (Moraceae) J. Ethnopharmacol. 2008;116:483–489. doi: 10.1016/j.jep.2007.12.017. PubMed DOI

Mbaveng A.T., Kuete V., Ngameni B., Beng V.P., Ngadjui B.T., Meyer J.J.M., Lall N. Antimicrobial Activities of the Methanol Extract and Compounds from the Twigs of Dorstenia mannii (Moraceae) BMC Complement. Altern. Med. 2012;12:2–7. doi: 10.1186/1472-6882-12-83. PubMed DOI PMC

Polbuppha I., Suthiphasilp V., Maneerat T., Charoensup R., Limtharakul T., Cheenpracha S., Pyne S.G., Laphookhieo S. Macluracochinones A-E, Antimicrobial Flavonoids from Maclura cochinchinensis (Lour.) Corner. Phytochemistry. 2021;187:112773. doi: 10.1016/j.phytochem.2021.112773. PubMed DOI

Özçelik B., Orhan I., Toker G. Antiviral and Antimicrobial Assessment of Some Selected Flavonoids. Z. Fur Naturforsch.—Sect. C J. Biosci. 2006;61:632–638. doi: 10.1515/znc-2006-9-1003. PubMed DOI

Zhu M., Wang Z.J., He Y.J., Qin Y., Zhou Y., Qi Z.H., Zhou Z.S., Zhu Y.Y., Jin D.N., Chen S.S., et al. Bioguided Isolation, Identification and Bioactivity Evaluation of Anti-MRSA Constituents from Morus alba Linn. J. Ethnopharmacol. 2021;281:114542. doi: 10.1016/j.jep.2021.114542. PubMed DOI

Čulenová M., Sychrová A., Hassan S.T.S., Berchová-Bímová K., Svobodová P., Helclová A., Michnová H., Hošek J., Vasilev H., Suchý P., et al. Multiple In Vitro Biological Effects of Phenolic Compounds from Morus alba Root Bark. J. Ethnopharmacol. 2020;248:112296. doi: 10.1016/j.jep.2019.112296. PubMed DOI

Wu S.C., Han F., Song M.R., Chen S., Li Q., Zhang Q., Zhu K., Shen J.Z. Natural Flavones from Morus alba against Methicillin-Resistant Staphylococcus aureus via Targeting the Proton Motive Force and Membrane Permeability. J. Agric. Food Chem. 2019;67:10222–10234. doi: 10.1021/acs.jafc.9b01795. PubMed DOI

Zuo G.Y., Yang C.X., Han J., Li Y.Q., Wang G.C. Synergism of Prenylflavonoids from Morus alba Root Bark against Clinical MRSA Isolates. Phytomedicine. 2018;39:93–99. doi: 10.1016/j.phymed.2017.12.023. PubMed DOI

Šmejkal K., Chudík S., Klouc P. Antibacterial C-Geranylflavonoids from Paulownia tomentosa Fruits. J. Nat. Prod. 2008;71:706–709. doi: 10.1021/np070446u. PubMed DOI

Chen Y.W., Ye S.R., Ting C., Yu Y.H. Antibacterial Activity of Propolins from Taiwanese Green Propolis. J. Food Drug Anal. 2018;26:761–768. doi: 10.1016/j.jfda.2017.10.002. PubMed DOI PMC

Song M., Liu Y., Li T., Liu X., Hao Z., Ding S., Panichayupakaranant P., Zhu K., Shen J. Plant Natural Flavonoids against Multidrug Resistant Pathogens. Adv. Sci. 2021;8:2100749. doi: 10.1002/advs.202100749. PubMed DOI PMC

Liu Y., Hong Z., Qian J., Wang Y., Wang S. Protective Effect of Jie-Geng-Tang against Staphylococcus aureus Induced Acute Lung Injury in Mice and Discovery of Its Effective Constituents. J. Ethnopharmacol. 2019;243:112076. doi: 10.1016/j.jep.2019.112076. PubMed DOI

Wu S.C., Yang Z.Q., Liu F., Peng W.J., Qu S.Q., Li Q., Song X.B., Zhu K., Shen J.Z. Antibacterial Effect and Mode of Action of Flavonoids from Licorice against Methicillin-Resistant Staphylococcus aureus. Front. Microbiol. 2019;10:2489. doi: 10.3389/fmicb.2019.02489. PubMed DOI PMC

De Assis L.R., Theodoro R.D.S., Costa M.B.S., Nascentes J.A.S., da Rocha M.D., de Souza Bessa M.A., de Paula Menezes R., Dilarri G., Hypolito G.B., Dos Santos V.R., et al. Antibacterial Activity of Isobavachalcone (IBC) Is Associated with Membrane Disruption. Membranes. 2022;12:269. doi: 10.3390/membranes12030269. PubMed DOI PMC

Zhou T., Deng X., Qiu J. Antimicrobial Activity of Licochalcone E against Staphylococcus aureus and Its Impact on the Production of Staphylococcal Alpha-Toxin. J. Microbiol. Biotechnol. 2012;22:800–805. doi: 10.4014/jmb.1112.12020. PubMed DOI

Rozalski M., Micota B., Sadowska B., Stochmal A., Jedrejek D., Wieckowska-Szakiel M., Rozalska B. Antiadherent and Antibiofilm Activity of Humulus lupulus L. Derived Products: New Pharmacological Properties. BioMed Res. Int. 2013;2013:101089. doi: 10.1155/2013/101089. PubMed DOI PMC

Bogdanova K., Röderova M., Kolar M., Langova K., Dusek M., Jost P., Kubelkova K., Bostik P., Olsovska J. Antibiofilm Activity of Bioactive Hop Compounds Humulone, Lupulone and Xanthohumol toward Susceptible and Resistant Staphylococci. Res. Microbiol. 2018;169:127–134. doi: 10.1016/j.resmic.2017.12.005. PubMed DOI

Iranshahi M., Vu H., Pham N., Zencak D., Forster P., Quinn R.J. Cytotoxic Evaluation of Alkaloids and Isoflavonoids from the Australian Tree Erythrina vespertilio. Planta Med. 2012;78:730–736. doi: 10.1055/s-0031-1298310. PubMed DOI

Li P.Y., Liang Y.C., Sheu M.J., Huang S.S., Chao C.Y., Kuo Y.H., Huang G.J. Alpinumisoflavone Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Regulating the Effects of Anti-Oxidation and Anti-Inflammation Both: In Vitro and in Vivo. RSC Adv. 2018;8:31515–31528. doi: 10.1039/C8RA04098B. PubMed DOI PMC

Fu G., Li W., Huang X., Zhang R., Tian K., Hou S., Li Y. Antioxidant and Alpha-Glucosidase Inhibitory Activities of Isoflavonoids from the Rhizomes of Ficus tikoua Bur. Nat. Prod. Res. 2018;32:399–405. doi: 10.1080/14786419.2017.1312391. PubMed DOI

Lee S., Hoang G.D., Kim D., Song H.S., Choi S., Lee D., Kang K.S. Efficacy of Alpinumisoflavone Isolated from Maclura tricuspidata Fruit in Tumor Necrosis Factor-α-Induced Damage of Human Dermal Fibroblasts. Antioxidants. 2021;10:514. doi: 10.3390/antiox10040514. PubMed DOI PMC

Han A.R., Kang Y.J., Windono T., Lee S.K., Seo E.K. Prenylated Flavonoids from the Heartwood of Artocarpus communis with Inhibitory Activity on Lipopolysaccharide-Induced Nitric Oxide Production. J. Nat. Prod. 2006;69:719–721. doi: 10.1021/np0600346. PubMed DOI

Rajendran M., Manisankar P., Gandhidasan R., Murugesan R. Free Radicals Scavenging Efficiency of a Few Naturally Occurring Flavonoids: A Comparative Study. J. Agric. Food Chem. 2004;52:7389–7394. doi: 10.1021/jf0400718. PubMed DOI

Septama A.W., Panichayupakaranant P. Synergistic Effect of Artocarpin on Antibacterial Activity of Some Antibiotics against Methicillin-Resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Pharm. Biol. 2016;54:686–691. doi: 10.3109/13880209.2015.1072566. PubMed DOI

Di X., Wang S., Wang B., Liu Y., Yuan H., Lou H., Wang X. New Phenolic Compounds from the Twigs of Artocarpus heterophyllus. Drug Discov. Ther. 2013;7:24–28. doi: 10.5582/ddt.2013.v7.1.24. PubMed DOI

Wang Y.H., Hou A.J., Chen L., Chen D.F., Sun H.D., Zhao Q.S., Bastow K.F., Nakanish Y., Wang X.H., Lee K.H. New Isoprenylated Flavones, Artochamins A–E, and Cytotoxic Principles from Artocarpus chama. J. Nat. Prod. 2004;67:757–761. doi: 10.1021/np030467y. PubMed DOI

Lee C.W., Ko H.H., Lin C.C., Chai C.Y., Chen W.T., Yen F.L. Artocarpin Attenuates Ultraviolet B-Induced Skin Damage in Hairless Mice by Antioxidant and Anti-Inflammatory Effect. Food Chem. Toxicol. 2013;60:123–129. doi: 10.1016/j.fct.2013.07.029. PubMed DOI

Yeh C.J., Chen C.C., Leu Y.L., Lin M.W., Chiu M.M., Wang S.H. The Effects of Artocarpin on Wound Healing: In Vitro and in Vivo Studies. Sci. Rep. 2017;7:15599. doi: 10.1038/s41598-017-15876-7. PubMed DOI PMC

Boonphong S., Baramee A., Kittakoop P. Antitubercular and Antiplasmodial Prenylated Flavones from the Roots of Artocarpus altilis. Chiang Mai J. Sci. 2007;34:339–344.

Lee S., Yun B., Kim M., Park C., Lee W., Oh H.M., Rho M.C. Phenolic Compounds Isolated from Psoralea corylifolia Inhibit IL-6-Induced STAT3 Activation. Planta Med. 2012;78:903–906. doi: 10.1055/s-0031-1298482. PubMed DOI

Hung Y.L., Wang S.C., Suzuki K., Fang S.H., Chen C.S., Cheng W.C., Su C.C., Yeh H.C., Tu H.P., Liu P.L., et al. Bavachin Attenuates LPS-Induced Inflammatory Response and Inhibits the Activation of NLRP3 Inflammasome in Macrophages. Phytomedicine. 2019;59:152785. doi: 10.1016/j.phymed.2018.12.008. PubMed DOI

Liang Z., Luo Z., Chen J., Li B., Li L., Shen C. Bavachin Inhibits IL-4 Expression by Downregulating STAT6 Phosphorylation and GATA-3 Expression and Ameliorates Asthma Inflammation in an Animal Model. Immunobiology. 2022;227:152182. doi: 10.1016/j.imbio.2022.152182. PubMed DOI

Šmejkal K., Grycová L., Marek R., Lemiere F., Jankovská D., Forejtníková H., Vančo J., Suchý V. C-Geranyl Compounds from Paulownia tomentosa Fruits. J. Nat. Prod. 2007;70:1244–1248. doi: 10.1021/np070063w. PubMed DOI

Hošek J., Závalová V., Šmejkal K., Bartoš M. Effect of Diplacone on Lps-Induced Inflammatory Gene Expression in Macrophages. Folia Biol. 2010;56:124–130. PubMed

Asai T., Hara N., Kobayashi S., Kohshima S., Fujimoto Y. Geranylated Flavanones from the Secretion on the Surface of the Immature Fruits of Paulownia tomentosa. Phytochemistry. 2008;69:1234–1241. doi: 10.1016/j.phytochem.2007.11.011. PubMed DOI

Hošek J., Toniolo A., Neuwirth O., Bolego C. Prenylated and Geranylated Flavonoids Increase Production of Reactive Oxygen Species in Mouse Macrophages but Inhibit the Inflammatory Response. J. Nat. Prod. 2013;76:1586–1591. doi: 10.1021/np400242e. PubMed DOI

Hanáková Z., Hošek J., Kutil Z., Temml V., Landa P., Vaněk T., Schuster D., Dall’Acqua S., Cvačka J., Polanský O., et al. Anti-Inflammatory Activity of Natural Geranylated Flavonoids: Cyclooxygenase and Lipoxygenase Inhibitory Properties and Proteomic Analysis. J. Nat. Prod. 2017;80:999–1006. doi: 10.1021/acs.jnatprod.6b01011. PubMed DOI

Molčanová L., Kauerová T., Dall’Acqua S., Maršík P., Kollár P., Šmejkal K. Antiproliferative and Cytotoxic Activities of C-Geranylated Flavonoids from Paulownia tomentosa Steud. Fruit. Bioorganic Chem. 2021;111:104797. doi: 10.1016/j.bioorg.2021.104797. PubMed DOI

Vochyánová Z., Bartošová L., Bujdáková V., Fictum P., Husník R., Suchý P., Šmejkal K., Hošek J. Diplacone and Mimulone Ameliorate Dextran Sulfate Sodium-Induced Colitis in Rats. Fitoterapia. 2015;101:201–207. doi: 10.1016/j.fitote.2015.01.012. PubMed DOI

Zima A., Hošek J., Treml J., Muselík J., Suchý P., Pražanová G., Lopes A., Žemlička M. Antiradical and Cytoprotective Activities of Several C-Geranyl-Substituted Flavanones from Paulownia tomentosa Fruit. Molecules. 2010;15:6035–6049. doi: 10.3390/molecules15096035. PubMed DOI PMC

Šmejkal K., Svačinová J., Šlapetová T., Schneiderová K., Dall’Acqua S., Innocenti G., Závalová V., Kollár P., Chudík S., Marek R., et al. Cytotoxic Activities of Several Geranyl-Substituted Flavanones. J. Nat. Prod. 2010;73:568–572. doi: 10.1021/np900681y. PubMed DOI

Jin Q., Lee C., Lee J.W., Lee D., Kim Y., Hong J.T., Kim J.S., Kim J.H., Lee M.K., Hwang B.Y. Geranylated Flavanones from Paulownia coreana and Their Inhibitory Effects on Nitric Oxide Production. Chem. Pharm. Bull. 2015;63:384–387. doi: 10.1248/cpb.c14-00839. PubMed DOI

Shahinozzaman M., Taira N., Ishii T., Halim M.A., Hossain M.A., Tawata S. Anti-Inflammatory, Anti-Diabetic, and Anti-Alzheimer’s Effects of Prenylated Flavonoids from Okinawa Propolis: An Investigation by Experimental and Computational Studies. Molecules. 2018;23:2479. doi: 10.3390/molecules23102479. PubMed DOI PMC

Kumazawa S., Ueda R., Hamasaka T., Fukumoto S., Fujimoto T., Nakayama T. Antioxidant Prenylated Flavonoids from Propolis Collected in Okinawa, Japan. J. Agric. Food Chem. 2007;55:7722–7725. doi: 10.1021/jf071187h. PubMed DOI

Li K., Ji S., Song W., Kuang Y., Lin Y., Tang S., Cui Z., Qiao X., Yu S., Ye M. Glycybridins A-K, Bioactive Phenolic Compounds from Glycyrrhiza glabra. J. Nat. Prod. 2017;80:334–346. doi: 10.1021/acs.jnatprod.6b00783. PubMed DOI

Kuete V., Mbaveng A.T., Zeino M., Fozing C.D., Ngameni B., Kapche G.D.W.F., Ngadjui B.T., Efferth T. Cytotoxicity of Three Naturally Occurring Flavonoid Derived Compounds (Artocarpesin, Cycloartocarpesin and Isobavachalcone) towards Multi-Factorial Drug-Resistant Cancer Cells. Phytomedicine. 2015;22:1096–1102. doi: 10.1016/j.phymed.2015.07.006. PubMed DOI

Shin H.J., Shon D.H., Youn H.S. Isobavachalcone Suppresses Expression of Inducible Nitric Oxide Synthase Induced by Toll-like Receptor Agonists. Int. Immunopharmacol. 2013;15:38–41. doi: 10.1016/j.intimp.2012.11.005. PubMed DOI

Morgan A.M.A., Lee H.W., Lee S.H., Lim C.H., Jang H.D., Kim Y.H. Anti-Osteoporotic and Antioxidant Activities of Chemical Constituents of the Aerial Parts of Ducrosia ismaelis. Bioorg. Med. Chem. Lett. 2014;24:3434–3439. doi: 10.1016/j.bmcl.2014.05.077. PubMed DOI

Wang M., Lin L., Lu J.J., Chen X. Pharmacological Review of Isobavachalcone, a Naturally Occurring Chalcone. Pharmacol. Res. 2021;165:105483. doi: 10.1016/j.phrs.2021.105483. PubMed DOI

Matsuda H., Kiyohara S., Sugimoto S., Ando S., Nakamura S., Yoshikawa M. Bioactive Constituents from Chinese Natural Medicines. XXXIII. Inhibitors from the Seeds of Psoralea corylifolia on Production of Nitric Oxide in Lipopolysaccharide-Activated Macrophages. Biol. Pharm. Bull. 2009;32:147–149. doi: 10.1248/bpb.32.147. PubMed DOI

Haraguchi H., Inoue J., Tamura Y., Mizutani K. Antioxidative Components of Psoralea corylifolia (Leguminosae) Phyther. Res. 2002;16:539–544. doi: 10.1002/ptr.972. PubMed DOI

Dzoyem J.P., Nkuete A.H.L., Ngameni B., Eloff J.N. Anti-Inflammatory and Anticholinesterase Activity of Six Flavonoids Isolated from Polygonum and Dorstenia Species. Arch. Pharm. Res. 2017;40:1129–1134. doi: 10.1007/s12272-015-0612-9. PubMed DOI

Gao D., Liu F., Li Z., Guan Y. Isobavachalcone Attenuates Sephadex-Induced Lung Injury via Activation of A20 and NRF2/HO-1 in Rats. Eur. J. Pharmacol. 2019;848:49–54. doi: 10.1016/j.ejphar.2019.01.034. PubMed DOI

Jing H., Zhou X., Dong X., Cao J., Zhu H., Lou J., Hu Y., He Q., Yang B. Abrogation of Akt Signaling by Isobavachalcone Contributes to Its Anti-Proliferative Effects towards Human Cancer Cells. Cancer Lett. 2010;294:167–177. doi: 10.1016/j.canlet.2010.01.035. PubMed DOI

Nishimura R., Tabata K., Arakawa M., Ito Y., Kimura Y., Akihisa T., Nagai H., Sakuma A., Kohno H., Suzuki T. Isobavachalcone, a Chalcone Constituent of Angelica keiskei, Induces Apoptosis in Neuroblastoma. Biol. Pharm. Bull. 2007;30:1878–1883. doi: 10.1248/bpb.30.1878. PubMed DOI

Shirataki Y., Wakae M., Yamamoto Y., Hashimoto K., Satoh K., Ishihara M., Kikuchi H., Nishikawa H., Minagawa K., Motohashi N., et al. Cytotoxicty and Radical Modulating Activity of Isoflavones and Isoflavanones from Sophora Species. Anticancer Res. 2004;24:1481–1488. PubMed

Sun Q., Yao G.D., Song X.Y., Qi X.L., Xi Y.F., Li L.Z., Huang X.X., Song S.J. Autophagy Antagonizes Apoptosis Induced by Flavan Enantiomers from Daphne giraldii in Hepatic Carcinoma Cells in Vitro. Eur. J. Med. Chem. 2017;133:1–10. doi: 10.1016/j.ejmech.2017.03.072. PubMed DOI

Ryu J.H., Ahn H., Lee H.J. Inhibition of Nitric Oxide Production on LPS-Activated Macrophages by Kazinol B from Broussonetia kazinoki. Fitoterapia. 2003;74:350–354. doi: 10.1016/S0367-326X(03)00062-5. PubMed DOI

Kim A.Y., Lee C.G., Lee D.Y., Li H., Jeon R., Ryu J.H., Kim S.G. Enhanced Antioxidant Effect of Prenylated Polyphenols as Fyn Inhibitor. Free Radic. Biol. Med. 2012;53:1198–1208. doi: 10.1016/j.freeradbiomed.2012.06.039. PubMed DOI

Chi Y.S., Jong H.G., Son K.H., Chang H.W., Kang S.S., Kim H.P. Effects of Naturally Occurring Prenylated Flavonoids on Enzymes Metabolizing Arachidonic Acid: Cyclooxygenases and Lipoxygenases. Biochem. Pharmacol. 2001;62:1185–1191. doi: 10.1016/S0006-2952(01)00773-0. PubMed DOI

Jiang P., Zhang X., Huang Y., Cheng N., Ma Y. Hepatotoxicity Induced by Sophora flavescens and Hepatic Accumulation of Kurarinone, a Major Hepatotoxic Constituent of Sophora flavescens in Rats. Molecules. 2017;22:1809. doi: 10.3390/molecules22111809. PubMed DOI PMC

Nishikawa S., Inoue Y., Hori Y., Miyajima C., Morishita D., Ohoka N., Hida S., Makino T., Hayashi H. Anti-Inflammatory Activity of Kurarinone Involves Induction of Ho-1 via the Keap1/Nrf2 Pathway. Antioxidants. 2020;9:842. doi: 10.3390/antiox9090842. PubMed DOI PMC

Yang J., Chen H., Wang Q., Deng S., Huang M., Ma X., Song P., Du J., Huang Y., Wen Y., et al. Inhibitory Effect of Kurarinone on Growth of Human Non-Small Cell Lung Cancer: An Experimental Study Both in Vitro and in Vivo Studies. Front. Pharmacol. 2018;9:252. doi: 10.3389/fphar.2018.00252. PubMed DOI PMC

Kumar S., Prajapati K.S., Shuaib M., Kushwaha P.P., Tuli H.S., Singh A.K. Five-Decade Update on Chemopreventive and Other Pharmacological Potential of Kurarinone: A Natural Flavanone. Front. Pharmacol. 2021;12:737137. doi: 10.3389/fphar.2021.737137. PubMed DOI PMC

Kim B.H., Na K.M., Oh I., Song I.H., Lee Y.S., Shin J., Kim T.Y. Kurarinone Regulates Immune Responses through Regulation of the JAK/STAT and TCR-Mediated Signaling Pathways. Biochem. Pharmacol. 2013;85:1134–1144. doi: 10.1016/j.bcp.2013.01.005. PubMed DOI

Xu X., Dong Q., Zhong Q., Xiu W., Chen Q., Wang J., Zhou Z. The Flavonoid Kurarinone Regulates Macrophage Functions via Aryl Hydrocarbon Receptor and Alleviates Intestinal Inflammation in Irritable Bowel Syndrome. J. Inflamm. Res. 2021;14:4347–4359. doi: 10.2147/JIR.S329091. PubMed DOI PMC

Yang Z.G., Matsuzaki K., Takamatsu S., Kitanaka S. Inhibitory Effects of Constituents from Morus alba Var. Multicaulis on Differentiation of 3T3-L1 Cells and Nitric Oxide Production in RAW264.7 Cells. Molecules. 2011;16:6010–6022. doi: 10.3390/molecules16076010. PubMed DOI PMC

Baek S.H., Hwang S., Park T., Kwon Y.J., Cho M., Park D. Evaluation of Selective Cox-2 Inhibition and in Silico Study of Kuwanon Derivatives Isolated from Morus alba. Int. J. Mol. Sci. 2021;22:3659. doi: 10.3390/ijms22073659. PubMed DOI PMC

Arung E.T., Yoshikawa K., Shimizu K., Kondo R. Isoprenoid-Substituted Flavonoids from Wood of Artocarpus heterophyllus on B16 Melanoma Cells: Cytotoxicity and Structural Criteria. Fitoterapia. 2010;81:120–123. doi: 10.1016/j.fitote.2009.08.001. PubMed DOI

Zelová H., Hanáková Z., Čermáková Z., Šmejkal K., Dalĺ Acqua S., Babula P., Cvačka J., Hošek J. Evaluation of Anti-Inflammatory Activity of Prenylated Substances Isolated from Morus alba and Morus nigra. J. Nat. Prod. 2014;77:1297–1303. doi: 10.1021/np401025f. PubMed DOI

Abdel Bar F.M., Abbas G.M., Gohar A.A., Lahloub M.F.I. Antiproliferative Activity of Stilbene Derivatives and Other Constituents from the Stem Bark of Morus nigra L. Nat. Prod. Res. 2020;34:3506–3513. doi: 10.1080/14786419.2019.1573236. PubMed DOI

Ko W., Yoon C.S., Kim K.W., Lee H., Kim N., Woo E.R., Kim Y.C., Kang D.G., Lee H.S., Oh H., et al. Neuroprotective and Anti-Inflammatory Effects of Kuwanon c from Cudrania tricuspidata Are Mediated by Heme Oxygenase-1 in Ht22 Hippocampal Cells, Raw264.7 Macrophage, and Bv2 Microglia. Int. J. Mol. Sci. 2020;21:4839. doi: 10.3390/ijms21144839. PubMed DOI PMC

Lim H.J., Jin H.G., Woo E.R., Lee S.K., Kim H.P. The Root Barks of Morus alba and the Flavonoid Constituents Inhibit Airway Inflammation. J. Ethnopharmacol. 2013;149:169–175. doi: 10.1016/j.jep.2013.06.017. PubMed DOI

Liu X.X., Zhang X.W., Wang K., Wang X.Y., Ma W.L., Cao W., Mo D., Sun Y., Li X.Q. Kuwanon G Attenuates Atherosclerosis by Upregulation of LXRα-ABCA1/ABCG1 and Inhibition of NFκB Activity in Macrophages. Toxicol. Appl. Pharmacol. 2018;341:56–63. doi: 10.1016/j.taap.2018.01.007. PubMed DOI

Jin S.E., Ha H., Shin H.K., Seo C.S. Anti-Allergic and Anti-Inflammatory Effects of Kuwanon G and Morusin on MC/9 Mast Cells and HaCaT Keratinocytes. Molecules. 2019;24:265. doi: 10.3390/molecules24020265. PubMed DOI PMC

Lin Y., Kuang Y., Li K., Wang S., Song W., Qiao X., Sabir G., Ye M. Screening for Bioactive Natural Products from a 67-Compound Library of Glycyrrhiza inflata. Bioorganic Med. Chem. 2017;25:3706–3713. doi: 10.1016/j.bmc.2017.05.009. PubMed DOI

Chen X., Liu Z., Meng R., Shi C., Guo N. Antioxidative and Anticancer Properties of Licochalcone A from Licorice. J. Ethnopharmacol. 2017;198:331–337. doi: 10.1016/j.jep.2017.01.028. PubMed DOI

Qiu J., Feng H., Xiang H., Wang D., Xia L., Jiang Y., Song K., Lu J., Yu L., Deng X. Influence of Subinhibitory Concentrations of Licochalcone A on the Secretion of Enterotoxins A and B by Staphylococcus aureus. FEMS Microbiol. Lett. 2010;307:135–141. doi: 10.1111/j.1574-6968.2010.01973.x. PubMed DOI

Yang G., Lee H.E., Yeon S.H., Kang H.C., Cho Y.Y., Lee H.S., Zouboulis C.C., Han S.H., Lee J.H., Lee J.Y. Licochalcone A Attenuates Acne Symptoms Mediated by Suppression of NLRP3 Inflammasome. Phyther. Res. 2018;32:2551–2559. doi: 10.1002/ptr.6195. PubMed DOI

Yoon G., Bok Y.K., Seung H.C. Topoisomerase I Inhibition and Cytotoxicity of Licochalcones A and E from Glycyrrhiza inflata. Arch. Pharm. Res. 2007;30:313–316. doi: 10.1007/BF02977611. PubMed DOI

Phan H.T.L., Kim H.J., Jo S., Kim W.K., Namkung W., Nam J.H. Anti-Inflammatory Effect of Licochalcone a via Regulation of ORAI1 and K+ Channels in T-Lymphocytes. Int. J. Mol. Sci. 2021;22:10847. doi: 10.3390/ijms221910847. PubMed DOI PMC

Furusawa J.I., Funakoshi-Tago M., Tago K., Mashino T., Inoue H., Sonoda Y., Kasahara T. Licochalcone A Significantly Suppresses LPS Signaling Pathway through the Inhibition of NF-ΚB P65 Phosphorylation at Serine 276. Cell. Signal. 2009;21:778–785. doi: 10.1016/j.cellsig.2009.01.021. PubMed DOI

Hu J., Liu J. Licochalcone A Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting NF-ΚB Activation. Inflammation. 2016;39:569–574. doi: 10.1007/s10753-015-0281-3. PubMed DOI

Jia T., Qiao J., Guan D., Chen T. Anti-Inflammatory Effects of Licochalcone A on IL-1β-Stimulated Human Osteoarthritis Chondrocytes. Inflammation. 2017;40:1894–1902. doi: 10.1007/s10753-017-0630-5. PubMed DOI

Song N.R., Kim J.E., Park J.S., Kim J.R., Kang H., Lee E., Kang Y.G., Son J.E., Seo S.G., Heo Y.S., et al. Licochalcone A, a Polyphenol Present in Licorice, Suppresses UV-Induced COX-2 Expression by Targeting PI3K, MEK1, and B-Raf. Int. J. Mol. Sci. 2015;16:4453–4470. doi: 10.3390/ijms16034453. PubMed DOI PMC

Furusawa J.I., Funakoshi-Tago M., Mashino T., Tago K., Inoue H., Sonoda Y., Kasahara T. Glycyrrhiza inflata-Derived Chalcones, Licochalcone A, Licochalcone B and Licochalcone D, Inhibit Phosphorylation of NF-ΚB P65 in LPS Signaling Pathway. Int. Immunopharmacol. 2009;9:499–507. doi: 10.1016/j.intimp.2009.01.031. PubMed DOI

Zhou B., Wang H., Zhang B., Zhang L. Licochalcone B Attenuates Neuronal Injury through Anti-Oxidant Effect and Enhancement of Nrf2 Pathway in MCAO Rat Model of Stroke. Int. Immunopharmacol. 2021;100:108073. doi: 10.1016/j.intimp.2021.108073. PubMed DOI

Li Q., Feng H., Wang H., Wang Y., Mou W., Xu G., Zhang P., Li R., Shi W., Wang Z., et al. Licochalcone B Specifically Inhibits the NLRP3 Inflammasome by Disrupting NEK7-NLRP3 Interaction. EMBO Rep. 2022;23:e53499. doi: 10.15252/embr.202153499. PubMed DOI PMC

Franceschelli S., Pesce M., Ferrone A., Gatta D.M.P., Patruno A., De Lutiis M.A., Quiles J.L., Grilli A., Felaco M., Speranza L. Biological Effect of Licochalcone C on the Regulation of PI3K/Akt/ENOS and NF-ΚB/INOS/NO Signaling Pathways in H9c2 Cells in Response to LPS Stimulation. Int. J. Mol. Sci. 2017;18:690. doi: 10.3390/ijms18040690. PubMed DOI PMC

Franceschelli S., Pesce M., Vinciguerra I., Ferrone A., Riccioni G., Patruno A., Grilli A., Felaco M., Speranza L. Licocalchone-C Extracted from Glycyrrhiza glabra Inhibits Lipopolysaccharide-Interferon-γ Inflammation by Improving Antioxidant Conditions and Regulating Inducible Nitric Oxide Synthase Expression. Molecules. 2011;16:5720–5734. doi: 10.3390/molecules16075720. PubMed DOI PMC

Cho Y.C., Lee S.H., Yoon G., Kim H.S., Na J.Y., Choi H.J., Cho C.W., Cheon S.H., Kang B.Y. Licochalcone E Reduces Chronic Allergic Contact Dermatitis and Inhibits IL-12p40 Production through down-Regulation of NF-ΚB. Int. Immunopharmacol. 2010;10:1119–1126. doi: 10.1016/j.intimp.2010.06.015. PubMed DOI

Lee H.N., Cho H.J., Lim D.Y., Kang Y.H., Lee K.W., Park J.H.Y. Mechanisms by Which Licochalcone e Exhibits Potent Anti-Inflammatory Properties: Studies with Phorbol Ester-Treated Mouse Skin and Lipopolysaccharide-Stimulated Murine Macrophages. Int. J. Mol. Sci. 2013;14:10926–10943. doi: 10.3390/ijms140610926. PubMed DOI PMC

Frattaruolo L., Carullo G., Brindisi M., Mazzotta S., Bellissimo L., Rago V., Curcio R., Dolce V., Aiello F., Cappello A.R. Antioxidant and Anti-Inflammatory Activities of Flavanones from Glycyrrhiza glabra L. (Licorice) Leaf Phytocomplexes: Identification of Licoflavanone as a Modulator of NF-KB/MAPK Pathway. Antioxidants. 2019;8:186. doi: 10.3390/antiox8060186. PubMed DOI PMC

Paoletti T., Fallarini S., Gugliesi F., Minassi A., Appendino G., Lombardi G. Anti-Inflammatory and Vascularprotective Properties of 8-Prenylapigenin. Eur. J. Pharmacol. 2009;620:120–130. doi: 10.1016/j.ejphar.2009.08.015. PubMed DOI

Wätjen W., Weber N., Lou Y.J., Wang Z.Q., Chovolou Y., Kampkötter A., Kahl R., Proksch P. Prenylation Enhances Cytotoxicity of Apigenin and Liquiritigenin in Rat H4IIE Hepatoma and C6 Glioma Cells. Food Chem. Toxicol. 2007;45:119–124. doi: 10.1016/j.fct.2006.08.008. PubMed DOI

Jang D.S., Cuendet M., Hawthorne M.E., Kardono L.B.S., Kawanishi K., Fonga H.H.S., Mehta R.G., Pezzuto J.M., Kinghorn A.D. Prenylated Flavonoids of the Leaves of Macaranga conifera with Inhibitory Activity against Cyclooxygenase-2. Phytochemistry. 2002;61:867–872. doi: 10.1016/S0031-9422(02)00378-3. PubMed DOI

Chan Y.Y., Li C.H., Shen Y.C., Wu T.S. Anti-Inflammatory Principles from the Stem and Root Barks of Citrus medica. Chem. Pharm. Bull. 2010;58:61–65. doi: 10.1248/cpb.58.61. PubMed DOI

Tedasen A., Sukrong S., Sritularak B., Srisawat T., Graidist P. 5,7,4′-Trihydroxy-6,8-Diprenylisoflavone and Lupalbigenin, Active Components of Derris Scandens, Induce Cell Death on Breast Cancer Cell Lines. Biomed. Pharmacother. 2016;81:235–241. doi: 10.1016/j.biopha.2016.03.044. PubMed DOI

Sriklung K., Apiratikul N., Samosorn S., Narkwichean A., Watanapokasin R. Lupalbigenin Inhibiting NF-ΚB Translocation Associated with Anti-Inflammatory Responses in Lipopolysaccharide Stimulated RAW 264.7 Macrophages. J. Med. Assoc. Thail. 2022;105:S32–S38. doi: 10.35755/jmedassocthai.2022.S01.00017. DOI

Navrátilová A., Nešuta O., Vančatová I., Čížek A., Varela-M R.E., López-Abán J., Villa-Pulgarin J.A., Mollinedo F., Muro A., Žemličková H., et al. C-Geranylated Flavonoids from Paulownia tomentosa Fruits with Antimicrobial Potential and Synergistic Activity with Antibiotics. Pharm. Biol. 2016;54:1398–1407. doi: 10.3109/13880209.2015.1103755. PubMed DOI

Hanáková Z., Hošek J., Babula P., Dall’Acqua S., Václavík J., Šmejkal K. C-Geranylated Flavanones from Paulownia tomentosa Fruits as Potential Anti-Inflammatory Compounds Acting via Inhibition of TNF-α Production. J. Nat. Prod. 2015;78:850–863. doi: 10.1021/acs.jnatprod.5b00005. PubMed DOI

Dat N.T., Binh P.T.X., Quynh L.T.P., Van Minh C., Huong H.T., Lee J.J. Cytotoxic Prenylated Flavonoids from Morus alba. Fitoterapia. 2010;81:1224–1227. doi: 10.1016/j.fitote.2010.08.006. PubMed DOI

Kwak W.J., Moon T.C., Lin C.X., Rhyn H.G., Jung H., Lee E., Kwon D.Y., Son K.H., Kim H.P., Kang S.S., et al. Papyriflavonol A from Broussonetia Papyrifera Inhibits the Passive Cutaneous Anaphylaxis Reaction and Has a Secretory Phospholipase A 2-Inhibitory Activity. Biol. Pharm. Bull. 2003;26:299–302. doi: 10.1248/bpb.26.299. PubMed DOI

Mao L., Liu H., Zhang R., Deng Y., Hao Y., Liao W., Yuan M., Sun S. Pink1/Parkin-Mediated Mitophagy Inhibits Warangalone-Induced Mitochondrial Apoptosis in Breast Cancer Cells. Aging. 2021;13:12955–12972. doi: 10.18632/aging.202965. PubMed DOI PMC

Kupeli E., Orhan I., Toker G., Yesilada E. Anti-Inflammatory and Antinociceptive Potential of Maclura pomifera (Rafin.) Schneider Fruit Extracts and Its Major Isoflavonoids, Scandenone and Auriculasin. J. Ethnopharmacol. 2006;107:169–174. doi: 10.1016/j.jep.2006.02.021. PubMed DOI

Wun Z.Y., Lin C.F., Huang W.C., Huang Y.L., Xu P.Y., Chang W.T., Wu S.J., Liou C.J. Anti-Inflammatory Effect of Sophoraflavanone G Isolated from Sophora flavescens in Lipopolysaccharide-Stimulated Mouse Macrophages. Food Chem. Toxicol. 2013;62:253–361. doi: 10.1016/j.fct.2013.08.072. PubMed DOI

Sun M., Cao H., Sun L., Dong S., Bian Y., Han J., Zhang L., Ren S., Hu Y., Liu C., et al. Antitumor Activities of Kushen: Literature Review. Evid.-Based Complement. Altern. Med. 2012;2012:373219. doi: 10.1155/2012/373219. PubMed DOI PMC

Kang T.H., Jeong S.J., Ko W.G., Kim N.Y., Lee B.H., Inagaki M., Miyamoto T., Higuchi R., Kim Y.C. Cytotoxic Lavandulyl Flavanones from Sophora flavescens. J. Nat. Prod. 2000;63:680–681. doi: 10.1021/np990567x. PubMed DOI

Cha S.M., Cha J.D., Jang E.J., Kim G.U., Lee K.Y. Sophoraflavanone G Prevents Streptococcus mutans Surface Antigen I/II-Induced Production of NO and PGE2 by Inhibiting MAPK-Mediated Pathways in RAW 264.7 Macrophages. Arch. Oral Biol. 2016;68:97–104. doi: 10.1016/j.archoralbio.2016.04.001. PubMed DOI

Ko W.G., Kang T.H., Kim N.Y., Lee S.J., Kim Y.C., Ko G.I., Ryu S.Y., Lee B.H. Lavandulylflavonoids: A New Class of in Vitro Apoptogenic Agents from Sophora flavescens. Toxicol. Vitr. 2000;14:429–433. doi: 10.1016/S0887-2333(00)00041-2. PubMed DOI

Shirataki Y., Motohashi N., Tani S., Sakagami H., Satoh K., Nakashima H., Mahapatra S.K., Ganguly K., Dastidar S.G., Chakrabarty A.N. In Vitro Biological Activity of Prenylflavanones. Anticancer Res. 2001;21:275–280. PubMed

Yasuda M., Kawabata K., Miyashita M., Okumura M., Yamamoto N., Takahashi M., Ashida H., Ohigashi H. Inhibitory Effects of 4-Hydroxyderricin and Xanthoangelol on Lipopolysaccharide-Induced Inflammatory Responses in RAW264 Macrophages. J. Agric. Food Chem. 2014;62:462–467. doi: 10.1021/jf404175t. PubMed DOI

Hartkorn A., Hoffmann F., Ajamieh H., Vogel S., Heilmann J., Gerbes A.L., Vollmar A.M., Zahler S. Antioxidant Effects of Xanthohumol and Functional Impact on Hepatic Ischemia-Reperfusion Injury. J. Nat. Prod. 2009;72:1741–1747. doi: 10.1021/np900230p. PubMed DOI

Zhang X.L., Zhang Y.D., Wang T., Guo H.Y., Liu Q.M., Su H.X. Evaluation on Antioxidant Effect of Xanthohumol by Different Antioxidant Capacity Analytical Methods. J. Chem. 2014;2014:249485. doi: 10.1155/2014/249485. DOI

Tronina T., Bartmańska A., Milczarek M., Wietrzyk J., Popłoński J., Rój E., Huszcza E. Antioxidant and Antiproliferative Activity of Glycosides Obtained by Biotransformation of Xanthohumol. Bioorganic Med. Chem. Lett. 2013;23:1957–1960. doi: 10.1016/j.bmcl.2013.02.031. PubMed DOI

Zhao F., Nozawa H., Daikonnya A., Kondo K., Kitanaka S. Inhibitors of Nitric Oxide Production from Hops (Humulus lupulus L.) Biol. Pharm. Bull. 2003;26:61–65. doi: 10.1248/bpb.26.61. PubMed DOI

Logan I.E., Miranda C.L., Lowry M.B., Maier C.S., Stevens J.F., Gombart A.F. Antiproliferative and Cytotoxic Activity of Xanthohumol and Its Non-Estrogenic Derivatives in Colon and Hepatocellular Carcinoma Cell Lines. Int. J. Mol. Sci. 2019;20:1203. doi: 10.3390/ijms20051203. PubMed DOI PMC

Cho Y.C., Kim H.J., Kim Y.J., Lee K.Y., Choi H.J., Lee I.S., Kang B.Y. Differential Anti-Inflammatory Pathway by Xanthohumol in IFN-γ and LPS-Activated Macrophages. Int. Immunopharmacol. 2008;8:567–573. doi: 10.1016/j.intimp.2007.12.017. PubMed DOI

Kontek B., Jedrejek D., Oleszek W., Olas B. Antiradical and Antioxidant Activity in Vitro of Hops-Derived Extracts Rich in Bitter Acids and Xanthohumol. Ind. Crops Prod. 2021;161:113208. doi: 10.1016/j.indcrop.2020.113208. DOI

Pan L., Becker H., Gerhäuser C. Xanthohumol Induces Apoptosis in Cultured 40-16 Human Colon Cancer Cells by Activation of the Death Receptor- and Mitochondrial Pathway. Mol. Nutr. Food Res. 2005;49:837–843. doi: 10.1002/mnfr.200500065. PubMed DOI

Lupinacci E., Meijerink J., Vincken J.P., Gabriele B., Gruppen H., Witkamp R.F. Xanthohumol from Hop (Humulus lupulus L.) Is an Efficient Inhibitor of Monocyte Chemoattractant Protein-1 and Tumor Necrosis Factor-α Release in LPS-Stimulated RAW 264.7 Mouse Macrophages and U937 Human Monocytes. J. Agric. Food Chem. 2009;57:7274–7281. doi: 10.1021/jf901244k. PubMed DOI

Koo J.H., Hyoung T.K., Yoon H.Y., Kwon K.B., Choi I.W., Sung H.J., Kim H.U., Park B.H., Park J.W. Effect of Xanthohumol on Melanogenesis in B16 Melanoma Cells. Exp. Mol. Med. 2008;40:313–319. doi: 10.3858/emm.2008.40.3.313. PubMed DOI PMC

Cho Y.C., You S.K., Kim H.J., Cho C.W., Lee I.S., Kang B.Y. Xanthohumol Inhibits IL-12 Production and Reduces Chronic Allergic Contact Dermatitis. Int. Immunopharmacol. 2010;10:556–561. doi: 10.1016/j.intimp.2010.02.002. PubMed DOI

Negrão R., Costa R., Duarte D., Gomes T.T., Coelho P., Guimarães J.T., Guardão L., Azevedo I., Soares R. Xanthohumol-Supplemented Beer Modulates Angiogenesis and Inflammation in a Skin Wound Healing Model. Involvement of Local Adipocytes. J. Cell. Biochem. 2012;113:100–109. doi: 10.1002/jcb.23332. PubMed DOI

Ye H., Xie C., Wu W., Xiang M., Liu Z., Li Y., Tang M., Li S., Yang J., Tang H., et al. Millettia pachycarpa Exhibits Anti-Inflammatory Activity through the Suppression of LPS-Induced NO/INOS Expression. Am. J. Chin. Med. 2014;42:949–965. doi: 10.1142/S0192415X14500608. PubMed DOI

Chan E.W.C., Wong S.K., Tangah J., Chan H.T. Chemistry and Pharmacology of Artocarpin: An Isoprenyl Flavone from Artocarpus Species. Syst. Rev. Pharm. 2018;9:58–63. doi: 10.5530/srp.2018.1.12. DOI

Wang X.L., Di X.X., Shen T., Wang S.Q., Wang X.N. New Phenolic Compounds from the Leaves of Artocarpus heterophyllus. Chin. Chem. Lett. 2017;28:37–40. doi: 10.1016/j.cclet.2016.06.024. DOI

Wang Y.A., Guo X., Jia X.H., Xue J., Du H.F., Du C.L., Tang W.Z., Wang X.J., Zhao Y.X. Undescribed C-Geranylflavonoids Isolated from the Fruit Peel of Paulownia catalpifolia T. Gong Ex D.Y. Hong with Their Protection on Human Umbilical Vein Endothelial Cells Injury Induced by Hydrogen Peroxide. Phytochemistry. 2019;158:126–134. doi: 10.1016/j.phytochem.2018.11.010. PubMed DOI

Kuete V., Sandjo L.P. Isobavachalcone: An Overview. Chin. J. Integr. Med. 2012;18:543–547. doi: 10.1007/s11655-012-1142-7. PubMed DOI

Kulthanan K., Trakanwittayarak S., Tuchinda P., Chularojanamontri L., Limphoka P., Varothai S. A Double-Blinded, Randomized, Vehicle-Controlled Study of the Efficacy of Moisturizer Containing Licochalcone A, Decanediol, L-Carnitine, and Salicylic Acid for Prevention of Acne Relapse in Asian Population. BioMed Res. Int. 2020;2020:2857812. doi: 10.1155/2020/2857812. PubMed DOI PMC

Kolbe L., Immeyer J., Batzer J., Wensorra U., Dieck K.T., Mundt C., Wolber R., Stäb F., Schönrock U., Ceilley R.I., et al. Anti-Inflammatory Efficacy of Licochalcone A: Correlation of Clinical Potency and in Vitro Effects. Arch. Dermatol. Res. 2006;298:23–30. doi: 10.1007/s00403-006-0654-4. PubMed DOI

Jovanovic Z., Angabini N., Ehlen S., Mokos Z.B., Subotic M., Neufang G. Efficacy and Tolerability of a Cosmetic Skin Care Product with Trans-4-t-Butylcyclohexanol and Licochalcone A in Subjects with Sensitive Skin Prone to Redness and Rosacea. J. Drugs Dermatol. 2017;16:605–610. PubMed

Schoelermann A.M., Weber T.M., Arrowitz C., Rizer R.L., Qian K., Babcock M. Skin Compatibility and Efficacy of a Cosmetic Skin Care Regimen with Licochalcone A and 4-t-Butylcyclohexanol in Patients with Rosacea Subtype I. J. Eur. Acad. Dermatol. Venereol. 2016;30:21–27. doi: 10.1111/jdv.13531. PubMed DOI

Sulzberger M., Worthmann A.C., Holtzmann U., Buck B., Jung K.A., Schoelermann A.M., Rippke F., Stäb F., Wenck H., Neufang G., et al. Effective Treatment for Sensitive Skin: 4-t-Butylcyclohexanol and Licochalcone A. J. Eur. Acad. Dermatol. Venereol. 2016;30:9–17. doi: 10.1111/jdv.13529. PubMed DOI

Silva L.M., Marconato D.G., Nascimento Da Silva M.P., Barbosa Raposo N.R., De Faria Silva Facchini G., MacEdo G.C., Teixeira F.D.S., Barbosa Da Silveira Salvadori M.C., De Faria Pinto P., De Moraes J., et al. Licochalcone A-Loaded Solid Lipid Nanoparticles Improve Antischistosomal Activity in Vitro and in Vivo. Nanomedicine. 2021;16:1641–1655. doi: 10.2217/nnm-2021-0146. PubMed DOI

Wang Z., Xue Y., Chen T., Du Q., Zhu Z., Wang Y., Wu Y., Zeng Q., Shen C., Jiang C., et al. Glycyrrhiza Acid Micelles Loaded with Licochalcone A for Topical Delivery: Co-Penetration and Anti-Melanogenic Effect. Eur. J. Pharm. Sci. 2021;167:106029. doi: 10.1016/j.ejps.2021.106029. PubMed DOI

Philips N., Samuel M., Arena R., Chen Y.J., Conte J., Natarajan P., Haas G., Gonzales S. Direct Inhibition of Elastase and Matrixmetalloproteinases and Stimulation of Biosynthesis of Fibrillar Collagens, Elastin, and Fibrillins by Xanthohumol. J. Cosmet. Sci. 2010;61:485. doi: 10.1111/j.1468-2494.2010.00609_4.x. PubMed DOI

Jiang C.H., Sun T.L., Xiang D.X., Wei S.S., Li W.Q. Anticancer Activity and Mechanism of Xanthohumol: A Prenylated Flavonoid from Hops (Humulus lupulus L.) Front. Pharmacol. 2018;9:530. doi: 10.3389/fphar.2018.00530. PubMed DOI PMC

Liu M., Hansen P.E., Wang G., Qiu L., Dong J., Yin H., Qian Z., Yang M., Miao J. Pharmacological Profile of Xanthohumol, a Prenylated Flavonoid from Hops (Humulus lupulus) Molecules. 2015;20:754–779. doi: 10.3390/molecules20010754. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...