Prenylated phenolics from Morus alba against MRSA infections as a strategy for wound healing

. 2022 ; 13 () : 1068371. [epub] 20221130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36532741

Antimicrobial resistance is a public health threat and the increasing number of multidrug-resistant bacteria is a major concern worldwide. Common antibiotics are becoming ineffective for skin infections and wounds, making the search for new therapeutic options increasingly urgent. The present study aimed to investigate the antibacterial potential of prenylated phenolics in wound healing. Phenolic compounds isolated from the root bark of Morus alba L. were investigated for their antistaphylococcal potential both alone and in combination with commonly used antibiotics. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by microdilution and agar method. Synergy was investigated using the checkerboard titration technique. Membrane-disrupting activity and efflux pump inhibition were evaluated to describe the potentiating effect. Prenylated phenolics inhibited bacterial growth of methicillin-resistant Staphylococcus aureus (MRSA) at lower concentrations (MIC 2-8 μg/ml) than commonly used antibiotics. The combination of active phenolics with kanamycin, oxacillin, and ciprofloxacin resulted in a decrease in the MIC of the antimicrobial agent. Kuwanon C, E, T, morusin, and albafuran C showed synergy (FICi 0.375-0.5) with oxacillin and/or kanamycin. Prenylated phenolics disrupted membrane permeability statistically significantly (from 28 ± 16.48% up to 73 ± 2.83%), and membrane disruption contributes to the complex antibacterial activity against MRSA. In addition, kuwanon C could be considered an efflux pump inhibitor. Despite the antibacterial effect on MRSA and the multiple biological activities, the prenylated phenolics at microbially significant concentrations have a minor effect on human keratinocyte (HaCaT) viability. In conclusion, prenylated phenolics in combination with commonly used antibiotics are promising candidates for the treatment of MRSA infections and wound healing, although further studies are needed.

Zobrazit více v PubMed

Aelenei P., Rimbu C. M., Horhogea C. E., Lobiuc A., Neagu A. N., Dunca S. I., et al. (2020). Prenylated phenolics as promising candidates for combination antibacterial therapy: Morusin and kuwanon G. Saudi Pharm. J. 28, 1172–1181. 10.1016/j.jsps.2020.08.006 PubMed DOI PMC

Amparo T. R., Seibert J. B., Vieira P. M. de A., Teixeira L. F. M., dos Santos O. D. H., de Souza G. H. B. (2020). Herbal medicines to the treatment of skin and soft tissue infections: Advantages of the multi-targets action. Phytother. Res. 34, 94–103. 10.1002/ptr.6519 PubMed DOI

Balouiri M., Sadiki M., Ibnsouda S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6, 71–79. 10.1016/j.jpha.2015.11.005 PubMed DOI PMC

CDC (2019). Antibiotic resistance threats in the United States, 2019. Atlanta, GA: Centres for Disease Control and Prevention. 10.15620/cdc:82532 DOI

Chan E. W. C., Lye P. Y., Wong S. K. (2016). Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med. 14, 17–30. 10.3724/SP.J.1009.2016.00017 PubMed DOI

Cheesman M. J., Ilanko A., Blonk B., Cock I. E. (2017). Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev. 11, 57–72. 10.4103/phrev.phrev_21_17 PubMed DOI PMC

Cheung G. Y. C., Bae J. S., Otto M. (2021). Pathogenicity and virulence of Staphylococcus aureus . Virulence 12, 547–569. 10.1080/21505594.2021.1878688 PubMed DOI PMC

Choi S. Y., Park J., Kim J., Lee J., Yang H. (2021). Investigation of chemical profiles of different parts of morus alba using a combination of molecular networking methods with mass spectral data from two ionization modes of LC/MS. Plants 10, 1711. 10.3390/plants10081711 PubMed DOI PMC

CLSI (2015). “Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard–tenth edition,” in CLSI document M07-A10 (Wayne, PA: Clinical and Laboratory Standards Institute; ).

CLSI (2022). “Performance standards for antimicrobial susceptibility testing,” in CLSI guideline M100. 32nd ed. (Wayne, PA: Clinical and Laboratory Standards Institute; ).

Čulenová M., Sychrová A., Hassan S. T. S., Berchová-Bímová K., Svobodová P., Helclová A., et al. (2020). Multiple in vitro biological effects of phenolic compounds from Morus alba root bark. J. Bioenerg. Biomembr. 248, 112296. 10.1016/j.jep.2019.112296 PubMed DOI

dos Santos J. F. S., Tintino S. R., da Silva A. R. P., dos S., Barbosa C. R., Scherf J. R., et al. (2021). Enhancement of the antibiotic activity by quercetin against Staphylococcus aureus efflux pumps . J. Bioenerg. Biomembr. 53, 157–167. 10.1007/s10863-021-09886-4/ PubMed DOI

EUCAST (2022). Breakpoint tables for interpretation of MICs and zone diameters. 12.0. Available at: http://www.eucast.org (Accessed September 29, 2022).

EUCAST (2000). Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 6, 503–508. 10.1046/j.1469-0691.2000.00149.x PubMed DOI

Figueredo F. G., Parente R. E. L. T., Cavalcante-Figueredo M. R., Figueiredo J. G., da Silva R. L. P., Ferreira Matias E. F., et al. (2021). Inhibition of Staphylococcus aureus TetK and MsrA efflux pumps by hydroxyamines derived from lapachol and norlachol . J. Bioenerg. Biomembr. 53, 149–156. 10.1007/s10863-021-09885-5 PubMed DOI

French G. L. (2006). Bactericidal agents in the treatment of MRSA infections – the potential role of daptomycin. J. Antimicrob. Chemother. 58, 1107–1117. 10.1093/jac/dkl393 PubMed DOI

Gonec T., Pindjakova D., Vrablova L., Strharsky T., Michnova H., Kauerova T., et al. (2022). Antistaphylococcal activities and ADME-related properties of chlorinated arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals 15, 715. 10.3390/ph15060715 PubMed DOI PMC

Gurtner G. C., Werner S., Barrandon Y., Longaker M. T. (2008). Wound repair and regeneration. Nature 453, 314–321. 10.1038/nature07039 PubMed DOI

Hassanzadeh S., Mashhadi R., Yousefi M., Askari E., Saniei M., Pourmand M. R. (2017). Frequency of efflux pump genes mediating ciprofloxacin and antiseptic resistance in methicillin-resistant Staphylococcus aureus isolates . Microb. Pathog. 111, 71–74. 10.1016/j.micpath.2017.08.026 PubMed DOI

He X., Fang J., Ruan Y., Wang X., Sun Y., Wu N., et al. (2018). Structures, bioactivities and future prospective of polysaccharides from morus alba (white mulberry): A review. Food Chem. 245, 899–910. 10.1016/j.foodchem.2017.11.084 PubMed DOI

Holler J. G., Slotved H. C., Molgaard P., Olsen C. E., Christensen S. B. (2012). Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles . Bioorg. Med. Chem. 20, 4514–4521. 10.1016/j.bmc.2012.05.025 PubMed DOI

Khan M. A., Rahman A. A., Islam S., Khandokhar P., Parvin S., Islam M. B., et al. (2013). A comparative study on the antioxidant activity of methanolic extracts from different parts of Morus alba L. (Moraceae). BMC Res. Notes 6, 24. 10.1186/1756-0500-6-24 PubMed DOI PMC

Kohanski M. A., Dwyer D. J., Collins J. J. (2010). How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 8, 423–435. 10.1038/nrmicro2333 PubMed DOI PMC

Köhler T., Pechère J. C., Plésiat P. (1999). Bacterial antibiotic efflux systems of medical importance. Cell. Mol. Life Sci. 56, 771–778. 10.1007/s000180050024 PubMed DOI PMC

Kushwaha P. P., Prajapati S. K., Pothabathula S. V., Singh A. K., Shuaib M., Joshi K., et al. (2019). “Prenylated flavonoids as a promising drug discovery candidate: A pharmacological update,” in Phytochemicals as lead compounds for new drug discovery (Amsterdam, Netherlands: Elsevier; ), 347–355. 10.1016/B978-0-12-817890-4.00023-8 DOI

Leonel C., Sena I. F. G., Silva W. N., Prazeres P. H. D. M., Fernandes G. R., Mancha Agresti P., et al. (2019). Staphylococcus epidermidis role in the skin microenvironment. J. Cell. Mol. Med. 23, 5949–5955. 10.1111/jcmm.14415 PubMed DOI PMC

Li X., Turánek J., Knötigová P., Kudláčková H., Mašek J., Parkin S., et al. (2009). Hydrophobic tail length, degree of fluorination and headgroup stereochemistry are determinants of the biocompatibility of (fluorinated) carbohydrate surfactants. Colloids Surf. B Biointerfaces 73, 65–74. 10.1016/j.colsurfb.2009.04.023 PubMed DOI PMC

Maheswary T., Nurul A. A., Fauzi M. B. (2021). The insights of microbes’ roles in wound healing: A comprehensive review. Pharmaceutics 13, 981. 10.3390/pharmaceutics13070981 PubMed DOI PMC

Malléa M., Chevalier J., Eyraud A., Pagès J.-M. (2002). Inhibitors of antibiotic efflux pump in resistant Enterobacter aerogenes strains. Biochem. Biophys. Res. Commun. 293, 1370–1373. 10.1016/S0006-291X(02)00404-7 PubMed DOI

Melter O., Aires de Sousa M., Urbášková P., Jakubů V., Žemličková H., de Lencastre H. (2003). Update on the major clonal types of methicillin-resistant Staphylococcus aureus in the Czech republic. J. Clin. Microbiol. 41, 4998–5005. 10.1128/JCM.41.11.4998-5005.2003 PubMed DOI PMC

Murray C. J., Ikuta K. S., Sharara F., Swetschinski L., Robles Aguilar G., Gray A., et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 399, 629–655. 10.1016/S0140-6736(21)02724-0 PubMed DOI PMC

Newman D. J., Cragg G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803. 10.1021/acs.jnatprod.9b01285 PubMed DOI

Novy P., Rondevaldova J., Kourimska L., Kokoska L. (2013). Synergistic interactions of epigallocatechin gallate and oxytetracycline against various drug resistant Staphylococcus aureus strains in vitro . Phytomedicine 20, 432–435. 10.1016/j.phymed.2012.12.010 PubMed DOI

Patridge E., Gareiss P., Kinch M. S., Hoyer D. (2016). An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today 21, 204–207. 10.1016/j.drudis.2015.01.009 PubMed DOI

Polumackanycz M., Sledzinski T., Goyke E., Wesolowski M., Viapiana A. (2019). A comparative study on the phenolic composition and biological activities of morus alba L. Commercial samples. Molecules 24, 3082. 10.3390/molecules24173082 PubMed DOI PMC

Rivière C., Krisa S., Péchamat L., Nassra M., Delaunay J. C., Marchal A., et al. (2014). Polyphenols from the stems of Morus alba and their inhibitory activity against nitric oxide production by lipopolysaccharide-activated microglia. Fitoterapia 97, 253–260. 10.1016/j.fitote.2014.06.001 PubMed DOI

Scalise A., Bianchi A., Tartaglione C., Bolletta E., Pierangeli M., Torresetti M., et al. (2015). Microenvironment and microbiology of skin wounds: The role of bacterial biofilms and related factors. Semin. Vasc. Surg. 28, 151–159. 10.1053/j.semvascsurg.2016.01.003 PubMed DOI

Secor P. R., James G. A., Fleckman P., Olerud J. E., McInnerney K., Stewart P. S. (2011). Staphylococcus aureus Biofilm and Planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes. BMC Microbiol. 11, 143. 10.1186/1471-2180-11-143 PubMed DOI PMC

Shi S., Li J., Zhao X., Liu Q., Song S. J. (2021). A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry 191, 112895. 10.1016/j.phytochem.2021.112895 PubMed DOI

Subramani R., Narayanasamy M., Feussner K-D. (2017). Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech. 7, 172. 10.1007/s13205-017-0848-9 PubMed DOI PMC

Sychrová A., Škovranová G., Čulenová M., Bittner Fialová S. (2022). Prenylated flavonoids in topical infections and wound healing. Molecules 27, 4491. 10.3390/molecules27144491 PubMed DOI PMC

Tchero H., Kangambega P., Noubou L., Becsangele B., Fluieraru S., Teot L. (2018). Antibiotic therapy of diabetic foot infections: A systematic review of randomized controlled trials. Wound Repair Regen. 26, 381–391. 10.1111/wrr.12649 PubMed DOI

Tintino S. R., Oliveira-Tintino C. D. M., Campina F. F., Silva R. L. P., Costa M. do S., Menezes I. R. A., et al. (2016). Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus . Microb. Pathog. 97, 9–13. 10.1016/j.micpath.2016.04.003 PubMed DOI

van Vuuren S., Viljoen A. (2011). Plant-based antimicrobial studies methods and approaches to study the interaction between natural products. Planta Med. 77, 1168–1182. 10.1055/s-0030-1250736 PubMed DOI

Varela M. F., Kumar S. (2013). “Molecular mechanisms of bacterial resistance to antimicrobial agents,” in Microbial pathogens and strategies for combating them: Science, technology and education. Editor Méndez-Vilas A. (Badajoz: Formatex Research Center; ), 522–534.

WHO (2021). Antimicrobial resistance – fact sheet. Available at: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (Accessed September 28, 2022).

WHO (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. Available at: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (Accessed September 28, 2022).

Wu S. C., Han F., Song M. R., Chen S., Li Q., Zhang Q., et al. (2019). Natural flavones from morus alba against methicillin-resistant Staphylococcus aureus via targeting the proton motive force and membrane permeability. J. Agric. Food Chem. 67, 10222–10234. 10.1021/acs.jafc.9b01795 PubMed DOI

Xie Y., Yang W., Tang F., Chen X., Ren L. (2015). Antibacterial activities of flavonoids: Structure–activity relationship and mechanism. Curr. Med. Chem. 22, 132–149. 10.2174/0929867321666140916113443 PubMed DOI

Yokota M., Häffner N., Kassier M., Brunner M., Shambat S. M., Brennecke F., et al. (2021). Staphylococcus aureus impairs dermal fibroblast functions with deleterious effects on wound healing . FASEB J. 35, e21695. 10.1096/fj.201902836R PubMed DOI

Yuan G., Xia X., Guan Y., Yi H., Lai S., Sun Y., et al. (2022). Antimicrobial quantitative relationship and mechanism of plant flavonoids to gram-positive bacteria. Pharmaceuticals 15, 1190. 10.3390/ph15101190 PubMed DOI PMC

Zhou Q. Y. J., Liao X., Kuang H. M., Li J. Y., Zhang S. H. (2022). LC-MS metabolite profiling and the hypoglycemic activity of morus alba L. Extracts. Molecules 27, 5360. 10.3390/molecules27175360 PubMed DOI PMC

Zhu M., Wang Z. J., He Y. J., Qin Y., Zhou Y., Qi Z. H., et al. (2021). Bioguided isolation, identification and bioactivity evaluation of anti-MRSA constituents from Morus alba Linn. J. Ethnopharmacol. 281, 114542. 10.1016/j.jep.2021.114542 PubMed DOI

Zuo G. Y., Yang C. X., Ruan Z. J., Han J., Wang G. C. (2019). Potent anti-MRSA activity and synergism with aminoglycosides by flavonoid derivatives from the root barks of Morus alba, a traditional Chinese medicine. Med. Chem. Res. 28, 1547–1556. 10.1007/s00044-019-02393-7 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Natural Phenolics Disrupt Microbial Communication by Inhibiting Quorum Sensing

. 2025 Jan 27 ; 13 (2) : . [epub] 20250127

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...