Bacterial Skin Infections in Livestock and Plant-Based Alternatives to Their Antibiotic Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
No. CZ.02.1.01/0.0/0.0/16_019/0000845
Centre for the investigation of synthesis and transformation of nutritional substances in the food chain in interaction with potentially harmful substances of anthropogenic origin: comprehensive assessment of soil contamination risks for the quality of ag
No. MZeRO0718
Ministerstvo Zemědělství
PubMed
34438930
PubMed Central
PMC8388705
DOI
10.3390/ani11082473
PII: ani11082473
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus aureus, antibiotic resistance, phytochemicals, wounds,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Due to its large surface area, the skin is susceptible to various injuries, possibly accompanied by the entrance of infective agents into the body. Commensal organisms that constitute the skin microbiota play important roles in the orchestration of cutaneous homeostasis and immune competence. The opportunistic pathogen Staphylococcus aureus is present as part of the normal biota of the skin and mucous membranes in both humans and animals, but can cause disease when it invades the body either due to trauma or because of the impaired immune response of the host. Colonization of livestock skin by S. aureus is a precursor for majority of bacterial skin infections, which range from boils to sepsis, with the best-characterized being bovine mastitis. Antibiotic treatment of these infections can contribute to the promotion of resistant bacterial strains and even to multidrug resistance. The development of antibiotic resistance to currently available antibiotics is a worldwide problem. Considering the increasing ability of bacteria to effectively resist antibacterial agents, it is important to reduce the livestock consumption of antibiotics to preserve antibiotic effectiveness in the future. Plants are recognized as sources of various bioactive substances, including antibacterial activity towards clinically important microorganisms. This review provides an overview of the current knowledge on the major groups of phytochemicals with antibacterial activity and their modes of action. It also provides a list of currently known and used plant species aimed at treating or preventing bacterial skin infections in livestock.
Zobrazit více v PubMed
Grice E.A., Segre J.A. The skin microbiome. Nat. Rev. Microbiol. 2011;9:244–253. doi: 10.1038/nrmicro2537. PubMed DOI PMC
Montagna W., Parakkal P.F. The Structure and Function of Skin. 3rd ed. Vol. 3. Elsevier; London, UK: 1974. pp. 1–17.
Roth R.R., James W.D. Microbial ecology of the skin. Annu. Rev. Microbiol. 1988;42:441–464. doi: 10.1146/annurev.mi.42.100188.002301. PubMed DOI
Lemieux-Labonté V., Tromas N., Shapiro B.J., Lapointe F.-J. Environment and host species shape the skin microbiome of captive neotropical bats. Peer J. 2016;4 doi: 10.7717/peerj.2430. PubMed DOI PMC
Zeynalova S., Asadov K., Guliyev F., Vatani M., Aliyev V. Epizootology and molecular diagnosis of lumpy skin disease among livestock in Azerbaijan. Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.01022. PubMed DOI PMC
Cogen A.L., Yamasaki K., Sanchez K.M., Dorschner R.A., Lai Y., MacLeod D.T., Torpey J.W., Otto M., Nizet V., Kim J.E., et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Investig. Dermatol. 2010;130:192–200. doi: 10.1038/jid.2009.243. PubMed DOI PMC
Belden L.K., Harris R.N. Infectious diseases in wildlife: The community ecology context. Front. Ecol. Environ. 2007;5:533–539. doi: 10.1890/060122. DOI
Hoffmann A.R., Patterson A.P., Diesel A., Lawhon S.D., Ly H.J., Stephenson C.E., Mansell J., Steiner J.M., Dowd S.E., Olivry T., et al. The skin microbiome in healthy and allergic dogs. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0083197. PubMed DOI PMC
Ross A.A. Master’s Thesis. University of Waterloo; Waterloo, ON, Canada: Aug 23, 2018. The Mammalian Skin Microbiome.
Grice E.A., Kong H.H., Renaud G., Young A.C., Bouffard G.G., Blakesley R.W., Wolfsberg T.G., Turner M.L., Segre J.A. A diversity profile of the human skin microbiota. Genome Res. 2008;18:1043–1050. doi: 10.1101/gr.075549.107. PubMed DOI PMC
Grice E.A., Kong H.H., Conlan S., Deming C.B., Davis J., Young A.C., Bouffard G.G., Blakesley R.W., Murray P.R., Green E.D., et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–1192. doi: 10.1126/science.1171700. PubMed DOI PMC
Capone K.A., Dowd S.E., Stamatas G.N., Nikolovski J. Diversity of the human skin microbiome early in life. J. Investig. Dermatol. 2011;131:2026–2032. doi: 10.1038/jid.2011.168. PubMed DOI PMC
Dey A., Nooruddin M. Economic impact of leather defects in Bangladesh. J. Train. Dev. 1993;6:27–38.
Foster A.P. Staphylococcal skin disease in livestock. Vet. Dermatol. 2012;23:342–351. doi: 10.1111/j.1365-3164.2012.01093.x. PubMed DOI
Abrahamian F.M., Goldstein E.J. Microbiology of animal bite wound infections. Clin. Microbiol. Rev. 2011;24:231–246. doi: 10.1128/CMR.00041-10. PubMed DOI PMC
Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI
Limoli D.H., Jones C.J., Wozniak D.J. Bacterial extracellular polysaccharides in biofilm formation and function. Microb. Biofilms. 2015:223–247. doi: 10.1128/microbiolspec.MB-0011-2014. PubMed DOI PMC
Meyle E., Stroh P., Günther F., Hoppy-Tichy T., Wagner C., Hänsch G.M. Destruction of bacterial biofilms by polymorphonuclear neutrophils: Relative contribution of phagocytosis, DNA release, and degranulation. Int. J. Artif. Organs. 2010;33:608–620. doi: 10.1177/039139881003300906. PubMed DOI
Haaber J., Penadés J.R., Ingmer H. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol. 2017;25:893–905. doi: 10.1016/j.tim.2017.05.011. PubMed DOI
Yang Q., Wang R., Ren S., Szoboszlay M., Moe L.A. Practical survey on antibiotic-resistant bacterial communities in livestock manure and manure-amended soil. J. Environ. Sci. Health. 2016;51:14–23. doi: 10.1080/03601234.2015.1080481. PubMed DOI
Voss A., Loeffen F., Bakker J., Klaassen C., Wulf M. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg. Infect. Dis. 2005;11:1965–1966. doi: 10.3201/eid1112.050428. PubMed DOI PMC
Van Cleef B., van Benthem B., Verkade E.J., van Rijen M., Kluytmans-van den Bergh M., Graveland H., Bosch T., Verstappen K.M., Wagenaar J.A., Bos M.E., et al. Livestock-associated MRSA in household members of pig farmers: Transmission and dynamics of carriage, a prospective cohort study. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0127190. PubMed DOI PMC
Verkade E., Kluytmans-van den Bergh M., van Benthem B., van Cleef B., van Rijen M., Bosch T., Schouls L., Kluytmans J. Transmission of methicillin-resistant Staphylococcus aureus CC398 from livestock veterinarians to their household members. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0100823. PubMed DOI PMC
Cuny C., Wieler L.H., Witte W. Livestock-associated MRSA: The impact on humans. Antibiotics. 2015;4:521–543. doi: 10.3390/antibiotics4040521. PubMed DOI PMC
Garcia-Alvarez L., Dawson S., Cookson B., Hawkey P. Working across the veterinary and human health sectors. J. Antimicrob. Chemother. 2012;67:37–49. doi: 10.1093/jac/dks206. PubMed DOI
Paterson G.K., Harrison E.M., Holmes M.A. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2014;22:42–47. doi: 10.1016/j.tim.2013.11.003. PubMed DOI PMC
Dhup V., Kearns A.M., Pichon B., Foster H.A. First report of identification of livestock-associated MRSA ST9 in retail meat in England. Epidemiol. Infect. 2015;143:2989–2992. doi: 10.1017/S0950268815000126. PubMed DOI PMC
Sharma M., Nunez-Garcia J., Kearns A.M., Doumith M., Butaye P.R., Argudín M.A., Lahuerta-Marin A., Pichon B., AbuOun M., Rogers J., et al. Livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) clonal complex (CC) 398 isolated from UK animals belong to European lineages. Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.01741. PubMed DOI PMC
Wellington E.M.H., Boxall A.B.A., Cross P., Feil E.J., Gaze W.H., Hawkey P.M., Johnson-Rollings A.S., Jones D.L., Lee N.M., Otten W., et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis. 2013;13:155–165. doi: 10.1016/S1473-3099(12)70317-1. PubMed DOI
Lowy F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1988;339:520–532. doi: 10.1056/NEJM199808203390806. PubMed DOI
Graveland H., Duim B., van Duijkeren E., Heederik D., Wagenaar J.A. Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int. J. Med Microbiol. 2011;301:630–634. doi: 10.1016/j.ijmm.2011.09.004. PubMed DOI
Daaloul-Jedidi M., Soudani A., Messadi L. Nasal and rectal carriage of coagulase positive Staphylococcus in healthy goats. J. New Sci. 2016;33:1910–1913.
Van Cleef B.A., Monnet D.L., Voss A., Krziwanek K., Allerberger F., Struelens M., Zemlickova H., Skov R.L., Vuopio-Varkila J., Cuny C., et al. Livestock-associated methicillin-resistant Staphylococcus aureus in humans, Europe. Emerg. Infect. Dis. 2011;17 doi: 10.3201/eid1703.101036. PubMed DOI PMC
Grace D., Fetsch A. Staphylococcus Aureus. Academic Press; Cambridge, MA, USA: 2018. Staphylococcus aureus—A foodborne pathogen: Epidemiology, detection, characterization, prevention, and control: An overview; pp. 3–8. DOI
Cuny C., Friedrich A., Kozytska S., Layer F., Nübel U., Ohlsen K., Strommenger B., Walther B., Wieler L., Witte W. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int. J. Med Microbiol. 2010;300:109–117. doi: 10.1016/j.ijmm.2009.11.002. PubMed DOI
Smith T.H., Fox L.K., Middleton J.R. Outbreak of mastitis caused by one strain of Staphylococcus aureus in a closed dairy herd. J. Am. Vet. Med Assoc. 1998;212:553–556. PubMed
Peton V., Le Loir Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 2014;21:602–615. doi: 10.1016/j.meegid.2013.08.011. PubMed DOI
Vanderhaeghen W., Hermans K., Haesebrouck F., Butaye P. Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol. Infect. 2010;138:606–625. doi: 10.1017/S0950268809991567. PubMed DOI
Acton D., Plat-Sinnige M.J.T., van Wamel W., de Groot N., van Belkum A. Intestinal carriage of Staphylococcus aureus: How does its frequency compare with that of nasal carriage and what is its clinical impact? Eur. J. Clin. Microbiol. Infect. Dis. 2009;28:115–127. doi: 10.1007/s10096-008-0602-7. PubMed DOI
Erskine R., Cullor J., Schaellibaum M., Yancey B., Zecconi A. National Mastitis Council Research Committee Report, Proceedings of the Annual Meeting, Charlotte, NC, USA, 1 January 2004. NMC Research Committee; New Prague, MN, USA: 2004. Bovine mastitis pathogens and trends in resistance to antibacterial drugs.
Todhunter D.A., Smith K.L., Hogan J.S. Environmental streptococcal intramammary infections of the bovine mammary gland. J. Dairy Sci. 1995;78:2366–2374. doi: 10.3168/jds.S0022-0302(95)76864-3. PubMed DOI
Calvinho L., Tirante L. Prevalencia de Microorganismos Patógenos de Mastitis Bovina y Evolución del Estado de Salud de la Glándula Mamaria en Argentina en los Ultimos 25 Años. FAVE Sección Cienc. Vet. 2005;4 doi: 10.14409/favecv.v4i1/2.1413. DOI
Davies P.L., Leigh J.A., Bradley A.J., Archer S.C., Emes R.D., Green M.J. Molecular Epidemiology of Streptococcus uberis clinical mastitis in dairy herds: Strain heterogeneity and transmission. J. Clin. Microbiol. 2016;54:68–74. doi: 10.1128/JCM.01583-15. PubMed DOI PMC
Ginn P., Mansell L., Rakich P. Jubb, Kennedy, and Palmer’s Pathology of Domestic Animals. 5th ed. Elsevier; Oxford, UK: 2007. pp. 553–781.
Cooper J.E. Veterinary Aspects of Captive Birds of Prey. Standfast Press; London, UK: 1973. pp. 1–256.
Van Boeckel T.P., Brower C., Gilbert M., Grenfell B.T., Levin S.A., Robinson T.P., Teillant A., Laxminarayan R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA. 2015;112:5649–5654. doi: 10.1073/pnas.1503141112. PubMed DOI PMC
Chang Q., Wang W., Regev-Yochay G., Lipsitch M., Hanage W.P. Antibiotics in agriculture and the risk to human health: How worried should we be? Evol. Appl. 2015;8:240–247. doi: 10.1111/eva.12185. PubMed DOI PMC
Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2020. [(accessed on 3 March 2021)]; Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2018-trends-2010-2018-tenth-esvac-report_en.pdf.
Johnson A.P. Methicillin-resistant Staphylococcus aureus: The European landscape. J. Antimicrob. Chemother. 2011;66:43–48. doi: 10.1093/jac/dkr076. PubMed DOI
Michalova E., Schlegelova J. Tetracyclines in veterinary medicine and bacterial resistance to them. Vet. Med. 2004;49:79. doi: 10.17221/5681-VETMED. DOI
Page S., Gautier P. Use of antimicrobial agents in livestock. Rev. Sci. Tech. OIE. 2012;31:145. doi: 10.20506/rst.31.1.2106. PubMed DOI
Apley M.D., Coetzee J.F. Antimicrobial Therapy in Veterinary Medicine. 5th ed. Wiley-Blackwell; Hoboken, NJ, USA: 2013. pp. 495–518.
Rayner C., Munckhof W. Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. Intern. Med. J. 2005;35:3–16. doi: 10.1111/j.1444-0903.2005.00976.x. PubMed DOI
Clark D. Proceedings of the New Zealand Society of Animal Production. New Zealand Society of Animal Production; Hamilton, New Zealand: 2013. The changing nature of farm systems research.
World Health Statistics 2014. [(accessed on 24 March 2021)]; Available online: https://apps.who.int/iris/bitstream/handle/10665/112738/9789240692671_eng.pdf;jsessionid=B3BF04A1EE2E2AA0E05283475C89FE45?sequence=1.
Biswas S., Raoult D., Rolain J.M. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int. J. Antimicrob. Agents. 2008;32:207–220. doi: 10.1016/j.ijantimicag.2008.03.017. PubMed DOI
D’Costa V.M., McGrann K.M., Hughes D.W., Wright G.D. Sampling the antibiotic resistome. Science. 2006;311:374–377. doi: 10.1126/science.1120800. PubMed DOI
Blair J.M., Webber M.A., Baylay A.J., Ogbolu D.O., Piddock L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015;13:42–51. doi: 10.1038/nrmicro3380. PubMed DOI
Rammelkamp C.H., Maxon T. Resistance of Staphylococcus aureus to the action of penicillin. Exp. Biol. Med. 1942;51:386–389. doi: 10.3181/00379727-51-13986. DOI
Andam C.P., Fournier G.P., Gogarten J.P. Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol. Rev. 2011;35:756–767. doi: 10.1111/j.1574-6976.2011.00274.x. PubMed DOI
van Hoek A.H., Mevius D., Guerra B., Mullany P., Roberts A.P., Henk J.M. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011;203 doi: 10.3389/fmicb.2011.00203. PubMed DOI PMC
Lindsay J.A. Genomic variation and evolution of Staphylococcus aureus. Int. J. Med Microbiol. 2010;300:98–103. doi: 10.1016/j.ijmm.2009.08.013. PubMed DOI
Craft K.M., Nguyen J.M., Berg L.J., Townsend S.D. Methicillin-resistant Staphylococcus aureus (MRSA): Antibiotic-resistance and the biofilm phenotype. MedChemComm. 2019;10:1231–1241. doi: 10.1039/C9MD00044E. PubMed DOI PMC
Scherr T.D., Heim C.E., Morrison J.M., Kielian T. Hiding in plain sight: Interplay between staphylococcal biofilms and host immunity. Front. Immunol. 2014;5 doi: 10.3389/fimmu.2014.00037. PubMed DOI PMC
Singh R., Ray P., Das A., Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Antimicrob. Chemother. 2010;65:1955–1958. doi: 10.1093/jac/dkq257. PubMed DOI
De la Fuente-Núnez C., Reffuveille F., Fernández L., Hancock R.E.W. Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 2013;16:580–589. doi: 10.1016/j.mib.2013.06.013. PubMed DOI
Dortet L., Anguel N., Fortineau N., Richard C., Nordmann P. In vivo acquired daptomycin resistance during treatment of methicillin-resistant Staphylococcus aureus endocarditis. Int. J. Infect. Dis. 2013;17:1076–1077. doi: 10.1016/j.ijid.2013.02.019. PubMed DOI
McGuinness W.A., Malachowa N., DeLeo F.R. Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017;90:269–281. PubMed PMC
Chambers H.F., DeLeo F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009;7:629–641. doi: 10.1038/nrmicro2200. PubMed DOI PMC
Appelbaum P.C. Reduced glycopeptide susceptibility in methicillin-resistant Staphyloccocus aureus (MRSA) Int. J. Antimicrob. Agents. 2007;30:398–408. doi: 10.1016/j.ijantimicag.2007.07.011. PubMed DOI
Francia M.V., Clewell D.B. Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: Identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol. Microbiol. 2002;45:375–395. doi: 10.1046/j.1365-2958.2002.03007.x. PubMed DOI
Tenover F.C., Biddle J.W., Lancaster M.V. Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus. Emerg. Infect. Dis. 2001;7:327–332. doi: 10.3201/eid0702.010237. PubMed DOI PMC
De Oliveira L.P., Barros L.S.S., Silva V.C., Cirquiera M.G. Study of Staphylococcus aureus in raw and pasteurized milk consumed in the Reconcavo area of the State of Bahia, Brazil. J. Food Process. Technol. 2011 doi: 10.4172/2157-7110.1000128. DOI
Nöremark M., Frössling J., Lewerin S.S. Application of routines that contribute to on-farm biosecurity as reported by Swedish livestock farmers. Transbound. Emerg. Dis. 2010;57:225–236. doi: 10.1111/j.1865-1682.2010.01140.x. PubMed DOI
Gibson G.R., Probert H.M., Loo J.V., Rastall R.A., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004;17:259–275. doi: 10.1079/NRR200479. PubMed DOI
Bomba A., Jonecová Z., Koscova J., Nemcova R. The improvement of probiotics efficacy by synergistically acting components of natural origin: A review. Biologia. 2006;61:729–734. doi: 10.2478/s11756-006-0149-y. DOI
Lemke S.L., Mayura K., Reeves W.R., Wang N., Fickey C., Phillips T.D. Investigation of organophilic montmorillonite clay inclusion in zearalenonecontaminated diets using the mouse uterine weight bioassay. J. Toxicol. Environ. Health. 2001;62:243–258. doi: 10.1080/009841001459405. PubMed DOI
Toghyani M., Toghyani M., Gheisari A., Ghalamkari G., Eghbalsaied S. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immuneresponses, serum biochemical and haematological parameters in broiler chicks. Livest. Sci. 2011;138:167–173. doi: 10.1016/j.livsci.2010.12.018. DOI
Bretaudeau L., Tremblais K., Aubrit F., Meichenin M., Arnaud I. Good manufacturing practice (GMP) compliance for phage therapy medicinal products. Front. Microbiol. 2020;11 doi: 10.3389/fmicb.2020.01161. PubMed DOI PMC
Ngassam-Tchamba C., Duprez J.N., Fergestad M., De Visscher A., L’Abee-Lund T., De Vliegher S., Wasteson Y., Touzain F., Blanchard Y., Lavigne R., et al. In Vitro and in Vivo assessment of phage therapy against Staphylococcus aureus causing bovine mastitis. J. Glob. Antimicrob. Resist. 2020;22:762–770. doi: 10.1016/j.jgar.2020.06.020. PubMed DOI
Milho C., Silva M.D., Sillankorva S., Harper D.R. Biofilm applications of bacteriophages. In: Harper D.R., Abedon S.T., Burrowes B.H., McConville M.L., editors. Bacteriophages. Springer International Publishing; Cham, Switzerland: 2019. pp. 1–3.
Islam A., Takagi M., Fukuyama K., Komatsu R., Albarracin L., Nochi T., Suda Y., Ikeda-Ohtsubo W., Rutten V., Eden W., et al. Transcriptome analysis of the inflammatory responses of bovine mammary epithelial cells: Exploring immunomodulatory target genes for bovine mastitis. Pathogens. 2020;9:200. doi: 10.3390/pathogens9030200. PubMed DOI PMC
Betts J.W., Hornsey M., La Ragione R.M. 2018. Novel antibacterials: Alternatives to traditional antibiotics. Adv. Microb. Physiol. 2018;73:123–169. doi: 10.1016/bs.ampbs.2018.06.001. PubMed DOI
Rasoanaivo P., Wright C.W., Willcox M.L., Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011;10 doi: 10.1186/1475-2875-10-S1-S4. PubMed DOI PMC
Wagner H., Ulrich-Merzenich G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine. 2009;16:97–110. doi: 10.1016/j.phymed.2008.12.018. PubMed DOI
Hirt H.M., M´Pia B. Natural Medicine in the Tropics 1: Foundation Text: Tropical Plants as a Source of Health Care: Production Medicines and Cosmetics. 3rd ed. Anamed; Winnenden, Germany: 2008.
Ceasar L.K., Cech N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019;36:869–888. doi: 10.1039/C9NP00011A. PubMed DOI PMC
Barbosa F., Pinto E., Kijjoa A., Pinto M.M., Sousa E. Targeting antimicrobial drug resistance with marine natural products. Int. J. Antimicrob. Agents. 2020;56 doi: 10.1016/j.ijantimicag.2020.106005. PubMed DOI
Solecki R.S. Shanidar IV, a Neanderthal flower burial in northern Iraq. Science. 1975;190:880–881. doi: 10.1126/science.190.4217.880. DOI
Mahady G.B. Medicinal plants for the prevention and treatment of bacterial infections. Curr. Pharm. Des. 2005;11:2405–2427. doi: 10.2174/1381612054367481. PubMed DOI
Watzl B., Leitzmann C. Bioaktive Substanzen in Lebensmitteln. Georg Thieme Verlag; New York, NY, USA: 2005. pp. 1–254.
Kamboh A., Arain M.A., Mughal M.J., Zaman A., Arain Z.M., Soomro A.H. Flavonoids: Health promoting phytochemicals for animal production-a review. J. Anim. Health Prod. 2015;3:6–13. doi: 10.14737/journal.jahp/2015/3.1.6.13. DOI
Maver T., Kurečič M., Smrke D.M., Kleinschek K.S., Maver U. Herbal Medicine. IntechOpen; London, UK: 2018. pp. 121–150. DOI
Assob J.C., Kamga H.L., Nsagha D.S., Njunda A.L., Nde P.F., Asongalem E.A., Njouendou A.J., Sandjon B., Penlap V.B. Antimicrobial and toxicological activities of five medicinal plant species from Cameroon Traditional Medicine. BMC Complementary Altern. Med. 2011;11:1–11. doi: 10.1186/1472-6882-11-70. PubMed DOI PMC
Schmid K., Ivemeyer S., Vogl C., Klarer F., Meier B., Hamburger M., Walkenhorst M. Traditional use of herbal remedies in livestock by farmers in 3 Swiss cantons (Aargau, Zurich, Schaffhausen) Complementary Med. Res. 2012;19:125–136. doi: 10.1159/000339336. PubMed DOI
Poutaraud A., Michelot-Antalik A., Plantureux S. Grasslands: A source of secondary metabolites for livestock health. J. Agric. Food Chem. 2017;65:6535–6553. doi: 10.1021/acs.jafc.7b00425. PubMed DOI
Hahn N.I. Are phytoestrogens nature’s cure for what ails us? A look at the research. J. Acad. Nutr. Diet. 1998;98:974–976. doi: 10.1016/S0002-8223(98)00223-5. PubMed DOI
Bassolé I.H.N., Juliani H.R. Essential oils in combination and their antimicrobial properties. Molecules. 2012;17:3989–4006. doi: 10.3390/molecules17043989. PubMed DOI PMC
Ji X., Yang M., Or K.H., Yim W.S., Zuo Z. Tissue accumulations of toxic Aconitum alkaloids after short-term and long-term oral administrations of clinically used radix Aconiti lateralis preparations in rats. Toxins. 2019;11:353. doi: 10.3390/toxins11060353. PubMed DOI PMC
Bush L., Fannin F. Alkaloids. In: Fribourg H.A., Hannaway D.B., West C.P., editors. Tall Fescue for the Twenty-first Century. 3rd ed. Vol. 53. Agronomy Monographs; Madison, WI, USA: 2009. pp. 229–249.
Yang L., Stöckigt J. Trends for diverse production strategies of plant medicinal alkaloids. Nat. Prod. Rep. 2010;27:1469–1479. doi: 10.1039/c005378c. PubMed DOI
Cushnie T.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC
Mithöfer A., Boland W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012;63:431–450. doi: 10.1146/annurev-arplant-042110-103854. PubMed DOI
Qing Z.-X., Huang J.-L., Yang X.-Y., Liu J.-H., Cao H.-L., Xiang F., Cheng P., Zeng J.-G. Anticancer and reversing multidrug resistance activities of natural isoquinoline alkaloids and their structure-activity relationship. Curr. Med. Chem. 2018;25:5088–5114. doi: 10.2174/0929867324666170920125135. PubMed DOI
Ünsal Ç., Özbek B., Sariyar G., Mat A. Antimicrobial activity of four annual Papaver species growing in Turkey. Pharm. Biol. 2009;47:4–6. doi: 10.1080/13880200802392468. DOI
Kostic D.A., Mitic S.S., Mitić M., Zarubica A.R., Velickovic J.M., Dordevic A.S., Randelovic S.S. Phenolic contents, antioxidant and antimicrobial activity of Papaver rhoeas L. extracts from Southeast Serbia. J. Med. Plants Res. 2010;4:1727–1732. doi: 10.5897/JMPR10.121. DOI
Zuo G.Y., Meng F.Y., Hao X.Y., Zhang Y.L., Wang G.C., Xu G.L. Antibacterial alkaloids from Chelidonium majus Linn (Papaveraceae) against clinical isolates of methicillin-resistant Staphylococcus aureus. J. Pharm. Pharm. Sci. 2008;11:90–94. doi: 10.18433/J3D30Q. PubMed DOI
Bhattacharjee I., Chatterjee S.K., Chandra G. Isolation and identification of antibacterial components in seed extracts of Argemone mexicana L. (Papaveraceae) Asian Pac. J. Trop. Med. 2010;3:547–551. doi: 10.1016/S1995-7645(10)60132-0. PubMed DOI
Kim M.G., Lee S.E., Yang J.Y., Lee H.S. Antimicrobial potentials of active component Isolated from Citrullus colocynthis fruits and structure-activity relationships of its analogues against foodborne bacteria. J. Sci. Food Agric. 2014;94:2529–2533. doi: 10.1002/jsfa.6590. PubMed DOI
Pan X., Bligh S.W., Smith E. Quinolone alkaloids from fructus Euodiae show activity against methicillin-resistant Staphylococcus aureus. Phytother. Res. 2014;28:305–307. doi: 10.1002/ptr.4987. PubMed DOI
Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI
Hamoud R., Reichling J., Wink M. Synergistic antibacterial activity of the combination of the alkaloid Aanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria. J. Pharm. Pharmacol. 2015;67:264–273. doi: 10.1111/jphp.12326. PubMed DOI
Tan K.K., Khoo T.J., Rajagopal M., Wiart C. Antibacterial alkaloids from Artabotrys crassifolius Hook.f. & Thomson. Nat. Prod. Res. 2015;29:2346–2349. doi: 10.1080/14786419.2015.1013954. PubMed DOI
Rong Q., Xu M., Dong Q., Zhang Y., Li Y., Ye G., Zhao L. In vitro and In vivo bactericidal activity of Tinospora sagittate (Oliv.) Gagnep. var. craveniana (S.Y.Hu) Lo and its main effective component, palmatine, against porcine Helicobacter Pylori. BMC Complementary Altern. Med. 2016;16:331. doi: 10.1186/s12906-016-1310-y. PubMed DOI PMC
Azimi G., Hakakian A., Ghanadian M., Joumaa A., Alamian S. Bioassay-directed isolation of quaternary benzylisoquinolines from Berberis integerrima with bactericidal activity against Brucella abortus. Res. Pharm. Sci. 2018;13 doi: 10.4103/1735-5362.223797. PubMed DOI PMC
Yu J., Yin T.P., Wang J.P., Mei R.F., Cai L., Ding Z.T. A new C20-diterpenoid alkaloid from the lateral roots of Aconitum carmichaeli. Nat. Prod. Res. 2017;31:228–232. doi: 10.1080/14786419.2016.1219863. PubMed DOI
Clinical and Laboratory Standards Institute . Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fifth Informational Supplement. CLSI; Wayne, PA, USA: 2015. pp. 1–240.
Duffy C.F., Power R.F. Antioxidant and antimicrobial properties of some Chinese plant extracts. Int. J. Antimicrob. Agents. 2001;17:527–529. doi: 10.1016/S0924-8579(01)00326-0. PubMed DOI
Cushnie T.T., Cushnie B., Lamb A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents. 2014;44:377–386. doi: 10.1016/j.ijantimicag.2014.06.001. PubMed DOI
Iwasa K., Nishiyama Y., Ichimaru M., Moriyasu M., Kim H.S., Wataya Y., Yamori T., Takashi T., Lee D.U. Structure-activity relationships of quaternary protoberberine alkaloids having an antimalarial activity. Eur. J. Med. Chem. 1999;34:1077–1083. doi: 10.1016/S0223-5234(99)00127-0. DOI
Tong N., Zhang J., Chen Y., Li Z., Luo Y., Zuo H., Zhao X. Berberine sensitizes mutliple human cancer cells to the anticancer effects of doxorubicin in vitro. Oncol. Lett. 2012;3:1263–1267. doi: 10.3892/ol.2012.644. PubMed DOI PMC
López T.A., Bianchini M.L. Biochemistry ofhemlock (Conium maculatum L.) alkaloids and their acute and chronic toxicity in livestock. A review. Toxicon. 1999;37:841–865. doi: 10.1016/S0041-0101(98)00204-9. PubMed DOI
Green B.T., Lee S.T., Gardner D.R., Welch K.D., Cook D. Bioactive alkaloids from plants poisonous to livestock in North America. Isr. J. Chem. 2019;59:351–359. doi: 10.1002/ijch.201800169. DOI
Daglia M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012;23:174–181. doi: 10.1016/j.copbio.2011.08.007. PubMed DOI
Srivastava J.K., Gupta S. Extraction, characterization, stability and biological activity of flavonoids isolated from chamomile flowers. Mol. Cell. Pharmacol. 2009;1:138. doi: 10.4255/mcpharmacol.09.18. PubMed DOI PMC
Cushnie T.T., Lamb A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents. 2011;38:99–107. doi: 10.1016/j.ijantimicag.2011.02.014. PubMed DOI
Saavedra M.J., Borges A., Dias C., Aires A., Bennett R.N., Rosa E.S., Simões M. Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria. Med. Chem. 2010;6:174–183. doi: 10.2174/1573406411006030174. PubMed DOI
Nirmal N.P., Panichayupakaranant P. Anti-Propionibacterium acnes assay-guided purification of Brazilin and preparation of Brazilin rich extract from Caesalpinia sappan heartwood. Pharm. Biol. 2014;52:1204–1207. doi: 10.3109/13880209.2014.884607. PubMed DOI
Nirmal N.P., Panichayupakaranant P. Antioxidant, antibacterial, and antiinflammatory activities of standardized Brazilin-rich Caesalpinia sappan extract. Pharm. Biol. 2015;53:1339–1343. doi: 10.3109/13880209.2014.982295. PubMed DOI
Dey D., Ray R., Hazra B. Antimicrobial activity of pomegranate fruit constituents against drug-resistant Mycobacterium tuberculosis and Beta-lactamase producing Klebsiella pneumoniae. Pharm. Biol. 2015;53:1474–1480. doi: 10.3109/13880209.2014.986687. PubMed DOI
Shahzad M., Millhouse E., Culshaw S., Edwards C.A., Ramage G., Combet E. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct. 2015;6:719–729. doi: 10.1039/C4FO01087F. PubMed DOI
Yuan M., Shi D.Z., Wang T.Y., Zheng S.Q., Liu L.J., Sun Z.X., Wang R.F., Ding Y. Transformation of trollioside and isoquercetin by human intestinal flora in vitro. Chin. J. Nat. Med. 2016;14:220–226. doi: 10.1016/S1875-5364(16)30019-X. PubMed DOI
De Freitas V.A., Glories Y., Monique A. Developmental changes of procyanidins in grapes of red Vitis vinifera varieties and their composition in respective wines. Am. J. Enol. Vitic. 2000;51:397–403.
Ultee A., Bennik M.H.J., Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002;68:1561–1568. doi: 10.1128/AEM.68.4.1561-1568.2002. PubMed DOI PMC
Dorman H.D., Deans S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000;88:308–316. doi: 10.1046/j.1365-2672.2000.00969.x. PubMed DOI
Babu K.S., Babu T.H., Srinivas P.V., Sastry B.S., Kishore K.H., Murty U.S.N., Rao J.M. Synthesis and in vitro study of novel 7-O-acyl derivatives of Oroxylin A as antibacterial agents. Bioorganic Med. Chem. Lett. 2005;15:3953–3956. doi: 10.1016/j.bmcl.2005.05.045. PubMed DOI
Silva L.N., Zimmer K.R., Macedo A.J., Trentin D.S. Plant natural products targeting bacterial virulence factors. Chem. Rev. 2016;116:9162–9236. doi: 10.1021/acs.chemrev.6b00184. PubMed DOI
Manner S., Skogman M., Goeres D., Vuorela P., Fallarero A. Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int. J. Mol. Sci. 2013;14:19434–19451. doi: 10.3390/ijms141019434. PubMed DOI PMC
Slobodníková L., Fialová S., Hupková H., Grančai D. Rosmarinic acid interaction with planktonic and biofilm Staphylococcus aureus. Nat. Prod. Commun. 2013;8 doi: 10.1177/1934578X1300801223. PubMed DOI
Wallock-Richards D.J., Marles-Wright J., Clarke D.J., Maitra A., Dodds M., Hanley B., Campopiano D.J. Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chem. Commun. 2015;51:10483–10485. doi: 10.1039/C5CC01816A. PubMed DOI
Vikram A., Jayaprakasha G.K., Jesudhasan P.R., Pillai S.D., Patil B.S. Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J. Appl. Microbiol. 2010;109:515–527. doi: 10.1111/j.1365-2672.2010.04677.x. PubMed DOI
Ding T., Gu L., Liu X. Influence of steam pressure on chemical changes of heat-treated mongolian pine wood. BioResources. 2011;6:1880–1889.
Lin R.-D., Chin Y.-P., Hou W.C., Lee M.-H. The effects of antibiotics combined with natural polyphenols against clinical methicillin-resistant Staphylococcus aureus (MRSA) Planta Med. 2008;74:840–846. doi: 10.1055/s-2008-1074559. PubMed DOI
Hu Z.-Q., Zhao W.H., Asano N., Yoda Y., Hara Y., Shimamura T. Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002;46:558–560. doi: 10.1128/AAC.46.2.558-560.2002. PubMed DOI PMC
Fan P., Lou H. Effects of polyphenols from grape seeds on oxidative damage to cellular DNA. Mol. Cell. Biochem. 2004;267:67–74. doi: 10.1023/B:MCBI.0000049366.75461.00. PubMed DOI
Ugartondo V., Mitjans M., Touriño S., Torres J.L. Fractions from grape and pine. Chem. Res. Toxicol. 2007;20:1543–1548. doi: 10.1021/tx700253y. PubMed DOI
Fu L., Xu X.-R., Gan R.-Y., Zhang Y., Xia E.-Q., Li H.-B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011;129:345–350. doi: 10.1016/j.foodchem.2011.04.079. PubMed DOI
Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 1991;30:3875–3883. doi: 10.1016/0031-9422(91)83426-L. DOI
Kang N.J., Shin S.H., Lee H.J., Lee K.W. Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol. Ther. 2011;130:310–324. doi: 10.1016/j.pharmthera.2011.02.004. PubMed DOI
Buzzini P., Arapitsas P., Goretti M., Branda E., Turchetti B., Pinelli P., Romani A. Antimicrobial and antiviral activity of hydrolysable tannins. Mini-Rev. Med. Chem. 2008;8 doi: 10.2174/138955708786140990. PubMed DOI
McLeod M. Plant tannins-their role in forage quality. Nutr. Abstr. Rev. 1974;44:803–815.
Smith A.H., Mackie R.I. Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl. Environ. Microbiol. 2004;70:1104–1115. doi: 10.1128/AEM.70.2.1104-1115.2004. PubMed DOI PMC
Chung K.T., Lu Z., Chou M. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 1998;36:1053–1060. doi: 10.1016/S0278-6915(98)00086-6. PubMed DOI
Taguri T., Tanaka T., Kouno I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull. 2004;27:1965–1969. doi: 10.1248/bpb.27.1965. PubMed DOI
Widsten P., Cruz C.D., Fletcher G.C., Pajak M.A., McGhie T.K. Tannins and extracts of fruit byproducts: Antibacterial activity against foodborne bacteria and antioxidant capacity. J. Agric. Food Chem. 2014;62:11146–11156. doi: 10.1021/jf503819t. PubMed DOI
Xu Y., Shi C., Wu Q., Zheng Z., Liu P., Li G., Peng X., Xia X. Antimicrobial activity of punicalagin against Staphylococcus aureus and its effect on biofilm formation. Foodborne Pathog. Dis. 2017;14:282–287. doi: 10.1089/fpd.2016.2226. PubMed DOI
Salih E.Y., Julkunen-Tiitto R., Lampi A.M., Kanninen M., Luukkanen O., Sipi M., Lehtonen M., Vuorela H., Fyhrquist P. Terminalia laxiflora and Terminalia brownii contain a broad spectrum of antimycobacterial compounds including ellagitannins, ellagic acid derivatives, triterpenes, fatty acids and fatty alcohols. J. Ethnopharmacol. 2018;227:82–96. doi: 10.1016/j.jep.2018.04.030. PubMed DOI
Alejo-Armijo A., Glibota N., Frías M.P., Altarejos J., Gálvez A., Ortega-Morente E., Salido S. Antimicrobial and antibiofilm activities of procyanidins extracted from laurel wood against a selection of foodborne microorganisms. Int. J. Food Sci. Technol. 2017;52:679–686. doi: 10.1111/ijfs.13321. DOI
Chan C.L., Gan R.Y., Shah N.P., Corke H. Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria. Food Control. 2018;92:437–443. doi: 10.1016/j.foodcont.2018.05.032. DOI
Chung K.T., Lu Z., Chou M.W. Growth inhibition of selected food-borne bacteria by tannic acid, propyl gallate and related compounds. Lett. Appl. Microbiol. 1993;17:29–32. doi: 10.1111/j.1472-765X.1993.tb01428.x. DOI
Xiao X.-N., Wang F., Yuan Y.-T., Liu J., Liu Y.-Z., Yi X. Antibacterial activity and mode of action of dihydromyricetin from Ampelopsis grossedentata leaves against food-borne bacteria. Molecules. 2019;24:2831. doi: 10.3390/molecules24152831. PubMed DOI PMC
Hancock V., Dahl M., Vejborg R.M., Klemm P. Dietary plant components ellagic acid and tannic acid inhibit Escherichia coli biofilm formation. J. Med. Microbiol. 2010;59:496–498. doi: 10.1099/jmm.0.013680-0. PubMed DOI
Payne D.E., Martin N.R., Parzych K.R., Rickard A.H., Underwood A., Boles B.R. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infect. Immun. 2013;81:496–504. doi: 10.1128/IAI.00877-12. PubMed DOI PMC
Farha A.K., Yang Q.-Q., Kim G., Zhang D., Mavumengwana V., Habimana O., Li H.-B., Corke H., Gan R.-Y. Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control. 2020;112 doi: 10.1016/j.foodcont.2020.107154. DOI
Lesschaeve I., Noble A.C. Polyphenols: Factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nutr. 2005;81:330–335. doi: 10.1093/ajcn/81.1.330S. PubMed DOI
Hagerman A.E., Riedl K.M., Jones G.A., Sovik K.N., Ritchard N.T., Hartzfeld P.W., Riechel T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 1998;46:1887–1892. doi: 10.1021/jf970975b. PubMed DOI
Pisseri F., Bertoli A., Pistelli L. Essential oils in medicine: Principles of therapy. Parassitologia. 2008;50:89–91. doi: 10.1016/j.apjtb.2015.05.007. PubMed DOI
Dhifi W., Bellili S., Jazi S., Bahloul N., Mnif W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines. 2016;3:25. doi: 10.3390/medicines3040025. PubMed DOI PMC
Lambert R., Skandamis P.N., Coote P.J., Nychas G.J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001;91:453–462. doi: 10.1046/j.1365-2672.2001.01428.x. PubMed DOI
Baydar H., Sagdic O., Ozkan G., Karadogan T. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control. 2004;15:169–172. doi: 10.1016/S0956-7135(03)00028-8. DOI
Nurdin E., Amelia T., Makin M. The effects of herbs on milk yield and milk quality of mastitis dairy cow. J. Indones. Trop. Anim. Agric. 2011;36:104–108. doi: 10.14710/jitaa.36.2.104-108. DOI
Giannenas I., Bonos E., Christaki E., Florou-Paneri P.C. Essential oils and their applications in animal nutrition. Med. Aromat. Plants. 2013;2:1–12. doi: 10.4172/2167-0412.1000140. DOI
Seow Y.X., Yeo C.R., Chung H.L., Yuk H.-G. Plant essential oils as active antimicrobial agents. Crit. Rev. Food Sci. Nutr. 2014;54:625–644. doi: 10.1080/10408398.2011.599504. PubMed DOI
Hyldgaard M., Mygind T., Meyer R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012;3 doi: 10.3389/fmicb.2012.00012. PubMed DOI PMC
Cox S., Mann C.M., Markham J.L., Bell H.C., Gustafson J.E., Warmington J.R., Wyllie S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil) J. Appl. Microbiol. 2000;88:170–175. doi: 10.1046/j.1365-2672.2000.00943.x. PubMed DOI
Denyer S., Hugo W. Biocide-induced damage to the bacterial cytoplasmic membrane. In: Deyner S.P., Hugo W., editors. Mechanism of Action of Chemical Biocides. Vol. 27. Blackwell Scientific Publications; Oxford, UK: 1991. pp. 171–187.
Chauhan A.K., Kang S.C. Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Res. Microbiol. 2014;165:559–565. doi: 10.1016/j.resmic.2014.07.001. PubMed DOI
Hippenstiel F., Abdel-Wareth A.A.A., Kehraus S., Südekum K.-H. Effects of selected herbs and essential oils, and their active components on feed intake and performance of broilers-a review. Arch. Für Geflügelkunde. 2011;75:226–234.
Mourey A., Canillac N. Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control. 2002;13:289–292. doi: 10.1016/S0956-7135(02)00026-9. DOI
Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI
Edris A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007;21:308–323. doi: 10.1002/ptr.2072. PubMed DOI
Rosato A., Piarulli M., Corbo F., Muraglia M., Carone A., Vitali M., Vitali C. In vitro synergistic action of certain combinations of gentamicin and essential oils. Curr. Med. Chem. 2010;17:3289–3295. doi: 10.2174/092986710792231996. PubMed DOI
Langeveld W.T., Veldhuizen E.J.A., Burt S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014;40:76–94. doi: 10.3109/1040841X.2013.763219. PubMed DOI
Horky P., Skalickova S., Smerkova K., Skladanka J. Essential oils as a feed additives: Pharmacokinetics and potential toxicity in monogastric animals. Animals. 2019;9:352. doi: 10.3390/ani9060352. PubMed DOI PMC
Al-Azem D.A., Malik Al-Saadi S.A.A., Al-Derawi K.H. The protective effects of Syzygium aromaticum essential oil extract against methotrexate induced hepatic and renal toxicity in rats. J. Pure Appl. Microbiol. 2019;13:505–515. doi: 10.22207/JPAM.13.1.57. DOI
Fateh A.H., Mohamed Z., Chik Z., Alsalahi A., Md Zin S.R., Alshawsh M.A. Prenatal developmental toxicity evaluation of Verbena officinalis during gestation period in female Sprague-Dawley rats. Chem. Biol. Interact. 2019;304:28–42. doi: 10.1016/j.cbi.2019.02.016. PubMed DOI
Muhlemann J.K., Klempien A., Dudareva N. Floral volatiles: From biosynthesis to function. Plant Cell Environ. 2014;37:1936–1949. doi: 10.1111/pce.12314. PubMed DOI
Paduch R., Kandefer-Szerszeń M., Trytek M., Fiedurek J. Terpenes: Substances useful in human healthcare. Arch. Immunol. Et Ther. Exp. 2007;55:315–327. doi: 10.1007/s00005-007-0039-1. PubMed DOI
Harborne J.B. Plant Defenses against Mammalian Herbivory. CRC Press; Boca Raton, FL, USA: 1991. The chemical basis of plant defense; pp. 45–59.
Dudareva N., Klempien A., Muhlemann J.K., Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. Found. 2013;198:16–32. doi: 10.1111/nph.12145. PubMed DOI
Raut J.S., Karuppayil S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014;62:250–264. doi: 10.1016/j.indcrop.2014.05.055. DOI
Singh B., Sharma R.A. Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech. 2015;5:129–151. doi: 10.1007/s13205-014-0220-2. PubMed DOI PMC
Porras G., Chassagne F., Lyles J.T., Marquez L., Dettweiler M., Salam A.M., Samarakoon T., Shabih S., Farrokhi D.R., Quave C.L. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem. Rev. 2020;121:3495–3560. doi: 10.1021/acs.chemrev.0c00922. PubMed DOI PMC
Lopez-Romero J.C., Gonzáles-Ríos H., Borges A., Simões M. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evid. Based Complementary Altern. Med. 2015 doi: 10.1155/2015/795435. PubMed DOI PMC
Sparg S., Light M.E., van Staden J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004;94:219–243. doi: 10.1016/j.jep.2004.05.016. PubMed DOI
Carelli M., Biazzi E., Panara F., Tava A., Scaramelli L., Porceddu A., Graham N., Odoardi M., Piano E., Arcioni S., et al. Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. Plant Cell. 2011;23:3070–3081. doi: 10.1105/tpc.111.087312. PubMed DOI PMC
Chaieb I. Saponins as insecticides: A review. Tunis. J. Plant Prot. 2010;5:39–50.
Mbaveng A.T., Ndontsa B.L., Kuete V., Nguekeu Y.M.M., Celik I., Mbouangouere R., Tane P., Efferth T. A naturally occuring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death. Phytomedicine. 2018;43:78–85. doi: 10.1016/j.phymed.2018.03.035. PubMed DOI
Lanzotti V. Bioactive polar natural compounds from garlic and onions. Phytochem. Rev. 2012;11:179–196. doi: 10.1007/s11101-012-9247-3. DOI
Nabinejad A. Antibacterial effects of Saponaria officinalis extracts against avian pathogenic Escherichia coli (APEC) Afr. J. Agric. Res. 2013;8:2068–2071. doi: 10.5897/AJAR11.1390. DOI
Guil-Guerrero J., Ramos L., Moreno C., Zúñiga-Paredes J.C., Carlosama-Yepez M., Ruales P. Antimicrobial activity of plant-food by-products: A review focusing on the tropics. Livest. Sci. 2016;189:32–49. doi: 10.1016/j.livsci.2016.04.021. DOI
Qin X.-J., Sun D.-J., Chen C.X., Hua Y., He L., Liu H.-Y. Steroidal saponins with antimicrobial activity fromstems and leaves of Paris polyphylla var. yunnanensis. Steroids. 2012;77:1242–1248. doi: 10.1016/j.steroids.2012.07.007. PubMed DOI
Fouedjou R.T., Teponno R.B., Quassinti L., Bramucci M., Petrelli D., Vitali L.A., Fiorini D., Tapondjou L.A., Barboni L. Steroidal saponins from the leaves of Cordyline fruticose (L.) A. Chev. And their cytotoxic and antimicrobial activity. Phytochem. Lett. 2014;7:62–68. doi: 10.1016/j.phytol.2013.10.001. DOI
Srivastava G., Jain R., Vyas N., Mehta A., Kachhwaha S., Kotharim S.L. Antimicrobial activity of the methanolic extract, fractions and isolated compounds from Citrullus colocynthis (L.) Schrad. Int. J. Pharma Bio Sci. 2013;4:825–833.
Fomogne-Fodjo M.C., Ndinteh D.T., Olivier D.K., Kempgens P., van Vuuren S., Krause R.W. Secondary metabolites from Tetracera potatoria stem bark with anti-mycobacterial activity. J. Ethnopharmacol. 2017;195:238–245. doi: 10.1016/j.jep.2016.11.027. PubMed DOI
Tiam E.R., Ngono Bikobo D.S., Abouem A.Z.A., MbabiNyemeck N., Moni Ndedi E.D.F., Betote Diboue P.H., Nyegue M.A., Atchade A.T., Emmanuel Pegnyemb D., Bochet C.G., et al. Secondary metabolites from Triclisia gilletii (De Wild) staner (Menispermaceae) with antimycobacterial activity against Mycobacterium tuberculosis. Nat. Prod. Res. 2019;33:642–650. doi: 10.1080/14786419.2017.1402324. PubMed DOI
Saboora A., Sajjadi S.-T., Mohammadi P., Fallahi Z. Antibacterial activity of different composition of aglycone and glycosidic saponins from tuber of Cyclamen coum Miller. Ind. Crop. Prod. 2019;140 doi: 10.1016/j.indcrop.2019.111662. DOI
Korchowiec B., Gorczyca M., Wojszko K., Janikowska M., Henry M., Rogalska E. Impact of two different saponins on the organization of model lipid membranes. Biochim. Biophys. Acta (BBA) Biomembr. 2015;1848:1963–1973. doi: 10.1016/j.bbamem.2015.06.007. PubMed DOI
Avato P., Bucci R., Tava A., Vitali C., Rosato A., Bialy Z., Jurzysta M. Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2006;20:454–457. doi: 10.1002/ptr.1876. PubMed DOI
Khan A.A., Naqvi T.S., Naqvi M.S. Identification of phytosaponins as novel biodynamic agents: An updated overview. Asian J. Exp. Biol. Sci. 2012;3:459–467.
Martins A., Andrea V., Viveiros M., Molnar J., Hohmann J., Amaral L. Antibacterial properties of compounds isolated from Carpobrotus edulis. Int. J. Antimicrob. Agents. 2011;37:438–444. doi: 10.1016/j.ijantimicag.2011.01.016. PubMed DOI
Grudniak A.M., Kurek A., Szarlak J., Woslak K. Oleanolic and ursolic acids influence affect the expression of the cysteine regulon and the stress response in Escherichia coli. Curr. Microbiol. 2011;62:1331–1336. doi: 10.1007/s00284-010-9866-0. PubMed DOI
Kurek A., Grudniak A.M., Szwed M., Klicka A., Samluk L., Wolska K., Janiszowska W., Popowska M. Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie Van Leeuwenhoek. 2010;97:61–68. doi: 10.1007/s10482-009-9388-6. PubMed DOI
Ablat A., Mohamad J., Awang K., Shilpi J.A., Arya A. Evaluation of antidiabetic and antioxidant properties of Brucea javanica seed. Sci. World J. 2014;1 doi: 10.1155/2014/786130. PubMed DOI PMC
Coleman J.J., Okoli I., Tegos G.P., Holson E.B., Wagner F.F., Hamblin M.R., Mylonakis E. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem. Biol. 2010;5:321–332. doi: 10.1021/cb900243b. PubMed DOI PMC
Tamokou J., Mbaveng A.T., Kuete V. Antimicrobial activities of African medicinal spices and vegetables. Med. Spices Veg. Afr. 2017:207–237. doi: 10.1016/B978-0-12-809286-6.00008-X. DOI
Tagousop C.N., Tamokou J.- de-D.; Kengne, I.Ch.; Ngnokam, D.; Voutquenne-Nazabadioko, L. Antimicrobial activities of saponins from Melanthera elliptica and their synergistic effects with antibiotics against pathogenic phenotypes. Chem. Cent. J. 2018;12:1–9. doi: 10.1186/s13065-018-0466-6. PubMed DOI PMC
Yoshikawa M., Morikawa T., Nakamura S., Li N., Li X., Matsuda H. Bioactive saponins and glycosides. XXV. Acylated oleanane- type triterpene saponins from the seeds of tea plant (Camellia sinensis) Chem. Pharm. Bull. 2007;55:57–63. doi: 10.1248/cpb.55.57. PubMed DOI
Poojary M.M., Putnik P., Kovačević D.B., Barba F.J., Lorenzo J.M., Dias D.A., Shpigelman A. Stability and extraction of bioactive sulfur compounds from Allium genus processed by traditional and innovative technologies. J. Food Compos. Anal. 2017;61:28–39. doi: 10.1016/j.jfca.2017.04.007. DOI
Stoewsand G. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables—A review. Food Chem. Toxicol. 1995;33:537–543. doi: 10.1016/0278-6915(95)00017-V. PubMed DOI
Sagdic O., Tornuk F. Antimicrobial properties of organosulfur compounds. In: Patra A.K., editor. Dietary Phytochemicals and Microbes. Springer; Dordrecht, The Netherlands: 2012. pp. 127–156. DOI
Borlinghaus J., Albrecht F., Gruhlke M.C.H., Neachukwu I.D., Slusarenko A.J. Allicin: Chemistry and biological properties. Molecules. 2014;19:12591–12618. doi: 10.3390/molecules190812591. PubMed DOI PMC
Cavallito C.J., Bailey J.H. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J. Am. Chem. Soc. 1944;66:1950–1951. doi: 10.1021/ja01239a048. DOI
Leontiev R., Hohaus N., Gruhlke M.C.H., Slusarenko A.J. A comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Sci. Rep. 2018;8:1–19. doi: 10.1038/s41598-018-25154-9. PubMed DOI PMC
Du L., Halkier B.A. Biosynthesis of glucosinolates in the developing silique walls and seeds of Sinapis alba. Phytochemistry. 1998;48:1145–1150. doi: 10.1016/S0031-9422(97)00877-7. DOI
Brabban A., Edwards C. The effects of glucosinolates and their hydrolysis products on microbial growth. J. Appl. Bacteriol. 1995;79:171–177. doi: 10.1111/j.1365-2672.1995.tb00931.x. PubMed DOI
Marchese A., Barbieri R., Sanches-Silva A., Daglia M. Antifungal and antibacterial activities of allicin: A review. Trends Food Sci. Technol. 2016;52 doi: 10.1016/j.tifs.2016.03.010. DOI
Salehi B., Zucca P., Orhan I.E., Azzini E., Adetunji C.O., Mohammed S.A., Banerjee S.K., Sharopov F., Rigano D., Sharifi-Rad J., et al. Allicin and health: A comprehensive review. Trends Food Sci. Technol. 2019;86:502–516. doi: 10.1016/j.tifs.2019.03.003. DOI
Shaikh H., Shaikh S. Phytochemistry and neuroprotective effect of Alium sativum: An exhaustive review. World J. Adv. Sci. Res. 2020;3:155–168.
Wallock-Richards D., Doherty C.J., Doherty L., Clarke D.J., Place M., Govan J.R., Campopiano D.J. Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacian complex. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0112726. PubMed DOI PMC
Hameed H.M.A., Islam M.M., Chhotaray C., Wang C., Liu Y., Tan Y., Li X., Tan S., Delorme V., Yew W.W., et al. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front. Cell. Infect. Microbiol. 2018;8 doi: 10.3389/fcimb.2018.00114. PubMed DOI PMC
Sorlozano-Puerto A., Albertuz-Crespo M., Lopez-Machado I., Ariza-Romero J.J., Banos-Arjona A., Exposito-Ruiz M., Gutierrez-Fernandez J. In vitro antibacterial activity of propyl-propane-thiosulfinate and propyl-propane-thiosulfonate derived from Allium spp. against gram-negative and gram-positive multi-drug-resistant bacteria isolated from human samples. BioMed Res. Int. 2018 doi: 10.1155/2018/7861207. PubMed DOI PMC
Da Cruz R.C., Denardi L.B., Mossmann N.J., Piana M., Alves S.H., de Campos M.M. Antimicrobial activity and chromatographic analysis of extracts from Tropaeolum pentaphyllum Lam. tubers. Molecules. 2016;21:566. doi: 10.3390/molecules21050566. PubMed DOI PMC
Fujisawa H., Watanabe K., Suma K., Origuchi K., Matsufuji H., Seki T., Ariga T. Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds. Biosci. Biotechnol. Biochem. 2009;73:1948–1955. doi: 10.1271/bbb.90096. PubMed DOI
Kim J.W., Huh J.E., Kyung S.H., Kyung K.H. Antimicrobial activity of alk (en) yl sulfides found in essential oils of garlic and onion. Food Sci. Biotechnol. 2004;13:235–239.
Lanzotti V., Scala F., Bonanomi G. Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochem. Rev. 2014;13:769–791. doi: 10.1007/s11101-014-9366-0. DOI
Feldberg R., Chang S., Kotik A., Nadler M., Neuwirth Z., Sundstrom D., Thompson N. In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob. Agents Chemother. 1988;32:1763–1768. doi: 10.1128/AAC.32.12.1763. PubMed DOI PMC
Tsao R., Peterson C.J., Coats J.R. Glucosinolate breakdown products as insect fumigants and their effect on carbon dioxide emission of insects. BMC Ecol. 2002;2:1–7. doi: 10.1186/1472-6785-2-1. PubMed DOI PMC
Choo S., Chin V.K., Wong E.H., Madhavan P., Tay S.T., Yong P.V.C., Chong P.P. Review: Antimicrobial properties of allicin used alone or in combination with other medications. Folia Microbiol. 2020;65:451–465. doi: 10.1007/s12223-020-00786-5. PubMed DOI
Cai Y., Wang R., Pei F., Liang B.-B. Antibacterial activity of allicin alone and in combination with β-lactams against Staphylococcus spp. and Pseudomonas Aeruginosa. J. Antibiot. 2007;60:335–338. doi: 10.1038/ja.2007.45. PubMed DOI
Tajima H., Kimoto H., Taketo A. Specific antimicrobial synergism of synthetic hydroxy isothiocyanates with aminoglycoside antibiotics. Biosci. Biotechnol. Biochem. 2001;65:1886–1888. doi: 10.1271/bbb.65.1886. PubMed DOI
Tajima H., Kimoto H., Taketo A. Paradoxical effect of synthetic hydroxy isothiocyanates on antimicrobial action of aminoglycosides. Biosci. Biotechnol. Biochem. 2003;67:1844–1846. doi: 10.1271/bbb.67.1844. PubMed DOI
Banerjee S.K., Mukherjee P.K., Maulik S.K. Garlic as an antioxidant: The good, the bad and the ugly. Phytother. Res. 2003;17:97–106. doi: 10.1002/ptr.1281. PubMed DOI
Alnaqeeb M.A., Thomson M., Bordia T., Ali M. Histopathological effects of garlic on liver and lung of rats. Toxicol. Lett. 1996;85:157–164. doi: 10.1016/0378-4274(96)03658-2. PubMed DOI
McGaw L.J., Eloff J.N. Ethnoveterinary use of southern African plants and scientific evaluation of their medicinal properties. J. Ethnopharmacol. 2008;119:559–574. doi: 10.1016/j.jep.2008.06.013. PubMed DOI
Hamadani A., Ganai N.A., Shanaz S., Khan N., Bukhari S.S., Iqbal Z., Ayaz A. Usage of phytochemicals in veterinary practice. J. Entomol. Zool. Stud. 2018;6:1997–2000.
Ökmen G., Cantekin Z., Alam M.I., Türkcan O., Ergün Y. Antibacterial and antioxidant activities of Liquidambar orientalis Mill. various extracts against bacterial pathogens causing mastitis. Turk. J. Agric. 2017;5:883. doi: 10.24925/turjaf.v5i8.883-887.1163. DOI
Disler M., Schmid K., Ivemeyer S., Hamburger M., Walkenhorst M. Traditional homemade herbal remedies used by farmers of northern Switzerland to treat skin alterations and wounds in livestock. Planta Med. 2013;79 doi: 10.1055/s-0033-1352332. DOI
Bartha S.G., Quave C.L., Balogh L., Papp N. Ethnoveterinary practices of Covasna County, Transylvania, Romania. J. Ethnobiol. Ethnomedicine. 2015;11 doi: 10.1186/s13002-015-0020-8. PubMed DOI PMC
Chusri S., Tongrod S., Saising J., Mordmuang A., Limsuwan S., Sanpinit S., Voravuthikunchai S.P. Antibacterial and anti-biofilm effects of polyherbal formula and its constituents against coagulase-negative -positive staphylococci isolated from bovine mastitis. J. Appl. Anim. Res. 2017;45:364–372. doi: 10.1080/09712119.2016.1193021. DOI
Bruschi P., Urso V., Solazzo D., Tonini M., Signorini M.A. Traditional knowledge on ethno-veterinary and fodder plants in South Angola: An ethnobotanic field survey in Mopane woodlands in Bibala, Namibe province. J. Agric. Environ. Int. Dev. 2017;111:105–121. doi: 10.12895/jaeid.2017111.559. DOI
Kalayou S., Haileselassie M., Gebre-egziabher G., Tiku´e T., Sahle S., Taddele G.H., Ghezu M. In-vitro antimicrobial activity screening of some ethnoveterinary medicinal plants traditionally used against mastitis, wound and gastrointestinal tract complication in Tigray Region, Ethiopia. Asian Pac. J. Trop. Biomed. 2012;2:516–522. doi: 10.1016/S2221-1691(12)60088-4. PubMed DOI PMC
Pattanayak S., Dutta M.K., Debnath P.K., Bandyopadhyay S.K., Saha B., Maity D. A study on ethno-medicinal use of some commonly available plants for wound healing and related activities in three southern districts of West Bengal, India. Explor. Anim. Med Res. 2012;2:97–110.
Mishra D. Cattle wounds and ethnoveterinary medicine: A study in Polasara block, Ganjam district, Orissa, India. Indian J. Tradit. Knowl. 2013;12:62–65.
Parthiban R., Vijayakumar S., Prabhu S., Gnanaselvam E., Yabesh M. Quantitative traditional knowledge of medicinal plants used to treat livestock diseases from Kudavasal taluk of Thiruvarur district, Tamil Nadu, India. Rev. Bras. Farmacogn. 2015;26:109–121. doi: 10.1016/j.bjp.2015.07.016. DOI
Mubarack H.M., Doss A., Dhanabalan R., Venkataswamy R. Activity of some selected medicinal plant extracts against bovine mastitis pathogens. J. Anim. Vet. Adv. 2011;10:738–741. doi: 10.3923/javaa.2011.738.741. DOI
Tamilselvan N., Thirumalai T., Elumalai E.K., Balaji R., David E. Pharmacognosy of Coccinia grandis: A review. Asian Pac. J. Trop. Biomed. 2011;1:299–302. doi: 10.1016/S2221-1691(11)60176-7. DOI
Migliato K.F., Chiosini M.A., Mendonca F.A., Esquisatto M.A., Salgado H.R., Santos G.M. Effect of glycolic extract of Dillenia indica L. combined with microcurrent stimulation on experimental lesions in Wistar Rats. Wounds: A Compend. Clin. Res. Pract. 2011;23:111–120. PubMed
Wenbin L., Kandhare A.D., Mukherjee A.A., Bodhankar S.L. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-β/Smads and Ang-1/Tie-2 signaling pathways. Excli J. 2018;17:399–419. doi: 10.17179/excli2018-1036. PubMed DOI PMC
Chakraborty T., Gupta S., Nair A., Chauhan S., Saini V. Wound healing potential of insulin-loaded nanoemulsion with Aloe vera gel in diabetic rats. J. Drug Deliv. Sci. Technol. 2021;64 doi: 10.1016/j.jddst.2021.102601. DOI
Oryan A., Alemzadeh E., Eskandari M.H. Kefir accelerates burn wound healing through inducing fibroblast cell migration in vitro and modulating the expression of IL-1β, TGF-β1, and bFGF. Probiotics Antimicrob. Proteins. 2018;11:874–886. doi: 10.1007/s12602-018-9435-6. PubMed DOI
Marcelline A.N., Timothée O.A., Martial S.V., Aminata A.O., Armand K.A., Claude K.A.L. In vivo antistaphylococcal activity evaluation of Ocimum gratissimum Linn. (Lamiaceae) ophthalmic ointment. J. Adv. Med. Med Res. 2020:44–57. doi: 10.9734/jammr/2020/v32i2030680. DOI
Hase P., Digraskar S., Ravikanth K., Dandale M., Maini S. Management of subclinical mastitis with mastilep gel and herbal spray (AV/AMS/15) Int. J. Pharm. Pharmacol. 2013;2:64–67.
Abboud M., Rammouz R., Jammal B., Sleiman M. In vitro and in vivo antimicrobial activity of two essential oils Thymus vulgaris and Lavandula angustifolia against bovine Staphylococcus and Streptococcus mastitis pathogen. Middle East J. Agric. 2015;4:975–983.
Cho B.-W., Cha C.N., Lee S.-O., Kim M.-J., Park J.-Y., Yoo C.Y., Son S.-E., Kim S., Lee H.-J. Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by Staphylococcus aureus and Escherichia coli. Korean J. Vet. Res. 2015;55:253–257. doi: 10.14405/kjvr.2015.55.4.253. DOI
Kebede B., Negese T. Evaluation of acaricidal effect of ethnoveterinary medicinal plant by in vivo and in vitro against Sarcoptes scabiei var. caprae of infected goats in North Shoa, Oromia regional state, Ethiopia. J. Tradit. Med. Clin. Naturop. 2017;6 doi: 10.4172/2573-4555.1000201. DOI
Prenylated Flavonoids in Topical Infections and Wound Healing