Essential Oils as a Feed Additives: Pharmacokinetics and Potential Toxicity in Monogastric Animals

. 2019 Jun 13 ; 9 (6) : . [epub] 20190613

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31200591

Grantová podpora
TH04030172 Technologická Agentura České Republiky

Essential oils (EOs) are now a hot topic in finding modern substitutes for antibiotics. Many studies have shown positive results and confirmed their high antibacterial activity both in vitro and in vivo. Deservedly, there is an attempt to use EOs as a substitute for antibiotics, which are currently limited by legislation in animal breeding. Given the potential of EOs, studies on their fate in the body need to be summarized. The content of EO's active substances varies depending on growing conditions and consequently on processing and storage. Their content also changes dynamically during the passage through the gastrointestinal tract and their effective concentration can be noticeably diluted at their place of action (small intestine and colon). Based on the solubility of the individual EO's active substances, they are eliminated from the body at different rates. Despite a strong antimicrobial effect, some oils can be toxic to the body and cause damage to the liver, kidneys, or gastrointestinal tissues. Reproductive toxicity has been reported for Origanum vulgare and Mentha arvensis. Several publications also address the effect on the genome. It has been observed that EOs can show both genoprotective effects (Syzygium aromaticum) and genotoxicity, as is the case of Cinnamomum camphor. This review shows that although oils are mainly studied as promising antimicrobials, it is also important to assess animal safety.

Zobrazit více v PubMed

Qiao Z.Y., Dai S.N., Zhang Q.J., Yang W.G., Chen J. Predicting cytotoxicity of essential oils from traditional chinese medicine with machine learning technique. Basic Clin. Pharmacol. Toxicol. 2018;123:29. PubMed

Horky P., Skladanka J., Nevrkla P., Slama P. Effect of diet supplemented with antioxidants (selenium, copper, vitamins E and C) on antioxidant status and ejaculate quality of breeding boars. Ann. Anim. Sci. 2016;16:521–532. doi: 10.1515/aoas-2015-0085. DOI

Benelli G., Pavela R., Petrelli R., Cappellacci L., Canale A., Senthil-Nathan S., Maggi F. Not just popular spices! Essential oils from cuminum cyminum and pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind. Crop Prod. 2018;124:236–243. doi: 10.1016/j.indcrop.2018.07.048. DOI

Nazem V., Sabzalian M.R., Saeidi G., Rahimmalek M. Essential oil yield and composition and secondary metabolites in self- and open-pollinated populations of mint (Mentha spp.) Ind. Crop Prod. 2019;130:332–340. doi: 10.1016/j.indcrop.2018.12.018. DOI

Tammar S., Salem N., Rebey I.B., Sriti J., Hammami M., Khammassi S., Marzouk B., Ksouri R., Msaada K. Regional effect on essential oil composition and antimicrobial activity of Thymus capitatus L. J. Essent. Oil Res. 2019;31:129–137. doi: 10.1080/10412905.2018.1539415. DOI

Ricroch A.E., Henard-Damave M.C. Next biotech plants: New traits, crops, developers and technologies for addressing global challenges. Crit. Rev. Biotechnol. 2016;36:675–690. doi: 10.3109/07388551.2015.1004521. PubMed DOI

Bechtold U. Plant life in extreme environments: How do you improve drought tolerance? Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.00543. PubMed DOI PMC

Glass S., Fanzo J. Genetic modification technology for nutrition and improving diets: An ethical perspective. Curr. Opin. Biotechnol. 2017;44:46–51. doi: 10.1016/j.copbio.2016.11.005. PubMed DOI

Horky P., Skalickova S., Urbankova L., Baholet D., Kociova S., Bytesnikova Z., Kabourkova E., Lackova Z., Cernei N., Gagic M., et al. Zincphosphate-based nanoparticles as a novel antibacterial agent: In vivo study on rats after dietary exposure. J. Anim. Sci. Biotechnol. 2019;10 doi: 10.1186/s40104-019-0319-8. PubMed DOI PMC

Cobellis G., Trabalza-Marinucci M., Yu Z.T. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ. 2016;545:556–568. doi: 10.1016/j.scitotenv.2015.12.103. PubMed DOI

Reyes-Jurado F., Franco-Vega A., Ramirez-Corona N., Palou E., Lopez-Malo A. Essential oils: Antimicrobial activities, extraction methods, and their modeling. Food Eng. Rev. 2015;7:275–297. doi: 10.1007/s12393-014-9099-2. DOI

Omonijo F.A., Ni L.J., Gong J., Wang Q., Lahaye L., Yang C.B. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr. 2018;4:126–136. doi: 10.1016/j.aninu.2017.09.001. PubMed DOI PMC

Rao J.J., Chen B.C., McClements D.J. Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Ann. Rev. Food Sci. Technol. 2019;10:365–387. doi: 10.1146/annurev-food-032818-121727. PubMed DOI

Tohidi B., Rahimmalek M., Arzani A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017;220:153–161. doi: 10.1016/j.foodchem.2016.09.203. PubMed DOI

Li Y., Fu X.F., Ma X., Geng S.J., Jiang X.M., Huang Q.C., Hu C.H., Han X.Y. Intestinal microbiome-metabolome responses to essential oils in piglets. Front. Microbiol. 2018;9:1988. doi: 10.3389/fmicb.2018.01988. PubMed DOI PMC

Li D.H., Wu H.J., Dou H.T., Guo L., Huang W. Microcapsule of sweet orange essential oil changes gut microbiota in diet-induced obese rats. Biochem. Biophys. Res. Commun. 2018;505:991–995. doi: 10.1016/j.bbrc.2018.10.035. PubMed DOI

Asli M.Y., Khorshidian N., Mortazavian A.M., Hosseini H. A review on the impact of herbal extracts and essential oils on viability of probiotics in fermented milks. Curr. Nutr. Food Sci. 2017;13:6–15. doi: 10.2174/1573401312666161017143415. DOI

Zhai H.X., Liu H., Wang S.K., Wu J.L., Kluenter A.M. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018;4:179–186. doi: 10.1016/j.aninu.2018.01.005. PubMed DOI PMC

Horky P., Tmejova K., Kensova R., Cernei N., Kudr J., Ruttkay-Nedecky B., Sapakova E., Adam V., Kizek R. Effect of heat stress on the antioxidant activity of boar ejaculate revealed by spectroscopic and electrochemical methods. Int. J. Electrochem. Sci. 2015;10:6610–6626.

Patra A.K., Amasheh S., Aschenbach J.R. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2018:1–30. doi: 10.1080/10408398.2018.1486284. PubMed DOI

Abd Al-Azem D., Al-Derawi K.H., Al-Saadi S.A.A.M. The protective effects of Syzygium aromaticum essential oil extract against methotrexate induced hepatic and renal toxicity in rats. J. Pure Appl. Microbiol. 2019;13:505–515. doi: 10.22207/JPAM.13.1.57. DOI

Bellassoued K., Ghrab F., Hamed H., Kallel R., van Pelt J., Lahyani A., Ayadi F.M., El Feki A. Protective effect of essential oil of Cinnamomum verum bark on hepatic and renal toxicity induced by carbon tetrachloride in rats. Appl. Physiol. Nutr. Metab. 2019;44:606–618. doi: 10.1139/apnm-2018-0246. PubMed DOI

Bouzenna H., Samout N., Dhibi S., Mbarki S., Akermi S., Khdhiri A., Elfeki A., Hfaiedh N. Protective effect of essential oil from Citrus limon against aspirin-induced toxicity in rats. Hum. Exp. Toxicol. 2019;38:499–509. doi: 10.1177/0960327118819044. PubMed DOI

Rao Z., Xu F., Wen T., Wang F., Sang W., Zeng N. Protective effects of essential oils from Rimulus cinnamon on endotoxin poisoning mice. Biomed. Pharmacother. 2018;101:304–310. doi: 10.1016/j.biopha.2018.02.092. PubMed DOI

Cheng C.S., Xia M., Zhang X.M., Wang C., Jiang S.W., Peng J. Supplementing oregano essential oil in a reduced-protein diet improves growth performance and nutrient digestibility by modulating intestinal bacteria, intestinal morphology, and antioxidative capacity of growing-finishing pigs. Animals. 2018;8:159. doi: 10.3390/ani8090159. PubMed DOI PMC

Aziz Z.A.A., Ahmad A., Setapar S.H.M., Karakucuk A., Azim M.M., Lokhat D., Rafatullah M., Ganash M., Kamal M.A., Ashraf G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential—A review. Curr. Drug Metab. 2018;19:1100–1110. doi: 10.2174/1389200219666180723144850. PubMed DOI

Giacometti J., Kovacevic D.B., Putnik P., Gabric D., Bilusic T., Kresic G., Stulic V., Barba F.J., Chemat F., Barbosa-Canovas G., et al. Extraction of bioactive compounds and essential oils from Mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018;113:245–262. doi: 10.1016/j.foodres.2018.06.036. PubMed DOI

Topal U., Sasaki M., Goto M., Otles S. Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. Int. J. Food Sci. Nutr. 2008;59:619–634. doi: 10.1080/09637480701553816. PubMed DOI

Bozovic M., Navarra A., Garzoli S., Pepi F., Ragno R. Esential oils extraction: A 24-hour steam distillation systematic methodology. Nat. Prod. Res. 2017;31:2387–2396. doi: 10.1080/14786419.2017.1309534. PubMed DOI

Ajila C., Brar K., Verma M., Tyagi R.D., Godbout S., Valero J.R. Extraction and analysis of Polyphenols: Recent trends. Crit. Rev. Biotechnol. 2010;31:227–249. doi: 10.3109/07388551.2010.513677. PubMed DOI

Tavakolpour Y., Moosavi-Nasab M., Niakousari M., Haghighi-Manesh S., Hashemi S.M.B., Khaneghah A.M. Comparison of four extraction methods for essential oil from Thymus daenensis subsp. lancifoliusand chemical analysis of extracted essential oil. J. Food Process. Preserv. 2017;41:e13046. doi: 10.1111/jfpp.13046. DOI

Hashemi S.M.B., Khaneghah A.M., Koubaa M., Barba F.J., Abedi E., Niakousari M., Tavakoli J. Extraction of essential oil from Aloysia citriodora palau leaves using continuous and pulsed ultrasound: Kinetics, antioxidant activity and antimicrobial properties. Process Biochem. 2018;65:197–204. doi: 10.1016/j.procbio.2017.10.020. DOI

Asl R.M.Z., Niakousari M., Gahruie H.H., Saharkhiz M.J., Khaneghah A.M. Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss.: Antioxidant and antimicrobial characteristics. Food Res. Int. 2018;107:462–469. PubMed

Golmakani M.T., Moayyedi M. Comparison of heat and mass transfer of different microwave-assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel. Food Sci. Nutr. 2015;3:506–518. doi: 10.1002/fsn3.240. PubMed DOI PMC

Jaimand K., Rezaee M.B., Homami S. Comparison extraction methods of essential oils of Rosmarinus officinalis L. In Iran by microwave assisted water distillation; water distillation and steam distillation. J. Med. Plants By-Prod. JMPB. 2018;7:9–14.

Konoz E., Hajikhani N., Abbasi A. Comparison of two methods for extraction of dill essential oil by gas chromatography-mass spectrometry coupled with chemometric resolution techniques. Int. J. Food Prop. 2017;20:S1002–S1015. doi: 10.1080/10942912.2017.1326054. DOI

Nekoei M., Mohammadhosseini M. Chemical composition of the essential oils and volatiles of Salvia leriifolia by three different extraction methods prior to gas chromatographic-mass spectrometric determination: Comparison of HD with SFME and HS-SPME. J. Essent. Oil Bear. Plants. 2017;20:410–425. doi: 10.1080/0972060X.2017.1305918. DOI

Samejo M.Q., Memon S., Bhanger M.I., Khan K.M. Comparison of chemical composition of Aerva javanica seed essential oils obtained by different extraction methods. Pak. J. Pharm. Sci. 2013;26:757–760. PubMed

Lanari D., Marcotullio M.C., Neri A. A design of experiment approach for ionic liquid-based extraction of toxic components-minimized essential oil from Myristica fragrans Houtt. Fruits. Molecules. 2018;23:2817. doi: 10.3390/molecules23112817. PubMed DOI PMC

Jia B., Xu L.X., Guan W.Q., Lin Q., Brennan C., Yan R.X., Zhao H. Effect of citronella essential oil fumigation on sprout suppression and quality of potato tubers during storage. Food Chem. 2019;284:254–258. doi: 10.1016/j.foodchem.2019.01.119. PubMed DOI

Perna A., Simonetti A., Gambacorta E. Phenolic content and antioxidant activity of donkey milk kefir fortified with sulla honey and rosemary essential oil during refrigerated storage. Int. J. Dairy Technol. 2019;72:74–81. doi: 10.1111/1471-0307.12561. DOI

Gottschalk P., Brodesser B., Poncelet D., Jaeger H., Rennhofer H., Cole S. Impact of storage on the physico-chemical properties of microparticles comprising a hydrogenated vegetable oil matrix and different essential oil concentrations. J. Microencapsul. 2019;36:72–82. doi: 10.1080/02652048.2019.1599456. PubMed DOI

Sivakumar D., Bautista-Banos S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014;64:27–37. doi: 10.1016/j.cropro.2014.05.012. DOI

Ami A.S., Bhat S.H., Hanif S., Hadi S.M. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: A putative mechanism for anticancer properties. FEBS Lett. 2006;580:533–538. PubMed

Bakkali F., Averbeck S., Averbeck D., Waomar M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI

Huang H.C., Wang H.F., Yih K.H., Chang L.Z., Chang T.M. The dual antimelanogenic and antioxidant activities of the essential oil extracted from the leaves of Acorus macrospadiceus (Yamamoto) F. N. Wei et Y. K. Li. Evid.-Based Complement. Altern. Med. 2012;2012 doi: 10.1155/2012/781280. PubMed DOI PMC

Naeem A., Abbas T., Ali T.M., Hasnain A. Effect of storage on oxidation stability of essential oils derived from culinary herbs and spices. J. Food Meas. Charact. 2018;12:877–883. doi: 10.1007/s11694-017-9702-3. DOI

Turek C., Stintzing F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013;12:40–53. doi: 10.1111/1541-4337.12006. DOI

Chadli S., Mourad L., El-Hadj A., Aissou M., Boudjema F. Impact of tween 60 on physicochemical properties and stability of Pistacia lentiscus fruit oil-in-water emulsion at a semi-low temperature. J. Dispers. Sci. Technol. 2019;40:346–354. doi: 10.1080/01932691.2018.1468266. DOI

Olmedo R., Ribotta P., Grosso N.R. Decrease of chemical and volatile oxidation indicators using oregano essential oil combined with BHT in sunflower oil under accelerated storage conditions. J. Food Sci. Technol. 2019;56:2522–2535. doi: 10.1007/s13197-019-03731-8. PubMed DOI PMC

Alloun K., Benchabane O., Hazzit M., Mouhouche F., Baaliouamer A., Chikhoune A., Benchabane A. Effect of gamma ray irradiation on chemical composition, antioxidant, antimicrobial, and insecticidal activities of Thymus pallescens essential oil. Acta Chromatogr. 2019;31:57–62. doi: 10.1556/1326.2017.00346. DOI

Kfoury M., Auezova L., Greige-Gerges H., Fourmentin S. Encapsulation in cyclodextrins to widen the applications of essential oils. Environ. Chem. Lett. 2019;17:129–143. doi: 10.1007/s10311-018-0783-y. DOI

Noori S., Zeynali F., Almasi H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control. 2018;84:312–320. doi: 10.1016/j.foodcont.2017.08.015. DOI

De Groot A.C., Schmidt E. Essential oils, part III: Chemical composition. Dermatitis. 2016;27:161–169. doi: 10.1097/DER.0000000000000193. PubMed DOI

Rubio L., Macia A., Motilva M.J. Impact of various factors on pharmacokinetics of bioactive polyphenols: An overview. Curr. Drug Metab. 2014;15:62–76. doi: 10.2174/1389200214666131210144115. PubMed DOI

Rodriguez-Concepcion M., Avalos J., Bonet M.L., Boronat A., Gomez-Gomez L., Hornero-Mendez D., Limon M.C., Melendez-Martinez A.J., Olmedilla-Alonso B., Palou A., et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018;70:62–93. doi: 10.1016/j.plipres.2018.04.004. PubMed DOI

Papada E., Gioxari A., Brieudes V., Amerikanou C., Halabalaki M., Skaltsounis A.L., Smyrnioudis I., Kaliora A.C. Bioavailability of terpenes and postprandial effect on human antioxidant potential. An open-label study in healthy subjects. Mol. Nutr. Food Res. 2018;62 doi: 10.1002/mnfr.201700751. PubMed DOI

Liu Y.X., Zhang D., Wu Y.P., Wang D., Wei Y., Wu J.L., Ji B.P. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process. Int. J. Food Sci. Nutr. 2014;65:440–448. doi: 10.3109/09637486.2013.869798. PubMed DOI

Williamson G., Kay C.D., Crozier A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 2018;17:1054–1112. doi: 10.1111/1541-4337.12351. PubMed DOI

Lin S.L., Wang Z.Y., Lam K.L., Zeng S.X., Tan B.K., Hu J.M. Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites. Food Nutr. Res. 2019;63 doi: 10.29219/fnr.v63.1518. PubMed DOI PMC

Pinto J., Spinola V., Llorent-Martinez E.J., Fernandez-de Cordova M.L., Molina-Garcia L., Castilho P.C. Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Res. Int. 2017;100:404–410. doi: 10.1016/j.foodres.2017.03.044. PubMed DOI

Schindler G., Kohlert C., Bischoff R., Maerz R., Ismail C., Veit M., Hahn E., Brinkhaus B. Pharmacokinetics and bioavailability of an essential oil compound (thymol) after oral administration. Focus Altern. Complement. Ther. 2001;6:90–91. doi: 10.1111/j.2042-7166.2001.tb02833.x. DOI

Michiels J., Missotten J., Dierick N., Fremaut D., Maene P., De Smet S. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets. J. Sci. Food Agric. 2008;88:2371–2381. doi: 10.1002/jsfa.3358. DOI

Li W., Hong B., Li Z., Li Q., Bi K. GC-MS method for determination and pharmacokinetic study of seven volatile constituents in rat plasma after oral administration of the essential oil of Rhizoma Curcumae. J. Pharm Biomed. Anal. 2018;149:577–585. doi: 10.1016/j.jpba.2017.11.058. PubMed DOI

Mason S.E., Mullen K.A.E., Anderson K.L., Washburn S.P., Yeatts J.L., Baynes R.E. Pharmacokinetic analysis of thymol, carvacrol and diallyl disulfide after intramammary and topical applications in healthy organic dairy cattle. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2017;34:740–749. doi: 10.1080/19440049.2017.1285056. PubMed DOI

Allaoua M., Etienne P., Noirot V., Carayon J.L., Tene N., Bonnafe E., Treilhou M. Pharmacokinetic and antimicrobial activity of a new carvacrol-based product against a human pathogen, Campylobacter jejuni. J. Appl. Microbiol. 2018;125:1162–1174. doi: 10.1111/jam.13915. PubMed DOI

Ciganda C., Laborde A. Herbal infusions used for induced abortion. J. Toxicol. Clin. Toxicol. 2003;41:235–239. doi: 10.1081/CLT-120021104. PubMed DOI

Laios K., Lytsikas-Sarlis P., Manes K., Kontaxaki M.I., Karamanou M., Androutsos G. Drugs for mental illnesses in ancient greek medicine. Psychiatrike. 2019;30:58–65. doi: 10.22365/jpsych.2019.301.58. PubMed DOI

Woolf A. Essential oil poisoning. J. Toxicol. Clin. Toxicol. 1999;37:721–727. doi: 10.1081/CLT-100102450. PubMed DOI

Franklyne J., Mukherjee A., Chandrasekaran N. Essential oil micro- and nanoemulsions: Promising roles in antimicrobial therapy targeting human pathogens. Lett. Appl. Microbiol. 2016;63:322–334. doi: 10.1111/lam.12631. PubMed DOI

Izgi M.N., Telci I., Elmastas M. Variation in essential oil composition of coriander (Coriandrum sativum L.) varieties cultivated in two different ecologies. J. Essent. Oil Res. 2017;29:494–498. doi: 10.1080/10412905.2017.1363090. DOI

Haeseler G., Maue D., Grosskreutz J., Bufler J., Nentwig B., Piepenbrock S., Dengler R., Leuwer M. Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur. J. Anaesthesiol. 2002;19:571–579. doi: 10.1097/00003643-200208000-00005. PubMed DOI

Elmi A., Ventrella D., Barone F., Carnevali G., Filippini G., Pisi A., Benvenuti S., Scozzoli M., Bacci M.L. In vitro effects of tea tree oil (Melaleuca Alternifolia essential oil) and its principal component terpinen-4-ol on swine spermatozoa. Molecules. 2019;24:1071. doi: 10.3390/molecules24061071. PubMed DOI PMC

Elmi A., Ventrella D., Barone F., Filippini G., Benvenuti S., Pisi A., Scozzoli M., Bacci M.L. Thymbra capitata (L.) cav. and Rosmarinus officinalis (L.) essential oils: In vitro effects and toxicity on swine spermatozoa. Molecules. 2017;22:2162. doi: 10.3390/molecules22122162. PubMed DOI PMC

Touazi L., Aberkane B., Bellik Y., Moula N., Iguer-Ouada M. Effect of the essential oil of Rosmarinus officinalis (L.) on rooster sperm motility during 4 °C short-term storage. Vet. World. 2018;11:590–597. doi: 10.14202/vetworld.2018.590-597. PubMed DOI PMC

Ghorbani A., Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017;7:433–440. doi: 10.1016/j.jtcme.2016.12.014. PubMed DOI PMC

Atsumi T., Fujisawa S., Tonosaki K. A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicol. Vitr. 2005;19:1025–1033. doi: 10.1016/j.tiv.2005.04.012. PubMed DOI

Radulovic N.S., Gencic M.S., Stojanovic N.M., Randjelovic P.J., Stojanovic-Radic Z.Z., Stojiljkovic N.I. Toxic essential oils. Part V: Behaviour modulating and toxic properties of thujones and thujone-containing essential oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L. Food Chem. Toxicol. 2017;105:355–369. doi: 10.1016/j.fct.2017.04.044. PubMed DOI

Mesic A., Mahmutovic-Dizdarevic I., Tahirovic E., Durmisevic I., Eminovic I., Jerkovic-Mujkic A., Besta-Gajevic R. Evaluation of toxicological and antimicrobial activity of lavender and immortelle essential oils. Drug Chem. Toxicol. 2019:1–8. doi: 10.1080/01480545.2018.1538234. PubMed DOI

Houdkova M., Doskocil I., Urbanova K., Tulin E.K.C.B., Rondevaldova J., Tulin A.B., Kudera T., Tulin E.E., Zeleny V., Kokoska L. Evaluation of antipneumonic effect of Philippine essential oils using broth microdilution volatilization method and their lung fibroblasts toxicity. Nat. Prod. Commun. 2018;13:1059–1066. doi: 10.1177/1934578X1801300834. DOI

Houdkova M., Urbanova K., Doskocil I., Rondevaldova J., Novy P., Nguon S., Chrun R., Kokoska L. In vitro growth-inhibitory effect of cambodian essential oils against pneumonia causing bacteria in liquid and vapour phase and their toxicity to lung fibroblasts. S. Afr. J. Bot. 2018;118:85–97. doi: 10.1016/j.sajb.2018.06.005. DOI

Andrade M.A., Cardoso M.d.G., Prete P.S.C., Soares M.J., de Azeredo C.M.O., Trento M.V.C., Braga M.A., Marcussi S. Toxicological aspects of the essential oil from Cinnamodendron dinisii. Chem. Biodivers. 2018;15:e1800066. doi: 10.1002/cbdv.201800066. PubMed DOI

Duarte J.A., de Bairros Zambrano L.A., Quintana L.D., Rocha M.B., Schmitt E.G., Boligon A.A., Anraku de Campos M.M., Souza de Oliveira L.F., Machado M.M. Immunotoxicological evaluation of Schinus molle L. (Anacardiaceae) essential oil in lymphocytes and macrophages. Evid.-Based Complement. Altern. Med. 2018 doi: 10.1155/2018/6541583. PubMed DOI PMC

Binder S., Hanakova A., Tomankova K., Pizova K., Bajgar R., Manisova B., Kejlova K., Bendova H., Jirova D., Kolarova H. Adverse phototoxic effect of essential plant oils on NIH 3T3 cell line after UV light exposure. Cent. Eur. J. Public Health. 2016;24:234–240. doi: 10.21101/cejph.a4354. PubMed DOI

Yousefzadi M., Riahi-Madvar A., Hadian J., Rezaee F., Rafiee R. In vitro cytotoxic and antimicrobial activity of essential oil from Satureja sahendica. Toxicol. Environ. Chem. 2012;94:1735–1745. doi: 10.1080/02772248.2012.728606. DOI

Borges R.S., Ortiz B.L.S., Pereira A.C.M., Keita H., Carvalho J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019;229:29–45. doi: 10.1016/j.jep.2018.09.038. PubMed DOI

Barros F.J., Costa R.J.O., Cesario F., Rodrigues L.B., da Costa J.G.M., Coutinho H.D.M., Galvao H.B.F., de Menezes I.R.A. Activity of essential oils of Piper aduncum anf and Cinnamomum zeylanicum by evaluating osmotic and morphologic fragility of erythrocytes. Eur. J. Integr. Med. 2016;8:505–512. doi: 10.1016/j.eujim.2016.02.011. DOI

Kazemi M. Chemical composition and antimicrobial, antioxidant activities and anti-inflammatory potential of Achillea millefolium L., Anethum graveolens L., and Carum copticum L. essential oils. J. Herb. Med. 2015;5:217–222. doi: 10.1016/j.hermed.2015.09.001. DOI

Chikhoune A., Stouvenel L., Iguer-Ouada M., Hazzit M., Schmitt A., Lores P., Wolf J.P., Aissat K., Auger J., Vaiman D., et al. In-vitro effects of thymus munbyanus essential oil and thymol on human sperm motility and function. Reprod. Biomed. Online. 2015;31:411–420. doi: 10.1016/j.rbmo.2015.06.011. PubMed DOI

Yousefzadi M., Riahi-Madvar A., Hadian J., Rezaee F., Rafiee R., Biniaz M. Toxicity of essential oil of Satureja khuzistanica: In vitro cytotoxicity and anti-microbial activity. J. Immunotoxicol. 2014;11:50–55. doi: 10.3109/1547691X.2013.789939. PubMed DOI

Habibi E., Shokrzadeh M., Ahmadi A., Chabra A., Naghshvar F., Keshavarz-Maleki R. Genoprotective effects of Origanum vulgare ethanolic extract against cyclophosphamide-induced genotoxicity in mouse bone marrow cells. Pharm. Biol. 2015;53:92–97. doi: 10.3109/13880209.2014.910674. PubMed DOI

Kaur S., Kumar M., Kaur P., Kaur V., Kaur S. Modulatory effects of Cassia fistula fruits against free radicals and genotoxicity of mutagens. Food Chem. Toxicol. 2016;98:220–231. doi: 10.1016/j.fct.2016.10.027. PubMed DOI

Kalemba-Drozdz M., Cierniak A. Antioxidant and genoprotective properties of extracts from edible flowers. J. Food Nutr. Res. 2019;58:42–50.

Bakkali F., Averbeck S., Averbeck D., Zhiri A., Baudoux D., Idaomar M. Antigenotoxic effects of three essential oils in diploid yeast (Saccharomyces cerevisiae) after treatments with UVC radiation, 8-MOP plus UVA and MMS. Mutat. Res.-Genet. Toxicol. Environ. Mutagenesis. 2006;606:27–38. doi: 10.1016/j.mrgentox.2006.02.005. PubMed DOI

Hollenbach C.B., Bing R.S., Stedile R., da Silva Mello F.P., Schuch T.L., Alves Rodrigues M.R., de Mello F.B., Braga de Mello J.R. Reproductive toxicity assessment of Origanum vulgare essential oil on male Wistar rats. Acta Sci. Vet. 2015;43:1295.

Fateh A.H., Mohamed Z., Chik Z., Alsalahi A., Zin S.R.M., Alshawsh M.A. Prenatal developmental toxicity evaluation of Verbena officinalis during gestation period in female Sprague-Dawley rats. Chem.-Biol. Interact. 2019;304:28–42. doi: 10.1016/j.cbi.2019.02.016. PubMed DOI

Ghadirkhomi A., Safaeian L., Zolfaghari B., Ghazvini M.R.A., Rezaei P. Evaluation of acute and sub-acute toxicity of Pinus eldarica bark extract in Wistar rats. Avicenna J. Phytomed. 2016;6:558–566. PubMed PMC

Fallahi S., Beyranvand M., Mahmoudvand H., Nayebzadeh H., Kheirandish F., Jahanbakhsh S. Chemical composition, acute and sub-acute toxicity of Satureja khuzestanica essential oil in mice. Marmara Pharm. J. 2017;21:515–521. doi: 10.12991/marupj.318614. DOI

Lamichhane R., Lee K.-H., Pandeya P.R., Sung K.-K., Lee S., Kim Y.-K., Jung H.-J. Subcutaneous injection of myrrh essential oil in mice: Acute and subacute toxicity study. Evid.-Based Complement. Altern. Med. 2019 doi: 10.1155/2019/8497980. PubMed DOI PMC

Mishra A.K., Mishra A., Pragya, Chattopadhyay P. Screening of acute and sub-chronic dermal toxicity of Calendula officinalis L essential oil. Regul. Toxicol. Pharmacol. 2018;98:184–189. doi: 10.1016/j.yrtph.2018.07.027. PubMed DOI

Daneshbakhsh D., Asgarpanah J., Najafizadeh P., Rastegar T., Mousavi Z. Safety assessment of Mentha mozaffarianii essential oil: Acute and repeated toxicity studies. Iran. J. Med Sci. 2018;43:479–486. PubMed PMC

Jain N., Sharma M., Joshi S.C., Kaushik U. Chemical composition, toxicity and antidermatophytic activity of essential oil of Trachyspermum ammi. Indian J. Pharm. Sci. 2018;80:135–142. doi: 10.4172/pharmaceutical-sciences.1000338. DOI

Liaqat I., Riaz N., Saleem Q.-u.-A., Tahir H.M., Arshad M., Arshad N. Toxicological evaluation of essential oils from some plants of Rutaceae family. Evid.-Based Complement. Altern. Med. 2018 doi: 10.1155/2018/4394687. PubMed DOI PMC

Taghizadeh M., Ostad S.N., Asemi Z., Mahboubi M., Hejazi S., Sharafati-Chaleshtori R., Rashidi A., Akbari H., Sharifi N. Sub-chronic oral toxicity of Cuminum cyminum L.’s essential oil in female wistar rats. Regul. Toxicol. Pharmacol. 2017;88:138–143. doi: 10.1016/j.yrtph.2017.06.007. PubMed DOI

Judzentiene A., Garjonyte R. Compositional variability and toxic activity of Mugwort (Artemisia vulgaris) essential oils. Nat. Prod. Commun. 2016;11:1353–1356. doi: 10.1177/1934578X1601100942. PubMed DOI

Dahham S.S., Hassan L.E.A., Ahamed M.B.K., Majid A.S.A., Majid A.M.S.A., Zulkepli N.N. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna) BMC Complement. Altern. Med. 2016;16:236. doi: 10.1186/s12906-016-1210-1. PubMed DOI PMC

El-Hosseiny L.S., Alqurashy N.N., Sheweita S.A. Oxidative stress alleviation by sage essential oil in co-amoxiclav induced hepatotoxicity in rats. Int. J. Biomed. Sci. IJBS. 2016;12:71–78. PubMed PMC

Aggarwal M.L., Chacko K.M., Kuruvilla B.T. Systematic and comprehensive investigation of the toxicity of curcuminoid-essential oil complex: A bioavailable turmeric formulation. Mol. Med. Rep. 2016;13:592–604. doi: 10.3892/mmr.2015.4579. PubMed DOI PMC

Hoff Brait D.R., Mattos Vaz M.S., Arrigo J.d.S., Borges de Carvalho L.N., Souza de Araujo F.H., Vani J.M., Mota J.d.S., Lima Cardoso C.A., Oliveira R.J., Negrao F.J., et al. Toxicological analysis and anti-inflammatory effects of essential oil from Piper vicosanum leaves. Regul. Toxicol. Pharmacol. 2015;73:699–705. doi: 10.1016/j.yrtph.2015.10.028. PubMed DOI

Mekonnen A., Tesfaye S., Christos S.G., Dires K., Zenebe T., Zegeye N., Shiferaw Y., Lulekal E. Evaluation of skin irritation and acute and subacute oral toxicity of lavandula angustifolia essential oils in rabbit and mice. J. Toxicol. 2019 doi: 10.1155/2019/5979546. PubMed DOI PMC

Mahmoudvand H., Mahmoudvand H., Oliaee R.T., Kareshk A.T., Mirbadie S.R., Aflatoonian M.R. In vitro protoscolicidal effects of Cinnamomum zeylanicum essential oil and its toxicity in mice. Pharmacogn. Mag. 2017;13:S652–S657. PubMed PMC

Llana-Ruiz-Cabello M., Maisanaba S., Puerto M., Pichardo S., Jos A., Moyano R., Camean A.M. A subchronic 90-day oral toxicity study of Origanum vulgare essential oil in rats. Food Chem. Toxicol. 2017;101:36–47. doi: 10.1016/j.fct.2017.01.001. PubMed DOI

Branquinho L.S., Santos J.A., Lima Cardoso C.A., Mota J.d.S., Lanza Junior U., Leite Kassuya C.A., Arena A.C. Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves. J. Ethnopharmacol. 2017;198:372–378. doi: 10.1016/j.jep.2017.01.008. PubMed DOI

Arantes S., Candeias F., Lopes O., Lima M., Pereira M., Tinoco T., Cruz-Morais J., Rosario Martins M.R. Pharmacological and toxicological studies of essential oil of Lavandula stoechas subsp luisieri. Planta Med. 2016;82:1266–1273. doi: 10.1055/s-0042-104418. PubMed DOI

Kumar A., Shukla R., Singh P., Dubey N.K. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. Essential oil and its safety assessment as plant based antimicrobial. Food Chem. Toxicol. 2010;48:539–543. doi: 10.1016/j.fct.2009.11.028. PubMed DOI

Fandohan P., Gnonlonfin B., Laleye A., Gbenou J.D., Darbouxc R., Moudachirou M. Toxicity and gastric tolerance of essential oils from Cymbopogon citratus, Ocimum gratissimum and Ocimum basilicum in Wistar rats. Food Chem. Toxicol. 2008;46:2493–2497. doi: 10.1016/j.fct.2008.04.006. PubMed DOI

Ribeiro W.L.C., Camurca-Vasconcelos A.L.F., Macedo L.T.F., dos Santos J.M.L., de Araujo J.V., Ribeiro J.D., Pereira V.D., Viana D.D., de Paula H.C.B., Bevilaqua C.M.L. In vitro effects of Eucalyptus staigeriana nanoemulsion on Haemonchus contortus and toxicity in rodents. Vet. Parasitol. 2015;212:444–447. doi: 10.1016/j.vetpar.2015.07.019. PubMed DOI

Shalaby S.E.M., El-Din M.M., Abo-Donia S.A., Mettwally M., Attia Z.A. Toxicological affects of essential oils from eucalyptus Eucalyptus globules and clove Eugenia caryophyllus on albino rats. Pol. J. Environ. Stud. 2011;20:429–434.

Ostad S.N., Vazirian M., Pahlevani R., Hadjiakhondi A., Hamedani M.P., Almasian A., Manayi A. Toxicity evaluation of aromatic water of Pinus eldarica Medw. in acute and sub-chronic toxicity experiments. Prog. Nutr. 2018;20:68–74.

De Lima R., Guex C.G., da Silva A.R.H., Lhamas C.L., Moreira K.L.D., Casoti R., Dornelles R.C., da Rocha M., da Veiga M.L., Bauermann L.D., et al. Acute and subacute toxicity and chemical constituents of the hydroethanolic extract of Verbena litoralis Kunth. J. Ethnopharmacol. 2018;224:76–84. doi: 10.1016/j.jep.2018.05.012. PubMed DOI

Kumar R., Sharma R., Patil R.D., Mal G., Kumar A., Patial V., Kumar P., Singh B. Sub-chronic toxicopathological study of lantadenes of Lantana camara weed in Guinea pigs. BMC Vet. Res. 2018;14:129. doi: 10.1186/s12917-018-1444-x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...