Development of pH-Responsive Biopolymeric Nanocapsule for Antibacterial Essential Oils

. 2020 Mar 05 ; 21 (5) : . [epub] 20200305

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32151081

Grantová podpora
TJ02000325 Technologická Agentura České Republiky

It is generally believed that antibacterial essential oils have the potential to become one of the alternatives in preventing diarrheal diseases of monogastric animals. The disadvantage is their low efficiency per oral due to easy degradation during digestion in the stomach. This study compares the efficacy of chitosan, alginate-chitosan, guar gum-chitosan, xanthan gum-chitosan and pectin-chitosan nanocapsules to the synthesis of pH-responsive biopolymeric nanocapsule for Thymus vulgaris, Rosmarinus officinalis and Syzygium aromaticum essential oils. Using spectrophotometric approach and gas chromatography, release kinetics were determined in pH 3, 5.6 and 7.4. The growth rates of S. aureus and E. coli, as well as minimal inhibition concentration of essential oils were studied. The average encapsulation efficiency was 60%, and the loading efficiency was 70%. The size of the nanocapsules ranged from 100 nm to 500 nm. Results showed that chitosan-guar gum and chitosan-pectin nanocapsules released 30% of essential oils (EOs) at pH 3 and 80% at pH 7.4 during 3 h. Similar release kinetics were confirmed for thymol, eugenol and α-pinene. Minimal inhibition concentrations of Thymus vulgaris and Syzygium aromaticum essential oils ranged from 0.025 to 0.5%. Findings of this study suggest that the suitable pH-responsive nanocapsule for release, low toxicity and antibacterial activity is based on chitosan-guar gum structure.

Zobrazit více v PubMed

De Briyne N., Atkinson J., Pokludova L., Borriello S.P. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014;175 doi: 10.1136/vr.102462. PubMed DOI PMC

Orhan-Yanikan E., da Silva-Janeiro S., Ruiz-Rico M., Jimenez-Belenguer A.I., Ayhan K., Barat J.M. Essential oils compounds as antimicrobial and antibiofilm agents against strains present in the meat industry. Food Control. 2019;101:29–38. doi: 10.1016/j.foodcont.2019.02.035. DOI

Horky P., Skalickova S., Smerkova K., Skladanka J. Essential Oils as a Feed Additives: Pharmacokinetics and Potential Toxicity in Monogastric Animals. Animals. 2019;9:352. doi: 10.3390/ani9060352. PubMed DOI PMC

Tohidi B., Rahimmalek M., Arzani A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017;220:153–161. doi: 10.1016/j.foodchem.2016.09.203. PubMed DOI

Jalilzadeh-Amin G., Qarehdarvishlu B.M. Effects of Artemisia dracunculus essential oil on diarrhea and intestinal transit time in rat gastrointestinal tract. Physiol. Pharmacol. 2015;18:416–428.

Volic M., Pajic-Lijakovic I., Djordjevic V., Knezevic-Jugovic Z., Pecinar I., Stevanovic-Dajic Z., Veljovic D., Hadnadjev M., Bugarski B. Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydr. Polym. 2018;200:15–24. doi: 10.1016/j.carbpol.2018.07.033. PubMed DOI

Naskar S., Koutsu K., Sharma S. Chitosan-based nanoparticles as drug delivery systems: A review on two decades of research. J. Drug Target. 2019;27:379–393. doi: 10.1080/1061186X.2018.1512112. PubMed DOI

Zhang L., Sang Y., Feng J., Li Z.M., Zhao A.L. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J. Drug Target. 2016;24:579–589. doi: 10.3109/1061186X.2015.1128941. PubMed DOI

Alavi M., Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr. Polym. 2020;227 doi: 10.1016/j.carbpol.2019.115349. PubMed DOI

Horky P., Skladanka J., Nevrkla P., Slama P. Effect of diet supplemented with antioxidants (selenium, copper, vitamins e and c) on antioxidant status and ejaculate quality of breeding boars. Ann. Anim. Sci. 2016;16:521–532. doi: 10.1515/aoas-2015-0085. DOI

Skalickova S., Loffelmann M., Gargulak M., Kepinska M., Docekalova M., Uhlirova D., Stankova M., Fernandez C., Milnerowicz H., Ruttkay-Nedecky B., et al. Zinc-Modified Nanotransporter of Doxorubicin for Targeted Prostate Cancer Delivery. Nanomaterials. 2017;7:435. doi: 10.3390/nano7120435. PubMed DOI PMC

Yilmaz M.T., Yilmaz A., Akman P.K., Bozkurt F., Dertli E., Basahel A., Al-Sasi B., Taylan O., Sagdic O. Electrospraying method for fabrication of essential oil loaded-chitosan nanoparticle delivery systems characterized by molecular, thermal, morphological and antifungal properties. Innov. Food Sci. Emerg. Technol. 2019;52:166–178. doi: 10.1016/j.ifset.2018.12.005. DOI

Badawy M.E.I., Taktak N.E.M., Awad O.M., Elfiki S.A., Abou El-Ela N.E. Preparation and Characterization of Biopolymers Chitosan/Alginate/Gelatin Gel Spheres Crosslinked by Glutaraldehyde. J. Macromol. Sci. Part B-Phys. 2017;56:359–372. doi: 10.1080/00222348.2017.1316640. DOI

Jesser E., Lorenzetti A.S., Yeguerman C., Murray A.P., Domini C., Werdin-Gonzalez J.O. Ultrasound assisted formation of essential oil nanoemulsions: Emerging alternative for Culex pipiens pipiens Say (Diptera: Culicidae) and Plodia interpunctella Hubner (Lepidoptera: Pyralidae) management. Ultrason. Sonochemistry. 2020;61 doi: 10.1016/j.ultsonch.2019.104832. PubMed DOI

Fareez I.M., Lim S.M., Zulkefli N.A.A., Mishra R.K., Ramasamy K. Cellulose Derivatives Enhanced Stability of Alginate-Based Beads Loaded with Lactobacillus plantarum LAB12 against Low pH, High Temperature and Prolonged Storage. Probiotics Antimicrob. Proteins. 2018;10:543–557. doi: 10.1007/s12602-017-9284-8. PubMed DOI

Zhang Z.P., Zhang R.J., Zou L.Q., McClements D.J. Protein encapsulation in alginate hydrogel beads: Effect of pH on microgel stability, protein retention and protein release. Food Hydrocoll. 2016;58:308–315. doi: 10.1016/j.foodhyd.2016.03.015. DOI

Sriprablom J., Luangpituksa P., Wongkongkatep J., Pongtharangkul T., Suphantharika M. Influence of pH and ionic strength on the physical and rheological properties and stability of whey protein stabilized o/w emulsions containing xanthan gum. J. Food Eng. 2019;242:141–152. doi: 10.1016/j.jfoodeng.2018.08.031. DOI

You R.R., Xiao C.M., Zhang L., Dong Y.R. Versatile particles from water-soluble chitosan and sodium alginate for loading toxic or bioactive substance. Int. J. Biol. Macromol. 2015;79:498–503. doi: 10.1016/j.ijbiomac.2015.05.025. PubMed DOI

Kulkarni N., Wakte P., Naik J. Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int. J. Pharm. Investig. 2015;5:73–80. doi: 10.4103/2230-973X.153381. PubMed DOI PMC

Bueno V.B., Bentini R., Catalani L.H., Petri D.F.S. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr. Polym. 2013;92:1091–1099. doi: 10.1016/j.carbpol.2012.10.062. PubMed DOI

Kar R., Mohapatra S., Bhanja S., Das D., Barik B. Formulation and In Vitro Characterization of Xanthan Gum-Based Sustained Release Matrix Tables of Isosorbide-5-Mononitrate. Iran. J. Pharm. Res. 2010;9:13–19. PubMed PMC

Kowalski G., Kijowska K., Witczak M., Kuterasinski L., Lukasiewicz M. Synthesis and Effect of Structure on Swelling Properties of Hydrogels Based on High Methylated Pectin and Acrylic Polymers. Polymers. 2019;11:114. doi: 10.3390/polym11010114. PubMed DOI PMC

Dukovski B.J., Mrak L., Winnicka K., Szekalska M., Juretic M., Filipovic-Grcic J., Pepic I., Lovric J., Hafner A. Spray-dried nanoparticle-loaded pectin microspheres for dexamethasone nasal delivery. Dry. Technol. 2019;37:1915–1925. doi: 10.1080/07373937.2018.1545783. DOI

Nielsen J. Yeast Systems Biology: Model Organism and Cell Factory. Biotechnol. J. 2019;14 doi: 10.1002/biot.201800421. PubMed DOI

Kunicka-Styczynska A. Activity of essential oils against food-spoiling yeast. A review. Flavour Fragr. J. 2011;26:326–328. doi: 10.1002/ffj.2046. DOI

Konuk H.B., Erguden B. Antifungal activity of various essential oils against Saccharomyces cerevisiae depends on disruption of cell membrane integrity. Biocell. 2017;41:13–18. doi: 10.32604/biocell.2017.00013. DOI

Zakrzewska A., Boorsma A., Brul S., Hellingwerf K.J., Klis F.M. Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot. Cell. 2005;4:703–715. doi: 10.1128/EC.4.4.703-715.2005. PubMed DOI PMC

Elmaci S.B., Gulgor G., Tokatli M., Erten H., Isci A., Ozcelik F. Effectiveness of chitosan against wine-related microorganisms. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2015;107:675–686. doi: 10.1007/s10482-014-0362-6. PubMed DOI

Baker L.G., Specht C.A., Donlin M.J., Lodge J.K. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot. Cell. 2007;6:855–867. doi: 10.1128/EC.00399-06. PubMed DOI PMC

de Lima J.M., Sarmento R.R., de Souza J.R., Brayner F.A., Feitosa A.P.S., Padilha R., Alves L.C., Porto I.J., Batista R., de Oliveira J.E., et al. Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes. Biomed Res. Int. 2015 doi: 10.1155/2015/247965. PubMed DOI PMC

Zhou X., Zhang X.S., Zhou J.J., Li L. An investigation of chitosan and its derivatives on red blood cell agglutination. Rsc Adv. 2017;7:12247–12254. doi: 10.1039/C6RA27417J. DOI

van Vuuren S.F., du Toit L.C., Parry A., Pillay V., Choonara Y.E. Encapsulation of Essential Oils within a Polymeric Liposomal Formulation for Enhancement of Antimicrobial Efficacy. Nat. Prod. Commun. 2010;5:1401–1408. doi: 10.1177/1934578X1000500912. PubMed DOI

Sotelo-Boyas M., Correa-Pacheco Z., Bautista-Banos S., Gomez Y.G.Y. Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int. J. Biol. Macromol. 2017;103:409–414. doi: 10.1016/j.ijbiomac.2017.05.063. PubMed DOI

Jacumazo J., de Carvalho M.M., Parchen G.P., Campos I.M.F., Garcia M.J.B., Brugnari T., Maciel G.M., Marques F.A., de Freitas R.A. Development, characterization and antimicrobial activity of sodium dodecyl sulfate-polysaccharides capsules containing eugenol. Carbohydr. Polym. 2020;230 doi: 10.1016/j.carbpol.2019.115562. PubMed DOI

Zhaveh S., Mohsenifar A., Beiki M., Khalili S.T., Abdollahi A., Rahmani-Cherati T., Tabatabaei M. Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crop. Prod. 2015;69:251–256. doi: 10.1016/j.indcrop.2015.02.028. DOI

Bozin B., Mlmica-Dukic N., Samojlik I., Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., lamiaceae) essential oils. J. Agric. Food Chem. 2007;55:7879–7885. doi: 10.1021/jf0715323. PubMed DOI

Verlee A., Mincke S., Stevens C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 2017;164:268–283. doi: 10.1016/j.carbpol.2017.02.001. PubMed DOI

de Carvalho F.G., Magalhaes T.C., Teixeira N.M., Gondim B.L.C., Carlo H.L., dos Santos R.L., de Oliveira A.R., Denadai A.M.L. Synthesis and characterization of TPP/chitosan nanoparticles: Colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019;104 doi: 10.1016/j.msec.2019.109885. PubMed DOI

Ainsworth E.A., Gillespie K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007;2:875–877. doi: 10.1038/nprot.2007.102. PubMed DOI

Prochazkova S., Varum K.M., Ostgaard K. Quantitative determination of chitosans by ninhydrin. Carbohydr. Polym. 1999;38:115–122. doi: 10.1016/S0144-8617(98)00108-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...