Development of pH-Responsive Biopolymeric Nanocapsule for Antibacterial Essential Oils
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TJ02000325
Technologická Agentura České Republiky
PubMed
32151081
PubMed Central
PMC7084736
DOI
10.3390/ijms21051799
PII: ijms21051799
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli, Rosmarinus officinalis, S. aureus, S. cerevisiae, Syzygium aromaticum, Thymus vulgaris, alginate, chitosan, gastro-intestinal tract, guar gum, pectin, xanthan gum,
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- erytrocyty cytologie účinky léků MeSH
- Escherichia coli účinky léků růst a vývoj MeSH
- hemolýza účinky léků MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nanokapsle aplikace a dávkování chemie MeSH
- oleje prchavé chemie farmakologie MeSH
- polymery chemie MeSH
- Staphylococcus aureus účinky léků růst a vývoj MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- nanokapsle MeSH
- oleje prchavé MeSH
- polymery MeSH
It is generally believed that antibacterial essential oils have the potential to become one of the alternatives in preventing diarrheal diseases of monogastric animals. The disadvantage is their low efficiency per oral due to easy degradation during digestion in the stomach. This study compares the efficacy of chitosan, alginate-chitosan, guar gum-chitosan, xanthan gum-chitosan and pectin-chitosan nanocapsules to the synthesis of pH-responsive biopolymeric nanocapsule for Thymus vulgaris, Rosmarinus officinalis and Syzygium aromaticum essential oils. Using spectrophotometric approach and gas chromatography, release kinetics were determined in pH 3, 5.6 and 7.4. The growth rates of S. aureus and E. coli, as well as minimal inhibition concentration of essential oils were studied. The average encapsulation efficiency was 60%, and the loading efficiency was 70%. The size of the nanocapsules ranged from 100 nm to 500 nm. Results showed that chitosan-guar gum and chitosan-pectin nanocapsules released 30% of essential oils (EOs) at pH 3 and 80% at pH 7.4 during 3 h. Similar release kinetics were confirmed for thymol, eugenol and α-pinene. Minimal inhibition concentrations of Thymus vulgaris and Syzygium aromaticum essential oils ranged from 0.025 to 0.5%. Findings of this study suggest that the suitable pH-responsive nanocapsule for release, low toxicity and antibacterial activity is based on chitosan-guar gum structure.
Zobrazit více v PubMed
De Briyne N., Atkinson J., Pokludova L., Borriello S.P. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014;175 doi: 10.1136/vr.102462. PubMed DOI PMC
Orhan-Yanikan E., da Silva-Janeiro S., Ruiz-Rico M., Jimenez-Belenguer A.I., Ayhan K., Barat J.M. Essential oils compounds as antimicrobial and antibiofilm agents against strains present in the meat industry. Food Control. 2019;101:29–38. doi: 10.1016/j.foodcont.2019.02.035. DOI
Horky P., Skalickova S., Smerkova K., Skladanka J. Essential Oils as a Feed Additives: Pharmacokinetics and Potential Toxicity in Monogastric Animals. Animals. 2019;9:352. doi: 10.3390/ani9060352. PubMed DOI PMC
Tohidi B., Rahimmalek M., Arzani A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017;220:153–161. doi: 10.1016/j.foodchem.2016.09.203. PubMed DOI
Jalilzadeh-Amin G., Qarehdarvishlu B.M. Effects of Artemisia dracunculus essential oil on diarrhea and intestinal transit time in rat gastrointestinal tract. Physiol. Pharmacol. 2015;18:416–428.
Volic M., Pajic-Lijakovic I., Djordjevic V., Knezevic-Jugovic Z., Pecinar I., Stevanovic-Dajic Z., Veljovic D., Hadnadjev M., Bugarski B. Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydr. Polym. 2018;200:15–24. doi: 10.1016/j.carbpol.2018.07.033. PubMed DOI
Naskar S., Koutsu K., Sharma S. Chitosan-based nanoparticles as drug delivery systems: A review on two decades of research. J. Drug Target. 2019;27:379–393. doi: 10.1080/1061186X.2018.1512112. PubMed DOI
Zhang L., Sang Y., Feng J., Li Z.M., Zhao A.L. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J. Drug Target. 2016;24:579–589. doi: 10.3109/1061186X.2015.1128941. PubMed DOI
Alavi M., Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr. Polym. 2020;227 doi: 10.1016/j.carbpol.2019.115349. PubMed DOI
Horky P., Skladanka J., Nevrkla P., Slama P. Effect of diet supplemented with antioxidants (selenium, copper, vitamins e and c) on antioxidant status and ejaculate quality of breeding boars. Ann. Anim. Sci. 2016;16:521–532. doi: 10.1515/aoas-2015-0085. DOI
Skalickova S., Loffelmann M., Gargulak M., Kepinska M., Docekalova M., Uhlirova D., Stankova M., Fernandez C., Milnerowicz H., Ruttkay-Nedecky B., et al. Zinc-Modified Nanotransporter of Doxorubicin for Targeted Prostate Cancer Delivery. Nanomaterials. 2017;7:435. doi: 10.3390/nano7120435. PubMed DOI PMC
Yilmaz M.T., Yilmaz A., Akman P.K., Bozkurt F., Dertli E., Basahel A., Al-Sasi B., Taylan O., Sagdic O. Electrospraying method for fabrication of essential oil loaded-chitosan nanoparticle delivery systems characterized by molecular, thermal, morphological and antifungal properties. Innov. Food Sci. Emerg. Technol. 2019;52:166–178. doi: 10.1016/j.ifset.2018.12.005. DOI
Badawy M.E.I., Taktak N.E.M., Awad O.M., Elfiki S.A., Abou El-Ela N.E. Preparation and Characterization of Biopolymers Chitosan/Alginate/Gelatin Gel Spheres Crosslinked by Glutaraldehyde. J. Macromol. Sci. Part B-Phys. 2017;56:359–372. doi: 10.1080/00222348.2017.1316640. DOI
Jesser E., Lorenzetti A.S., Yeguerman C., Murray A.P., Domini C., Werdin-Gonzalez J.O. Ultrasound assisted formation of essential oil nanoemulsions: Emerging alternative for Culex pipiens pipiens Say (Diptera: Culicidae) and Plodia interpunctella Hubner (Lepidoptera: Pyralidae) management. Ultrason. Sonochemistry. 2020;61 doi: 10.1016/j.ultsonch.2019.104832. PubMed DOI
Fareez I.M., Lim S.M., Zulkefli N.A.A., Mishra R.K., Ramasamy K. Cellulose Derivatives Enhanced Stability of Alginate-Based Beads Loaded with Lactobacillus plantarum LAB12 against Low pH, High Temperature and Prolonged Storage. Probiotics Antimicrob. Proteins. 2018;10:543–557. doi: 10.1007/s12602-017-9284-8. PubMed DOI
Zhang Z.P., Zhang R.J., Zou L.Q., McClements D.J. Protein encapsulation in alginate hydrogel beads: Effect of pH on microgel stability, protein retention and protein release. Food Hydrocoll. 2016;58:308–315. doi: 10.1016/j.foodhyd.2016.03.015. DOI
Sriprablom J., Luangpituksa P., Wongkongkatep J., Pongtharangkul T., Suphantharika M. Influence of pH and ionic strength on the physical and rheological properties and stability of whey protein stabilized o/w emulsions containing xanthan gum. J. Food Eng. 2019;242:141–152. doi: 10.1016/j.jfoodeng.2018.08.031. DOI
You R.R., Xiao C.M., Zhang L., Dong Y.R. Versatile particles from water-soluble chitosan and sodium alginate for loading toxic or bioactive substance. Int. J. Biol. Macromol. 2015;79:498–503. doi: 10.1016/j.ijbiomac.2015.05.025. PubMed DOI
Kulkarni N., Wakte P., Naik J. Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int. J. Pharm. Investig. 2015;5:73–80. doi: 10.4103/2230-973X.153381. PubMed DOI PMC
Bueno V.B., Bentini R., Catalani L.H., Petri D.F.S. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr. Polym. 2013;92:1091–1099. doi: 10.1016/j.carbpol.2012.10.062. PubMed DOI
Kar R., Mohapatra S., Bhanja S., Das D., Barik B. Formulation and In Vitro Characterization of Xanthan Gum-Based Sustained Release Matrix Tables of Isosorbide-5-Mononitrate. Iran. J. Pharm. Res. 2010;9:13–19. PubMed PMC
Kowalski G., Kijowska K., Witczak M., Kuterasinski L., Lukasiewicz M. Synthesis and Effect of Structure on Swelling Properties of Hydrogels Based on High Methylated Pectin and Acrylic Polymers. Polymers. 2019;11:114. doi: 10.3390/polym11010114. PubMed DOI PMC
Dukovski B.J., Mrak L., Winnicka K., Szekalska M., Juretic M., Filipovic-Grcic J., Pepic I., Lovric J., Hafner A. Spray-dried nanoparticle-loaded pectin microspheres for dexamethasone nasal delivery. Dry. Technol. 2019;37:1915–1925. doi: 10.1080/07373937.2018.1545783. DOI
Nielsen J. Yeast Systems Biology: Model Organism and Cell Factory. Biotechnol. J. 2019;14 doi: 10.1002/biot.201800421. PubMed DOI
Kunicka-Styczynska A. Activity of essential oils against food-spoiling yeast. A review. Flavour Fragr. J. 2011;26:326–328. doi: 10.1002/ffj.2046. DOI
Konuk H.B., Erguden B. Antifungal activity of various essential oils against Saccharomyces cerevisiae depends on disruption of cell membrane integrity. Biocell. 2017;41:13–18. doi: 10.32604/biocell.2017.00013. DOI
Zakrzewska A., Boorsma A., Brul S., Hellingwerf K.J., Klis F.M. Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan. Eukaryot. Cell. 2005;4:703–715. doi: 10.1128/EC.4.4.703-715.2005. PubMed DOI PMC
Elmaci S.B., Gulgor G., Tokatli M., Erten H., Isci A., Ozcelik F. Effectiveness of chitosan against wine-related microorganisms. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2015;107:675–686. doi: 10.1007/s10482-014-0362-6. PubMed DOI
Baker L.G., Specht C.A., Donlin M.J., Lodge J.K. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot. Cell. 2007;6:855–867. doi: 10.1128/EC.00399-06. PubMed DOI PMC
de Lima J.M., Sarmento R.R., de Souza J.R., Brayner F.A., Feitosa A.P.S., Padilha R., Alves L.C., Porto I.J., Batista R., de Oliveira J.E., et al. Evaluation of Hemagglutination Activity of Chitosan Nanoparticles Using Human Erythrocytes. Biomed Res. Int. 2015 doi: 10.1155/2015/247965. PubMed DOI PMC
Zhou X., Zhang X.S., Zhou J.J., Li L. An investigation of chitosan and its derivatives on red blood cell agglutination. Rsc Adv. 2017;7:12247–12254. doi: 10.1039/C6RA27417J. DOI
van Vuuren S.F., du Toit L.C., Parry A., Pillay V., Choonara Y.E. Encapsulation of Essential Oils within a Polymeric Liposomal Formulation for Enhancement of Antimicrobial Efficacy. Nat. Prod. Commun. 2010;5:1401–1408. doi: 10.1177/1934578X1000500912. PubMed DOI
Sotelo-Boyas M., Correa-Pacheco Z., Bautista-Banos S., Gomez Y.G.Y. Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int. J. Biol. Macromol. 2017;103:409–414. doi: 10.1016/j.ijbiomac.2017.05.063. PubMed DOI
Jacumazo J., de Carvalho M.M., Parchen G.P., Campos I.M.F., Garcia M.J.B., Brugnari T., Maciel G.M., Marques F.A., de Freitas R.A. Development, characterization and antimicrobial activity of sodium dodecyl sulfate-polysaccharides capsules containing eugenol. Carbohydr. Polym. 2020;230 doi: 10.1016/j.carbpol.2019.115562. PubMed DOI
Zhaveh S., Mohsenifar A., Beiki M., Khalili S.T., Abdollahi A., Rahmani-Cherati T., Tabatabaei M. Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crop. Prod. 2015;69:251–256. doi: 10.1016/j.indcrop.2015.02.028. DOI
Bozin B., Mlmica-Dukic N., Samojlik I., Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., lamiaceae) essential oils. J. Agric. Food Chem. 2007;55:7879–7885. doi: 10.1021/jf0715323. PubMed DOI
Verlee A., Mincke S., Stevens C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 2017;164:268–283. doi: 10.1016/j.carbpol.2017.02.001. PubMed DOI
de Carvalho F.G., Magalhaes T.C., Teixeira N.M., Gondim B.L.C., Carlo H.L., dos Santos R.L., de Oliveira A.R., Denadai A.M.L. Synthesis and characterization of TPP/chitosan nanoparticles: Colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019;104 doi: 10.1016/j.msec.2019.109885. PubMed DOI
Ainsworth E.A., Gillespie K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007;2:875–877. doi: 10.1038/nprot.2007.102. PubMed DOI
Prochazkova S., Varum K.M., Ostgaard K. Quantitative determination of chitosans by ninhydrin. Carbohydr. Polym. 1999;38:115–122. doi: 10.1016/S0144-8617(98)00108-8. DOI