Zinc-Modified Nanotransporter of Doxorubicin for Targeted Prostate Cancer Delivery
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29292780
PubMed Central
PMC5746925
DOI
10.3390/nano7120435
PII: nano7120435
Knihovny.cz E-zdroje
- Klíčová slova
- chitosan, doxorubicin, gold nanoparticle, magnetic gold nanoparticle, ninhydrin, peroxidase activity, prostate cancer, sarcosine, zinc,
- Publikační typ
- časopisecké články MeSH
This work investigated the preparation of chitosan nanoparticles used as carriers for doxorubicin for targeted cancer delivery. Prepared nanocarriers were stabilized and functionalized via zinc ions incorporated into the chitosan nanoparticle backbone. We took the advantage of high expression of sarcosine in the prostate cancer cells. The prostate cancer targeting was mediated by the AntiSar antibodies decorated surface of the nanocage. Formation of the chitosan nanoparticles was determined using a ninhydrin assay and differential pulse voltammetry. Obtained results showed the strong effect of tripolyphosphine on the nanoparticle formation. The zinc ions affected strong chitosan backbone coiling both in inner and outer chitosan nanoparticle structure. Zinc electrochemical signal depended on the level of the complex formation and the potential shift from -960 to -950 mV. Formed complex is suitable for doxorubicin delivery. It was observed the 20% entrapment efficiency of doxorubicin and strong dependence of drug release after 120 min in the blood environment. The functionality of the designed nanotransporter was proven. The purposed determination showed linear dependence in the concentration range of Anti-sarcosine IgG labeled gold nanoparticles from 0 to 1000 µg/mL and the regression equation was found to be y = 3.8x - 66.7 and R² = 0.99. Performed ELISA confirmed the ability of Anti-sarcosine IgG labeled chitosan nanoparticles with loaded doxorubicin to bind to the sarcosine molecule. Observed hemolytic activity of the nanotransporter was 40%. Inhibition activity of our proposed nanotransporter was evaluated to be 0% on the experimental model of S. cerevisiae. Anti-sarcosine IgG labeled chitosan nanoparticles, with loaded doxorubicin stabilized by Zn ions, are a perspective type of nanocarrier for targeted drug therapy managed by specific interaction with sarcosine and metallothionein for prostate cancer.
Prevention Medicals s r o Tovární 342 Butovice 742 13 Studentka Czech Republic
School of Pharmacy and Life Sciences Robert Gordon University Garthdee Road Aberdeen AB10 7QB UK
Zobrazit více v PubMed
Lal N., Dubey J., Gaur P., Verma N., Verma A. Chitosan based in situ forming polyelectrolyte complexes: A potential sustained drug delivery polymeric carrier for high dose drugs. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;79:491–498. doi: 10.1016/j.msec.2017.05.051. PubMed DOI
Sen V.D., Sokolova E.M., Neshev N.I., Kulikov A.V., Pliss E.M. Low molecular chitosan-(poly)nitroxides: Synthesis and evaluation as antioxidants on free radical-induced erythrocyte hemolysis. React. Funct. Polym. 2017;111:53–59. doi: 10.1016/j.reactfunctpolym.2016.12.006. DOI
Niaz T., Nasir H., Shabbir S., Rehman A., Imran M. Polyionic hybrid nano-engineered systems comprising alginate and chitosan for antihypertensive therapeutics. Int. J. Biol. Macromol. 2016;91:180–187. doi: 10.1016/j.ijbiomac.2016.05.055. PubMed DOI
Ellis C.E., Korbutt G.S. Chitosan-based biomaterials for treatment of diabetes. In: Jennings J.A., Bumgardner J.D., editors. Chitosan Based Biomaterials; Volume 2; Tissue Engineering and Therapeutics. Volume 123. Woodhead Publishing; Cambridge, UK: 2017. pp. 91–113.
Pangestuti R., Kim S.-K. Neuroprotective properties of chitosan and its derivatives. Mar. Drugs. 2010;8:2117–2128. doi: 10.3390/md8072117. PubMed DOI PMC
Shariatinia Z., Fazli M. Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocoll. 2015;46:112–124. doi: 10.1016/j.foodhyd.2014.12.026. DOI
Behera S.S., Das U., Kumar A., Bissoyi A., Singh A.K. Chitosan/TiO2 composite membrane improves proliferation and survival of l929 fibroblast cells: Application in wound dressing and skin regeneration. Int. J. Biol. Macromol. 2017;98:329–340. doi: 10.1016/j.ijbiomac.2017.02.017. PubMed DOI
Park K. Chitosan-gelatin-platelet gel composite scaffold for bone regeneration. J. Controll. Release. 2017;254:137. doi: 10.1016/j.jconrel.2017.05.002. PubMed DOI
Xu H., Matysiak S. Effect of ph on chitosan hydrogel polymer network structure. Chem. Commun. 2017;53:7373–7376. doi: 10.1039/C7CC01826F. PubMed DOI
Desai K.G.H. Chitosan nanoparticles prepared by ionotropic gelation: An overview of recent advances. Crit. Rev. Ther. Drug Carr. Syst. 2016;33:107–158. doi: 10.1615/CritRevTherDrugCarrierSyst.2016014850. PubMed DOI
Huang Y., Lapitsky Y. On the kinetics of chitosan/tripolyphosphate micro- and nanogel aggregation and their effects on particle polydispersity. J. Colloid Interface Sci. 2017;486:27–37. doi: 10.1016/j.jcis.2016.09.050. PubMed DOI
Sacco P., Paoletti S., Cok M., Asaro F., Abrami M., Grassi M., Donati I. Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers. Int. J. Biol. Macromol. 2016;92:476–483. doi: 10.1016/j.ijbiomac.2016.07.056. PubMed DOI
Gan Q., Wang T., Cochrane C., McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-tpp nanoparticles intended for gene delivery. Colloids Surf. B Biointerfaces. 2005;44:65–73. doi: 10.1016/j.colsurfb.2005.06.001. PubMed DOI
Yata V.K., Ghosh S.S. Investigating structure and fluorescence properties of green fluorescent protein released from chitosan nanoparticles. Mater. Lett. 2012;73:209–211. doi: 10.1016/j.matlet.2012.01.008. DOI
Shanmugam R., Priyanka D.L., Madhuri K., Gowthamarajan K., Karri V., Kumar C.K.A., Murali P. Formulation and characterization of chitosan encapsulated phytoconstituents of curcumin and rutin nanoparticles. Int. J. Biol. Macromol. 2017;104:1807–1812. PubMed
Duarte A.P., Tavares E.J.M., Alves T.V.G., de Moura M.R., da Costa C.E.F., Silva J.O.C., Costa R.M.R. Chitosan nanoparticles as a modified diclofenac drug release system. J. Nanopart. Res. 2017;19 doi: 10.1007/s11051-017-3968-6. DOI
Mendelovits A., Prat T., Gonen Y., Rytwo G. Improved colorimetric determination of chitosan concentrations by dye binding. Appl. Spectrosc. 2012;66:979–982. PubMed
Badawy M.E.I. A new rapid and sensitive spectrophotometric method for determination of a biopolymer chitosan. Int. J. Carbohydr. Chem. 2012;2012:7. doi: 10.1155/2012/139328. DOI
Assa F., Jafarizadeh-Malmiri H., Ajamein H., Vaghari H., Anarjan N., Ahmadi O., Berenjian A. Chitosan magnetic nanoparticles for drug delivery systems. Crit. Rev. Biotechnol. 2017;37:492–509. doi: 10.1080/07388551.2016.1185389. PubMed DOI
Babu A., Ramesh R. Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar. Drugs. 2017;15:96. doi: 10.3390/md15040096. PubMed DOI PMC
Hong S.-C., Yoo S.-Y., Kim H., Lee J. Chitosan-based multifunctional platforms for local delivery of therapeutics. Mar. Drugs. 2017;15:60. doi: 10.3390/md15030060. PubMed DOI PMC
Duttagupta D.S., Jadhav V.M., Kadam V.J. Chitosan: A propitious biopolymer for drug delivery. Curr. Drug Deliv. 2015;12:369–381. doi: 10.2174/1567201812666150310151657. PubMed DOI
Landriscina A., Rosen J., Friedman A.J. Biodegradable chitosan nanoparticles in drug delivery for infectious disease. Nanomedicine. 2015;10:1609–1619. doi: 10.2217/nnm.15.7. PubMed DOI
Sarvaiya J., Agrawal Y.K. Chitosan as a suitable nanocarrier material for anti-alzheimer drug delivery. Int. J. Biol. Macromol. 2015;72:454–465. doi: 10.1016/j.ijbiomac.2014.08.052. PubMed DOI
Lee J., Yun K.S., Choi C.S., Shin S.H., Ban H.S., Rhim T., Lee S.K., Lee K.Y. T cell-specific sirna delivery using antibody-conjugated chitosan nanoparticles. Bioconjug. Chem. 2012;23:1174–1180. doi: 10.1021/bc2006219. PubMed DOI
Sau S., Alsaab H.O., Kashaw S.K., Tatiparti K., Iyer A.K. Advances in antibody-drug conjugates: A new era of targeted cancer therapy. Drug Discov. Today. 2017;22:1547–1556. doi: 10.1016/j.drudis.2017.05.011. PubMed DOI PMC
Sreekumar A., Poisson L.M., Rajendiran T.M., Khan A.P., Cao Q., Yu J., Laxman B., Mehra R., Lonigro R.J., Li Y., et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–914. doi: 10.1038/nature07762. PubMed DOI PMC
Kim H.M., Lee Y.K., Koo J.S. Expression of sarcosine-metabolizing enzymes in thyroid cancer. Int. J. Clin. Exp. Pathol. 2016;9:7132–7139.
Cha Y.J., Kim D.H., Jung W.H., Koo J.S. Expression of sarcosine metabolism-related proteins according to metastatic site in breast cancer. Int. J. Clin. Exp. Pathol. 2014;7:7824–7833. PubMed PMC
Robinson D.R., Wu Y.M., Lonigro R.J., Vats P., Cobain E., Everett J., Cao X.H., Rabban E., Kumar-Sinha C., Raymond V., et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548:297–303. doi: 10.1038/nature23306. PubMed DOI PMC
Bizon A., Jedryczko K., Milnerowicz H. The role of metallothionein in oncogenesis and cancer treatment. Postepy Hig. Med. Dosw. 2017;71:98–109. doi: 10.5604/01.3001.0010.3794. PubMed DOI
Krizkova S., Ryvolova M., Hrabeta J., Adam V., Stiborova M., Eckschlager T., Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab. Rev. 2012;44:287–301. doi: 10.3109/03602532.2012.725414. PubMed DOI
Costello L.C., Franklin R.B. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch. Biochem. Biophys. 2016;611:100–112. doi: 10.1016/j.abb.2016.04.014. PubMed DOI PMC
Sheng S.J., Kraft J.J., Schuster S.M. A specific quantitative colorimetric assay for l-asparagine. Anal. Biochem. 1993;211:242–249. doi: 10.1006/abio.1993.1264. PubMed DOI
Prochazkova S., Vårum K.M., Ostgaard K. Quantitative determination of chitosans by ninhydrin. Carbohydr. Polym. 1999;38:115–122. doi: 10.1016/S0144-8617(98)00108-8. DOI
Leane M.M., Nankervis R., Smith A., Illum L. Use of the ninhydrin assay to measure the release of chitosan from oral solid dosage forms. Int. J. Pharm. 2004;271:241–249. doi: 10.1016/j.ijpharm.2003.11.023. PubMed DOI
Raja M.A., Arif M., Feng C., Zeenat S., Liu C.G. Synthesis and evaluation of ph-sensitive, self-assembled chitosan-based nanoparticles as efficient doxorubicin carriers. J. Biomater. Appl. 2017;31:1182–1195. doi: 10.1177/0885328216681184. PubMed DOI
Lim E.K., Huh Y.M., Yang J., Lee K., Suh J.S., Haam S. Ph-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by mri. Adv. Mater. 2011;23:2436–2442. doi: 10.1002/adma.201100351. PubMed DOI
Bekale L., Agudelo D., Tajmir-Riahi H.A. Effect of polymer molecular weight on chitosan-protein interaction. Colloids Surf. B Biointerfaces. 2015;125:309–317. doi: 10.1016/j.colsurfb.2014.11.037. PubMed DOI
Docekalova M., Uhlirova D., Stankova M., Kepinska M., Sochor J., Milnerowicz H., Babula P., Fernandez C., Brazdova M., Zidkova J., et al. Characterisation of peroxidase-like activity of thermally synthesized gold nanoparticles; Proceedings of the Nanocon 2016, 8th International Conference on Nanomaterials; Brno, Czech Republic. 19–21 October 2016; Ostrava, Czech Republic: Tanger Ltd.; 2017. pp. 429–434.
Wang Y.B., Zhou J.R., Liu L., Huang C.J., Zhou D.Q., Fu L.L. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, danio rerio. Carbohydr. Polym. 2016;141:204–210. doi: 10.1016/j.carbpol.2016.01.012. PubMed DOI
Hu Y.L., Qi W., Han F., Shao J.Z., Gao J.Q. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int. J. Nanomed. 2011;6:3351–3359. PubMed PMC
Choi Y.J., Gurunathan S., Kim D., Jang H.S., Park W.J., Cho S.G., Park C., Song H., Seo H.G., Kim J.H. Rapamycin ameliorates chitosan nanoparticle-induced developmental defects of preimplantation embryos in mice. Oncotarget. 2016;7:74658–74677. doi: 10.18632/oncotarget.10813. PubMed DOI PMC
De Salamanca A.E., Diebold Y., Calonge M., Garcia-Vazquez C., Callejo S., Vila A., Alonso M.J. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: Toxicity, uptake mechanism and in vivo tolerance. Investig. Ophthalmol. Vis. Sci. 2006;47:1416–1425. doi: 10.1167/iovs.05-0495. PubMed DOI
Xu Y.R., Asghar S., Yang L., Chen Z.P., Li H.Y., Shi W.W., Li Y.B., Shi Q.Q., Ping Q.N., Xiao Y.Y. Nanoparticles based on chitosan hydrochloride/hyaluronic acid/peg containing curcumin: In Vitro evaluation and pharmacokinetics in rats. Int. J. Biol. Macromol. 2017;102:1083–1091. doi: 10.1016/j.ijbiomac.2017.04.105. PubMed DOI
Liu W., Li L., Ye H., Chen H., Shen W., Zhong Y., Tian T., He H. From saccharomyces cerevisiae to human: The important gene co-expression modules. Biomed. Rep. 2017;7:153–158. doi: 10.3892/br.2017.941. PubMed DOI PMC
Key J., Park K. Multicomponent, tumor-homing chitosan nanoparticles for cancer imaging and therapy. Int. J. Mol. Sci. 2017;18:594. doi: 10.3390/ijms18030594. PubMed DOI PMC
Fu S., Xia J., Wu J. Functional chitosan nanoparticles in cancer treatment. J. Biomed. Nanotechnol. 2016;12:1585–1603. doi: 10.1166/jbn.2016.2228. PubMed DOI
Bugnicourt L., Ladaviere C. Interests of chitosan nanoparticles conically cross-linked with tripolyphosphate for biomedical applications. Prog. Polym. Sci. 2016;60:1–17. doi: 10.1016/j.progpolymsci.2016.06.002. DOI
El-Marakby E.M., Hathout R.M., Taha I., Mansour S., Mortada N.D. A novel serum-stable liver targeted cytotoxic system using valerate-conjugated chitosan nanoparticles surface decorated with glycyrrhizin. Int. J. Pharm. 2017;525:123–138. doi: 10.1016/j.ijpharm.2017.03.081. PubMed DOI
Yu J.X., Wang L., Su L., Ai X.P., Yang H.X. Temperature effects on the electrodeposition of zinc. J. Electrochem. Soc. 2003;150:C19–C23. doi: 10.1149/1.1525269. DOI
Kudr J., Hoai Viet N., Gumulec J., Nejdl L., Blazkova I., Ruttkay-Nedecky B., Hynek D., Kynicky J., Adam V., Kizek R. Simultaneous automatic electrochemical detection of zinc, cadmium, copper and lead ions in environmental samples using a thin-film mercury electrode and an artificial neural network. Sensors. 2015;15:592–610. doi: 10.3390/s150100592. PubMed DOI PMC
Di Martino A., Sedlarik V. Amphiphilic chitosan-grafted-functionalized polylactic acid based nanoparticles as a delivery system for doxorubicin and temozolomide co-therapy. Int. J. Pharm. 2014;474:134–145. doi: 10.1016/j.ijpharm.2014.08.014. PubMed DOI
Xiong W., Li L., Wang Y., Yu Y., Wang S., Gao Y., Liang Y., Zhang G., Pan W., Yang X. Design and evaluation of a novel potential carrier for a hydrophilic antitumor drug: Auricularia auricular polysaccharide-chitosan nanoparticles as a delivery system for doxorubicin hydrochloride. Int. J. Pharm. 2016;511:267–275. doi: 10.1016/j.ijpharm.2016.07.026. PubMed DOI
Janes K.A., Fresneau M.P., Marazuela A., Fabra A., Alonso M.J. Chitosan nanoparticles as delivery systems for doxorubicin. J. Controll. Release. 2001;73:255–267. doi: 10.1016/S0168-3659(01)00294-2. PubMed DOI
Soares P.I.P., Sousa A.I., Silva J.C., Ferreira I.M.M., Novo C.M.M., Borges J.P. Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling. Carbohydr. Polym. 2016;147:304–312. doi: 10.1016/j.carbpol.2016.03.028. PubMed DOI
Anitha A., Deepagan V.G., Rani V.V.D., Menon D., Nair S.V., Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr. Polym. 2011;84:1158–1164. doi: 10.1016/j.carbpol.2011.01.005. DOI
Esfandiarpour-Boroujeni S., Bagheri-Khoulenjani S., Mirzadeh H., Amanpour S. Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr. Polym. 2017;168:14–21. doi: 10.1016/j.carbpol.2017.03.031. PubMed DOI
Yang C.L., Chen J.P., Wei K.C., Chen J.Y., Huang C.W., Liao Z.X. Release of doxorubicin by a folate-grafted, chitosan-coated magnetic nanoparticle. Nanomaterials. 2017;7:85. doi: 10.3390/nano7040085. PubMed DOI PMC
Chen X., Zhu X.Y., Li L., Xian G.J., Wang W., Ma D.W., Xie L. Investigation on novel chitosan nanoparticle-aptamer complexes targeting tgf-beta receptor II. Int. J. Pharm. 2013;456:499–507. doi: 10.1016/j.ijpharm.2013.08.028. PubMed DOI
Arya G., Vandana M., Acharya S., Sahoo S.K. Enhanced antiproliferative activity of herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomed. Nanotechnol. Biol. Med. 2011;7:859–870. doi: 10.1016/j.nano.2011.03.009. PubMed DOI
Zhu R., Zhang C.-G., Liu Y., Yuan Z.-Q., Chen W.-L., Yang S.-D., Li J.-Z., Zhu W.-J., Zhou X.-F., You B.-G., et al. Cd147 monoclonal antibody mediated by chitosan nanoparticles loaded with α-hederin enhances antineoplastic activity and cellular uptake in liver cancer cells. Sci. Rep. 2015;5:17904. doi: 10.1038/srep17904. PubMed DOI PMC
Yousefpour P., Atyabi F., Vasheghani-Farahani E., Movahedi A.-A.M., Dinarvand R. Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-her2 trastuzumab. Int. J. Nanomed. 2011;6:1977–1990. PubMed PMC
Zhao L., Yang G., Shi Y., Su C., Chang J. Co-delivery of gefitinib and chloroquine by chitosan nanoparticles for overcoming the drug acquired resistance. J. Nanobiotechnol. 2015;13 doi: 10.1186/s12951-015-0121-5. PubMed DOI PMC
Shargh V.H., Hondermarck H., Liang M. Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine. 2016;11:63–79. doi: 10.2217/nnm.15.186. PubMed DOI
Goodall S., Jones M.L., Mahler S. Monoclonal antibody-targeted polymeric nanoparticles for cancer therapy-future prospects. J. Chem. Technol. Biotechnol. 2015;90:1169–1176. doi: 10.1002/jctb.4555. DOI
Zhu Y., Choi S.H., Shah K. Multifunctional receptor-targeting antibodies for cancer therapy. Lancet Oncol. 2015;16:e543–e554. doi: 10.1016/S1470-2045(15)00039-X. PubMed DOI
Svirshchevskaya E.V., Zubareva A.A., Boyko A.A., Shustova O.A., Grechikhina M.V., Shagdarova B.T., Varlamov V.P. Analysis of toxicity and biocompatibility of chitosan derivatives with different physico-chemical properties. Appl. Biochem. Microbiol. 2016;52:483–490. doi: 10.1134/S000368381605015X. PubMed DOI
Zubareva A., Shagdarova B., Varlamov V., Kashirina E., Svirshchevskaya E. Penetration and toxicity of chitosan and its derivatives. Eur. Polym. J. 2017;93:743–749. doi: 10.1016/j.eurpolymj.2017.04.021. DOI
Saenko Y.V., Shutov A.M., Rastorgueva E.V. Doxorubicin and menadione decrease cell proliferation of saccharomyces cerevisiae by different mechanisms. Cell Tissue Biol. 2010;4:332–336. doi: 10.1134/S1990519X1004005X. PubMed DOI
Nguyen T.T.T., Lim Y.J., Fan M.H.M., Jackson R.A., Lim K.K., Ang W.H., Ban K.H.K., Chen E.S. Calcium modulation of doxorubicin cytotoxicity in yeast and human cells. Genes Cells. 2016;21:226–240. doi: 10.1111/gtc.12346. PubMed DOI
Westmoreland T.J., Wickramasekara S.M., Guo A.Y., Selim A.L., Winsor T.S., Greenleaf A.L., Blackwell K.L., Olson J.A., Marks J.R., Bennett C.B. Comparative genome-wide screening identifies a conserved doxorubicin repair network that is diploid specific in saccharomyces cerevisiae. PLoS ONE. 2009;4:e5830. doi: 10.1371/journal.pone.0005830. PubMed DOI PMC
Demir A.B., Koc A. High-copy overexpression screening reveals pdr5 as the main doxorubicin resistance gene in yeast. PLoS ONE. 2015;10:e0148108. doi: 10.1371/journal.pone.0145108. PubMed DOI PMC
Xia L., Jaafar L., Cashikar A., Flores-Rozas H. Identification of genes required for protection from doxorubicin by a genome-wide screen in saccharomyces cerevisiae. Cancer Res. 2007;67:11411–11418. doi: 10.1158/0008-5472.CAN-07-2399. PubMed DOI PMC
Hooda V., Archita Enzymes loaded chitosan/coconut fibre/zinc oxide nanoparticles strip for polyamine determination. Food Chem. 2018;239:1100–1109. doi: 10.1016/j.foodchem.2017.07.057. PubMed DOI
Deshpande P., Dapkekar A., Oak M.D., Paknikar K.M., Rajwade J.M. Zinc complexed chitosan/tpp nanoparticles: A promising micronutrient nanocarrier suited for foliar application. Carbohydr. Polym. 2017;165:394–401. doi: 10.1016/j.carbpol.2017.02.061. PubMed DOI
Al-Naamani L., Dobretsov S., Dutta J., Burgess J.G. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere. 2017;168:408–417. doi: 10.1016/j.chemosphere.2016.10.033. PubMed DOI
Noshirvani N., Ghanbarzadeh B., Mokarram R.R., Hashemi M., Coma V. Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int. J. Biol. Macromol. 2017;99:530–538. doi: 10.1016/j.ijbiomac.2017.03.007. PubMed DOI
Wang H.J., Liu S.L., Zhang A.K., Li K.W., Oderinde O., Yao F., Fu G.D. Zinc ion-induced formation of hierarchical N-succinyl chitosan film. J. Appl. Polym. Sci. 2017;134 doi: 10.1002/app.44664. DOI
Costello L.C., Franklin R.B., Zou J., Feng P., Bok R., Swanson M.G., Kurhanewicz J. Human prostate cancer zip1/zinc/citrate genetic/metabolic relationship in the tramp prostate cancer animal model. Cancer Biol. Ther. 2011;12:1078–1084. doi: 10.4161/cbt.12.12.18367. PubMed DOI PMC
Dambal S., Baumann B., McCray T., Williams L., Richards Z., Deaton R., Prins G.S., Nonn L. The mir-183 family cluster alters zinc homeostasis in benign prostate cells, organoids and prostate cancer xenografts. Sci. Rep. 2017;7:7704. doi: 10.1038/s41598-017-07979-y. PubMed DOI PMC
Jing L., Li L.Z., Zhao J., Sun Z.W., Peng S.Q. Zinc-induced metallothionein overexpression prevents doxorubicin toxicity in cardiomyocytes by regulating the peroxiredoxins. Xenobiotica. 2016;46:715–725. doi: 10.3109/00498254.2015.1110760. PubMed DOI
Franklin R.B., Costello L.C. The important role of the apoptotic effects of zinc in the development of cancers. J. Cell. Biochem. 2009;106:750–757. doi: 10.1002/jcb.22049. PubMed DOI PMC
Pang S.-T., Lin F.-W., Chuang C.-K., Yang H.-W. Co-delivery of docetaxel and p44/42 mapk sirna using PSMA antibody-conjugated BSA-PEI layer-by-layer nanoparticles for prostate cancer target therapy. Macromol. Biosci. 2017;17 doi: 10.1002/mabi.201600421. PubMed DOI
Daniels-Wells T.R., Helguera G., Leuchter R.K., Quintero R., Kozman M., Rodriguez J.A., Ortiz-Sanchez E., Martinez-Maza O., Schultes B.C., Nicodemus C.F., et al. A novel ige antibody targeting the prostate-specific antigen as a potential prostate cancer therapy. BMC Cancer. 2013;13:195. doi: 10.1186/1471-2407-13-195. PubMed DOI PMC
Nagesh P.K.B., Johnson N., Boya V.K.N., Chowdhury P., Ganju A., Hafeez B., Khan S., Jaggi M., Chauhan S.C., Yallapu M.M. PSMA antibody functionalized docetaxel-loaded magnetic nanoparticles for prostate cancer therapy. Cancer Res. 2016;76 doi: 10.1158/1538-7445.AM2016-1312. DOI
Lukey M.J., Katt W.P., Cerione R.A. Targeting amino acid metabolism for cancer therapy. Drug Discov. Today. 2017;22:796–804. doi: 10.1016/j.drudis.2016.12.003. PubMed DOI PMC
Roy D., Sheng G.Y., Herve S., Carvalho E., Mahanty A., Yuan S.T., Sun L. Interplay between cancer cell cycle and metabolism: Challenges, targets and therapeutic opportunities. Biomed. Pharmacother. 2017;89:288–296. doi: 10.1016/j.biopha.2017.01.019. PubMed DOI
Sidaway P. Prostate cancer: Targeting lipid metabolism. Nat. Rev. Urol. 2017;14:196. doi: 10.1038/nrurol.2017.28. PubMed DOI
Amelio I., Cutruzzola F., Antonov A., Agostini M., Melino G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 2014;39:191–198. doi: 10.1016/j.tibs.2014.02.004. PubMed DOI PMC
Jain M., Nilsson R., Sharma S., Madhusudhan N., Kitami T., Souza A.L., Kafri R., Kirschner M.W., Clish C.B., Mootha V.K. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012;336:1040–1044. doi: 10.1126/science.1218595. PubMed DOI PMC
Heger Z., Polanska H., Rodrigo M.A.M., Guran R., Kulich P., Kopel P., Masarik M., Eckschlager T., Stiborova M., Kizek R., et al. Prostate tumor attenuation in the nu/nu murine model due to anti-sarcosine antibodies in folate-targeted liposomes. Sci. Rep. 2016;6:33379. doi: 10.1038/srep33379. PubMed DOI PMC
Sabnis S., Block L.H. Chitosan as an enabling excipient for drug delivery systems. I. Molecular modifications. Int. J. Biol. Macromol. 2000;27:181–186. doi: 10.1016/S0141-8130(00)00118-5. PubMed DOI
Development of pH-Responsive Biopolymeric Nanocapsule for Antibacterial Essential Oils
A Rapid Method for the Detection of Sarcosine Using SPIONs/Au/CS/SOX/NPs for Prostate Cancer Sensing