Prostate tumor attenuation in the nu/nu murine model due to anti-sarcosine antibodies in folate-targeted liposomes

. 2016 Sep 20 ; 6 () : 33379. [epub] 20160920

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27646588

Herein, we describe the preparation of liposomes with folate-targeting properties for the encapsulation of anti-sarcosine antibodies (antisarAbs@LIP) and sarcosine (sar@LIP). The competitive inhibitory effects of exogenously added folic acid supported the role of folate targeting in liposome internalization. We examined the effects of repeated administration on mice PC-3 xenografts. Sar@LIP treatment significantly increased tumor volume and weight compared to controls treated with empty liposomes. Moreover, antisarAbs@LIP administration exhibited a mild antitumor effect. We also identified differences in gene expression patterns post-treatment. Furthermore, Sar@LIP treatment resulted in decreased amounts of tumor zinc ions and total metallothioneins. Examination of the spatial distribution across the tumor sections revealed a sarcosine-related decline of the MT1X isoform within the marginal regions but an elevation after antisarAbs@LIP administration. Our exploratory results demonstrate the importance of sarcosine as an oncometabolite in PCa. Moreover, we have shown that sarcosine can be a potential target for anticancer strategies in management of PCa.

Zobrazit více v PubMed

Siegel R. L., Miller K. D. & Jemal A. Cancer Statistics, 2015. CA-Cancer J. Clin. 65, 5–29 (2015). PubMed

Abate-Shen C. & Shen M. M. Molecular genetics of prostate cancer. Genes Dev. 14, 2410–2434 (2000). PubMed

Sreekumar A. PubMed PMC

Cao D. L. PubMed

Cao D. L. PubMed

Heger Z. PubMed

Lucarelli G. PubMed

Jentzmik F. PubMed

Khan A. P. PubMed PMC

Cernei N. PubMed

Heger Z. PubMed PMC

Leamon C. P. Folate-targeted drug strategies for the treatment of cancer. Curr. Opin. Investig. Drugs 9, 1277–1286 (2008). PubMed

Pollock S. PubMed

Heger Z. PubMed

Hattori Y. & Maitani Y. Folate-linked nanoparticle-mediated suicide gene therapy in human prostate cancer and nasopharyngeal cancer with herpes simplex virus thymidine kinase. Cancer Gene Ther. 12, 796–809 (2005). PubMed

Zhao D. M. PubMed PMC

Bahrami B. PubMed

Nelson W. G., De Marzo A. M. & Isaacs W. B. Mechanisms of disease: Prostate cancer. N. Engl. J. Med. 349, 366–381 (2003). PubMed

Chen C. PubMed PMC

Chaudhury A. & Das S. Folate Receptor Targeted Liposomes Encapsulating Anti-Cancer Drugs. Curr. Pharm. Biotechnol. 16, 333–343 (2015). PubMed

Sabharanjak S. & Mayor S. Folate receptor endocytosis and trafficking. Adv. Drug Deliv. Rev. 56, 1099–1109 (2004). PubMed

Maeda H. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond. J. Control. Release 164, 138–144 (2012). PubMed

Talmadge J. E., Singh R. K., Fidler I. J. & Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am. J. Pathol. 170, 793–804 (2007). PubMed PMC

Chames P., Van Regenmortel M., Weiss E. & Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009). PubMed PMC

Cernei N. PubMed PMC

Trudel D., Fradet Y., Meyer F., Harel F. & Tetu B. Significance of MMP-2 expression in prostate cancer: An immunohistochemical study. Cancer Res. 63, 8511–8515 (2003). PubMed

Peng B. PubMed

Kaukoniemi K. M. PubMed PMC

Adams S. J., Aydin I. T. & Celebi J. T. GAB2-a Scaffolding Protein in Cancer. Mol. Cancer Res. 10, 1265–1270 (2012). PubMed PMC

Ding C. B., Yu W. N., Feng J. H. & Luo J. M. Structure and function of Gab2 and its role in cancer (Review). Mol. Med. Rep. 12, 4007–4014 (2015). PubMed PMC

Mignard V., Lalier L., Paris F. & Vallette F. M. Bioactive lipids and the control of Bax pro-apoptotic activity. Cell Death Dis. 5, 1–8 (2014). PubMed PMC

Schmid M. PubMed

Tisman G. & Garcia A. Control of prostate cancer associated with withdrawal of a supplement containing folic acid, L-methyltetrahydrofolate and vitamin B12: a case report. J Med. Case Rep. 5, 413–418 (2011). PubMed PMC

Pan T. J. PubMed

Wang Q. PubMed

Beauchamp E. M. & Platanias L. C. The evolution of the TOR pathway and its role in cancer. Oncogene 32, 3923–3932 (2013). PubMed

Hasumi M. PubMed

Franklin R. B. PubMed PMC

Heger Z. PubMed

Vogel C. & Marcotte E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012). PubMed PMC

Leitao R. G.

Song Y. H., Shiota M., Kuroiwa K., Naito S. & Oda Y. The important role of glycine N-methyltransferase in the carcinogenesis and progression of prostate cancer. Mod. Pathol. 24, 1272–1280 (2011). PubMed

Bradford M. M. Rapid and sensitive method for quantification of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). PubMed

Heger Z. PubMed

Nejdl L. PubMed

Roth K. M., Peyvan K., Schwarzkopf K. R. & Ghindilis A. Electrochemical detection of short DNA oligomer hybridization using the CombiMatrix ElectraSense Microarray reader. Electroanalysis 18, 1982–1988 (2006).

Kaushal V., Herzog C., Haun R. S. & Kaushal G. P. In Caspases, Paracaspases, and Metacaspases: Methods and Protocols Vol. 1133 Methods in Molecular Biology (eds Bozhkov P. V. & Salvesen G.) 141–154 (Humana Press Inc, 2014).

Casadonte R. & Caprioli R. M. Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat. Protoc. 6, 1695–1709 (2011). PubMed PMC

Tmejova K. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...