Sarcosine as a potential prostate cancer biomarker--a review

. 2013 Jul 04 ; 14 (7) : 13893-908. [epub] 20130704

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid23880848

Prostate cancer (CaP) is the most common type of tumour disease in men. Early diagnosis of cancer of the prostate is very important, because the sooner the cancer is detected, the better it is treated. According to that fact, there is great interest in the finding of new markers including amino acids, proteins or nucleic acids. Prostate specific antigen (PSA) is commonly used and is the most important biomarker of CaP. This marker can only be detected in blood and its sensitivity is approximately 80%. Moreover, early stages cannot be diagnosed using this protein. Currently, there does not exist a test for diagnosis of early stages of prostate cancer. This fact motivates us to find markers sensitive to the early stages of CaP, which are easily detected in body fluids including urine. A potential is therefore attributed to the non-protein amino acid sarcosine, which is generated by glycine-N-methyltransferase in its biochemical cycle. In this review, we summarize analytical methods for quantification of sarcosine as a CaP marker. Moreover, pathways of the connection of synthesis of sarcosine and CaP development are discussed.

Zobrazit více v PubMed

Sreekumar A., Poisson L.M., Rajendiran T.M., Khan A.P., Cao Q., Yu J.D., Laxman B., Mehra R., Lonigro R.J., Li Y., et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–914. PubMed PMC

Issaq H.J., Waybright T.J., Veenstra T.D. Cancer biomarker discovery: Opportunities and pitfalls in analytical methods. Electrophoresis. 2011;32:967–975. PubMed

Cavaliere B., Macchione B., Monteleone M., Naccarato A., Sindona G., Tagarelli A. Sarcosine as a marker in prostate cancer progression: A rapid and simple method for its quantification in human urine by solid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. Anal. Bioanal. Chem. 2011;400:2903–2912. PubMed

Siegel R., Naishadham D., Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 2013;63:11–30. PubMed

Jamaspishvili T., Kral M., Khomeriki I., Student V., Kolar Z., Bouchal J. Urine markers in monitoring for prostate cancer. Prostate Cancer Prostatic Dis. 2010;13:12–19. PubMed

Issaq H.J., Veenstra T.D. Is sarcosine a biomarker for prostate cancer? J. Sep. Sci. 2011;34:3619–3621. PubMed

Jentzmik F., Stephan C., Lein M., Miller K., Kamlage B., Bethan B., Kristiansen G., Jung K. Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J. Urol. 2011;185:706–711. PubMed

Palacios D.A., Rosser C.J. Sarcosine, a biomarker for prostate cancer: Ready for prime time? Biomark. Med. 2012;6:513–514. PubMed

Mukherjee S., Cruz-Rodriguez O., Bolton E., Iniguez-Lluhi J.A. The in vivo role of androgen receptor SUMOylation as revealed by androgen insensitivity syndrome and prostate cancer mutations targeting the proline/glycine residues of synergy control motifs. J. Biol. Chem. 2012;287:31195–31206. PubMed PMC

Hakimi J.M., Schoenberg M.P., Rondinelli R.H., Piantadosi S., Barrack E.R. Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer. Clin. Cancer Res. 1997;3:1599–1608. PubMed

Huang J., Jiang L.M., Ren P.P., Zhang L.M., Tang H.R. Comprehensive solid-state NMR analysis reveals the effects of n-methylation on the molecular dynamics of glycine. J. Phys. Chem. B. 2012;116:136–146. PubMed

Patel S., Issa M.M., El-Galley R. Evaluation of novel formula of PSA, age, prostate volume, and race in predicting positive prostate biopsy findings. Urology. 2013;81:602–606. PubMed

Morote J., Rigau M., Garcia M., Mir C., Ballesteros C., Planas J., Raventos C.X., Placer J., de Torres I.M., Reventos J., et al. Behavior of the PCA3 gene in the urine of men with high grade prostatic intraepithelial neoplasia. World J. Urol. 2010;28:677–680. PubMed

Goode R.R., Marshall S.J., Duff M., Chevli E., Chevli K.K. Use of PCA3 in detecting prostate cancer in initial and repeat prostate biopsy patients. Prostate. 2013;73:48–53. PubMed

Shen M., Chen W., Yu K.Y., Chen Z.G., Zhou W., Lin X.M., Weng Z.L., Li C.D., Wu X.L., Tao Z.H. The diagnostic value of PCA3 gene-based analysis of urine sediments after digital rectal examination for prostate cancer in a Chinese population. Exp. Mol. Pathol. 2011;90:97–100. PubMed

Wu N., Liu S.Q., Guo C.M., Hou Z.J., Sun M.Z. The role of annexin A3 playing in cancers. Clin. Transl. Oncol. 2013;15:106–110. PubMed

Schostak M., Schwall G., Poznanovic S., Miller K., Messinger D., Klocker H., Stenzl A., Feyerabend S., Muller M., Schrattenholz A. Annexin A3 quantification from supernatants of urine after dre provides a novel and clinically easy available biomarker for the non-invasive diagnosis of prostate cancer. J. Urol. 2007;177:470–470.

Schostak M., Schwall G.P., Poznanovic S., Groebe K., Muller M., Messinger D., Miller K., Krause H., Pelzer A., Horninger W., et al. Annexin A3 in urine: A highly specific noninvasive marker for prostate cancer early detection. J. Urol. 2009;181:343–353. PubMed

Cao D.L., Ye D.W., Zhang H.L., Zhu Y., Wang Y.X., Yao X.D. A multiplex model of combining gene-based, protein-based, and metabolite-based with positive and negative markers in urine for the early diagnosis of prostate cancer. Prostate. 2011;71:700–710. PubMed

Dabir P.D., Ottosen P., Hoyer S., Hamilton-Dutoit S. Comparative analysis of three- and two-antibody cocktails to AMACR and basal cell markers for the immunohistochemical diagnosis of prostate carcinoma. Diagn. Pathol. 2012;7:1–6. PubMed PMC

Cernei N., Zitka O., Skalickova S., Gumulec J., Masarik M., Hrabec R., Adam V., Kizek R. Sarcosine in urine of patients with prostate carcinome (in Czech) Praktický Lékař. 2012;92:444–448.

Fernandez-Serra A., Rubio-Briones J., Garcia-Casado Z., Solsona E., Lopez-Guerrero J.A. Prostate cancer: The revolution of the fusion genes. Actas Urol. Esp. 2011;35:420–428. PubMed

Strittmatter F., Stieber P., Nagel D., Fullhase C., Walther S., Stief C., Waidelich R. Detection of prostate cancer with complexed PSA and complexed/total PSA ratio: Is there any advantage? Eur. J. Med. Res. 2011;16:445–450. PubMed PMC

Filella X., Gimenez N. Evaluation of [−2]proPSA and Prostate Health Index (phi) for the detection of prostate cancer: A systematic review and meta-analysis. Clin. Chem. Lab. Med. 2013;51:729–739. PubMed

Tosoian J.J., Loeb S., Feng Z.Y., Isharwal S., Landis P., Elliot D.J., Veltri R., Epstein J.I., Partin A.W., Carter H.B., et al. Association of [−2]proPSA with biopsy reclassification during active surveillance for prostate cancer. J. Urol. 2012;188:1131–1136. PubMed PMC

Vesprini D., Liu S., Nam R. Predicting high risk disease using serum and DNA biomarkers. Curr. Opin. Urol. 2013;23:252–260. PubMed

Pin E., Fredolini C., Petricoin E.F. The role of proteomics in prostate cancer research: Biomarker discovery and validation. Clin. Biochem. 2013;46:524–538. PubMed

Ryan D., Robards K., Prenzler P.D., Kendall M. Recent and potential developments in the analysis of urine: A review. Anal. Chim. Acta. 2011;684:17–29. PubMed

Wang Y.C., Chen Y.M., Lin Y.J., Liu S.P., Chiang E.P.I. GNMT expression increases hepatic folate contents and folate-dependent methionine synthase-mediated homocysteine remethylation. Mol. Med. 2011;17:486–494. PubMed PMC

Yen C.H., Lin Y.T., Chen H.L., Chen S.Y., Chen Y.M.A. The multi-functional roles of GNMT in toxicology and cancer. Toxicol. Appl. Pharmacol. 2013;266:67–75. PubMed

Soriano A., Castillo R., Christov C., Andres J., Moliner V., Tunon I. Catalysis in glycine N-methyltransferase: Testing the electrostatic stabilization and compression hypothesis. Biochemistry. 2006;45:14917–14925. PubMed

Velichkova P., Himo F. Methyl transfer in glycine N-methyltransferase. A theoretical study. J. Phys. Chem. B. 2005;109:8216–8219. PubMed

Song Y.H., Shiota M., Kuroiwa K., Naito S., Oda Y. The important role of glycine N-methyltransferase in the carcinogenesis and progression of prostate cancer. Mod. Pathol. 2011;24:1272–1280. PubMed

Ianni M., Porcellini E., Carbone I., Potenzoni M., Pieri A.M., Pastizzaro C.D., Benecchi L., Licastro F. Genetic factors regulating inflammation and DNA methylation associated with prostate cancer. Prostate Cancer Prostatic Dis. 2013;16:56–60. PubMed

Huang Y.C., Lee C.M., Chen M., Chung M.Y., Chang Y.H., Huang W.J.S., Ho D.M.T., Pan C.C., Wu T.T., Yang S., et al. Haplotypes, loss of heterozygosity, and expression levels of glycine N-methyltransferase in prostate cancer. Clin. Cancer Res. 2007;13:1412–1420. PubMed

Lee C.M., Shih Y.P., Wu C.H., Chen Y.M.A. Characterization of the 5′ regulatory region of the human Glycine N-methyltransferase gene. Gene. 2009;443:151–157. PubMed

Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999;239:15–27. PubMed

Nardini M., Gnesutta N., Donati G., Gatta R., Forni C., Fossati A., Vonrhein C., Moras D., Romier C., Bolognesi M., et al. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell. 2013;152:132–143. PubMed

Petroni K., Kumimoto R.W., Gnesutta N., Calvenzani V., Fornari M., Tonelli C., Holt B.F., Mantovani R. The promiscuous life of plant nuclear factor Y transcription factors. Plant Cell. 2012;24:4777–4792. PubMed PMC

Dolfini D., Minuzzo M., Pavesi G., Mantovani R. The short isoform of NF-YA belongs to the embryonic stem cell transcription factor circuitry. Stem Cells. 2012;30:2450–2459. PubMed

Calvenzani V., Testoni B., Gusmaroli G., Lorenzo M., Gnesutta N., Petroni K., Mantovani R., Tonelli C. Interactions and CCAAT-binding of arabidopsis thaliana NF-Y subunits. PLoS One. 2012;7:1–11. PubMed PMC

Luka Z., Cerone R., Phillips J.A., Mudd S.H., Wagner C. Mutations in human glycine N-methyltransferase give insights into its role in methionine metabolism. Hum. Genet. 2002;110:68–74. PubMed

Liao Y.J., Liu S.P., Lee C.M., Yen C.H., Chuang P.C., Chen C.Y., Tsai T.F., Huang S.F., Lee Y.H.W., Chen Y.M.A. Characterization of a glycine N-methyltransferase gene knockout mouse model for hepatocellular carcinoma: Implications of the gender disparity in liver cancer susceptibility. Int. J. Cancer. 2009;124:816–826. PubMed

Stabler S., Koyama T., Zhao Z.G., Martinez-Ferrer M., Allen R.H., Luka Z., Loukachevitch L.V., Clark P.E., Wagner C., Bhowmick N.A. Serum methionine metabolites are risk factors for metastatic prostate cancer progression. PLoS One. 2011;6:e22486. PubMed PMC

Dahl M., Bouchelouche P., Kramer-Marek G., Capala J., Nordling J., Bouchelouche K. Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells. Mol. Biol. Rep. 2011;38:4237–4243. PubMed PMC

Metallo C.M. Expanding the reach of cancer metabolomics. Cancer Prev. Res. 2012;5:1337–1340. PubMed

Burton C., Gamagedara S., Ma Y.F. A novel enzymatic technique for determination of sarcosine in urine samples. Anal. Methods. 2012;4:141–146.

Montrose D.C., Zhou X.K., Kopelovich L., Yantiss R.K., Karoly E.D., Subbaramaiah K., Dannenberg A.J. Metabolic profiling, a noninvasive approach for the detection of experimental colorectal neoplasia. Cancer Prev. Res. 2012;5:1358–1367. PubMed PMC

Luka Z., Pakhomova S., Loukachevitch L.V., Newcomer M.E., Wagner C. Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate. Bba Proteins Proteomics. 2012;1824:286–291. PubMed PMC

Mitchell A.D., Benevenga N.J. Importance of sarcosine formation in methionine methyl carbon oxidation in rat. J. Nutr. 1976;106:1702–1713. PubMed

Bar-joseph I., Pras E., Reznik-Wolf H., Marek-Yagel D., Abu-Horvitz A., Dushnitzky M., Goldstein N., Rienstein S., Dekel M., Pode-Shakked B., et al. Mutations in the sarcosine dehydrogenase gene in patients with sarcosinemia. Hum. Genet. 2012;131:1805–1810. PubMed

Bergeron F., Otto A., Blache P., Day R., Denoroy L., Brandsch R., Bataille D. Molecular cloning and tissue distribution of rat sarcosine dehydrogenase. Eur. J. Biochem. 1998;257:556–561. PubMed

Trock B.J. Application of metabolomics to prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2011;29:572–581. PubMed PMC

Spratlin J.L., Serkova N.J., Eckhardt S.G. Clinical applications of metabolomics in oncology: A review. Clin. Cancer Res. 2009;15:431–440. PubMed PMC

Kami K., Fujimori T., Sato H., Sato M., Yamamoto H., Ohashi Y., Sugiyama N., Ishihama Y., Onozuka H., Ochiai A., et al. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry. Metabolomics. 2013;9:444–453. PubMed PMC

Cheng L.L., Wu C., Smith M.R., Gonzalez R.G. Non-destructive quantitation of spermine in human prostate tissue samples using HRMAS 1H-NMR spectroscopy at 9.4 T. FEBS Lett. 2001;494:112–116. PubMed

Swanson M.G., Zektzer A.S., Tabatabai Z.L., Simko J., Jarso S., Keshari K.R., Schmitt L., Carroll P.R., Shinohara K., Vigneron D.B., et al. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn. Reson. Med. 2006;55:1257–1264. PubMed

DeFeo E.M., Wu C.L., McDougal W.S., Cheng L.L. A decade in prostate cancer: From NMR to metabolomics. Nat. Rev. Urol. 2011;8:301–311. PubMed

Lucarelli G., Fanelli M., Larocca A.M.V., Germinario C.A., Rutigliano M., Vavallo A., Selvaggi F.P., Bettocchi C., Battaglia M., Ditonno P. Serum sarcosine increases the accuracy of prostate cancer detection in patients with total serum PSA less than 4.0 ng/mL. Prostate. 2012;72:1611–1621. PubMed

Shaughnessy J.D., Barlogie B. Interpreting the molecular biology and clinical behavior of multiple myeloma in the context of global gene expression profiling. Immunol. Rev. 2003;194:140–163. PubMed

Bohm L., Serafin A.M., Fernandez P., van der Watt G., Bouic P.J.D., Harvey J. Plasma sarcosine does not distinguish early and advanced stages of prostate cancer. SAMJ S. Afr. Med. J. 2012;102:677–679. PubMed

Chen J., Zhou L.N., Zhang X.Y., Lu X., Cao R., Xu C.J., Xu G.W. Urinary hydrophilic and hydrophobic metabolic profiling based on liquid chromatography-mass spectrometry methods: Differential metabolite discovery specific to ovarian cancer. Electrophoresis. 2012;33:3361–3369. PubMed

Schuller D.J., Reisch C.R., Moran M.A., Whitman W.B., Lanzilotta W.N. Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism Pelagabacter ubique. Protein Sci. 2012;21:289–298. PubMed PMC

Cernei N., Masarik M., Gumulec J., Zitka O., Babula P., Kizek R. Determination of sarcosine as possible tumour marker of prostate tumours. J. Biochem. Techol. 2010;2:S7–S8.

Jiang Y.Q., Cheng X.L., Wang C.A., Ma Y.F. Quantitative determination of sarcosine and related compounds in urinary samples by liquid chromatography with tandem mass spectrometry. Anal. Chem. 2010;82:9022–9027. PubMed

Cernei N., Zitka O., Ryvolova M., Adam V., Masarik M., Hubalek J., Kizek R. Spectrometric and electrochemical analysis of sarcosine as a potential prostate carcinoma marker. Int. J. Electrochem. Sci. 2012;7:4286–4301.

LeBoucher J., Charret C., CoudrayLucas C., Giboudeau J., Cynober L. Amino acid determination in biological fluids by automated ion-exchange chromatography: Performance of Hitachi L-8500A. Clin. Chem. 1997;43:1421–1428. PubMed

Khan A.P., Rajendiran T.M., Ateeq B., Asangani I.A., Athanikar A.R., Yocum A.K., Mehra R., Siddiqui J., Palapattu G., Wei J.T., et al. The role of sarcosine metabolism in prostate cancer progression. Neoplasia. 2013;15:491–501. PubMed PMC

Jentzmik F., Stephan C., Miller K., Schrader M., Erbersdobler A., Kristiansen G., Lein M., Jung K. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur. Urol. 2010;58:12–18. PubMed

Struys E.A., Heijboer A.C., van Moorselaar J., Jakobs C., Blankenstein M.A. Serum sarcosine is not a marker for prostate cancer. Ann. Clin. Biochem. 2010;47:282–282. PubMed

Wu H., Liu T.T., Ma C.G., Xue R.Y., Deng C.H., Zeng H.Z., Shen X.Z. GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal. Bioanal. Chem. 2011;401:635–646. PubMed

Bianchi F., Dugheri S., Musci M., Bonacchi A., Salvadori E., Arcangeli G., Cupelli V., Lanciotti M., Masieri L., Serni S., et al. Fully automated solid-phase microextraction-fast gas chromatography-mass spectrometry method using a new ionic liquid column for high-throughput analysis of sarcosine and N-ethylglycine in human urine and urinary sediments. Anal. Chim. Acta. 2011;707:197–203. PubMed

Cao D.L., Ye D.W., Zhu Y., Zhang H.L., Wang Y.X., Yao X.D. Efforts to resolve the contradictions in early diagnosis of prostate cancer: A comparison of different algorithms of sarcosine in urine. Prostate Cancer Prostatic Dis. 2011;14:166–172. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...