Sarcosine as a potential prostate cancer biomarker--a review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23880848
PubMed Central
PMC3742224
DOI
10.3390/ijms140713893
PII: ijms140713893
Knihovny.cz E-zdroje
- MeSH
- čipová analýza proteinů MeSH
- databáze faktografické MeSH
- glycin-N-methyltransferasa metabolismus MeSH
- hmotnostní spektrometrie MeSH
- lidé MeSH
- nádorové biomarkery analýza metabolismus MeSH
- nádory prostaty metabolismus patologie MeSH
- sarkosin analýza metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- glycin-N-methyltransferasa MeSH
- nádorové biomarkery MeSH
- sarkosin MeSH
Prostate cancer (CaP) is the most common type of tumour disease in men. Early diagnosis of cancer of the prostate is very important, because the sooner the cancer is detected, the better it is treated. According to that fact, there is great interest in the finding of new markers including amino acids, proteins or nucleic acids. Prostate specific antigen (PSA) is commonly used and is the most important biomarker of CaP. This marker can only be detected in blood and its sensitivity is approximately 80%. Moreover, early stages cannot be diagnosed using this protein. Currently, there does not exist a test for diagnosis of early stages of prostate cancer. This fact motivates us to find markers sensitive to the early stages of CaP, which are easily detected in body fluids including urine. A potential is therefore attributed to the non-protein amino acid sarcosine, which is generated by glycine-N-methyltransferase in its biochemical cycle. In this review, we summarize analytical methods for quantification of sarcosine as a CaP marker. Moreover, pathways of the connection of synthesis of sarcosine and CaP development are discussed.
Zobrazit více v PubMed
Sreekumar A., Poisson L.M., Rajendiran T.M., Khan A.P., Cao Q., Yu J.D., Laxman B., Mehra R., Lonigro R.J., Li Y., et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–914. PubMed PMC
Issaq H.J., Waybright T.J., Veenstra T.D. Cancer biomarker discovery: Opportunities and pitfalls in analytical methods. Electrophoresis. 2011;32:967–975. PubMed
Cavaliere B., Macchione B., Monteleone M., Naccarato A., Sindona G., Tagarelli A. Sarcosine as a marker in prostate cancer progression: A rapid and simple method for its quantification in human urine by solid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. Anal. Bioanal. Chem. 2011;400:2903–2912. PubMed
Siegel R., Naishadham D., Jemal A. Cancer statistics, 2013. CA Cancer J. Clin. 2013;63:11–30. PubMed
Jamaspishvili T., Kral M., Khomeriki I., Student V., Kolar Z., Bouchal J. Urine markers in monitoring for prostate cancer. Prostate Cancer Prostatic Dis. 2010;13:12–19. PubMed
Issaq H.J., Veenstra T.D. Is sarcosine a biomarker for prostate cancer? J. Sep. Sci. 2011;34:3619–3621. PubMed
Jentzmik F., Stephan C., Lein M., Miller K., Kamlage B., Bethan B., Kristiansen G., Jung K. Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J. Urol. 2011;185:706–711. PubMed
Palacios D.A., Rosser C.J. Sarcosine, a biomarker for prostate cancer: Ready for prime time? Biomark. Med. 2012;6:513–514. PubMed
Mukherjee S., Cruz-Rodriguez O., Bolton E., Iniguez-Lluhi J.A. The in vivo role of androgen receptor SUMOylation as revealed by androgen insensitivity syndrome and prostate cancer mutations targeting the proline/glycine residues of synergy control motifs. J. Biol. Chem. 2012;287:31195–31206. PubMed PMC
Hakimi J.M., Schoenberg M.P., Rondinelli R.H., Piantadosi S., Barrack E.R. Androgen receptor variants with short glutamine or glycine repeats may identify unique subpopulations of men with prostate cancer. Clin. Cancer Res. 1997;3:1599–1608. PubMed
Huang J., Jiang L.M., Ren P.P., Zhang L.M., Tang H.R. Comprehensive solid-state NMR analysis reveals the effects of n-methylation on the molecular dynamics of glycine. J. Phys. Chem. B. 2012;116:136–146. PubMed
Patel S., Issa M.M., El-Galley R. Evaluation of novel formula of PSA, age, prostate volume, and race in predicting positive prostate biopsy findings. Urology. 2013;81:602–606. PubMed
Morote J., Rigau M., Garcia M., Mir C., Ballesteros C., Planas J., Raventos C.X., Placer J., de Torres I.M., Reventos J., et al. Behavior of the PCA3 gene in the urine of men with high grade prostatic intraepithelial neoplasia. World J. Urol. 2010;28:677–680. PubMed
Goode R.R., Marshall S.J., Duff M., Chevli E., Chevli K.K. Use of PCA3 in detecting prostate cancer in initial and repeat prostate biopsy patients. Prostate. 2013;73:48–53. PubMed
Shen M., Chen W., Yu K.Y., Chen Z.G., Zhou W., Lin X.M., Weng Z.L., Li C.D., Wu X.L., Tao Z.H. The diagnostic value of PCA3 gene-based analysis of urine sediments after digital rectal examination for prostate cancer in a Chinese population. Exp. Mol. Pathol. 2011;90:97–100. PubMed
Wu N., Liu S.Q., Guo C.M., Hou Z.J., Sun M.Z. The role of annexin A3 playing in cancers. Clin. Transl. Oncol. 2013;15:106–110. PubMed
Schostak M., Schwall G., Poznanovic S., Miller K., Messinger D., Klocker H., Stenzl A., Feyerabend S., Muller M., Schrattenholz A. Annexin A3 quantification from supernatants of urine after dre provides a novel and clinically easy available biomarker for the non-invasive diagnosis of prostate cancer. J. Urol. 2007;177:470–470.
Schostak M., Schwall G.P., Poznanovic S., Groebe K., Muller M., Messinger D., Miller K., Krause H., Pelzer A., Horninger W., et al. Annexin A3 in urine: A highly specific noninvasive marker for prostate cancer early detection. J. Urol. 2009;181:343–353. PubMed
Cao D.L., Ye D.W., Zhang H.L., Zhu Y., Wang Y.X., Yao X.D. A multiplex model of combining gene-based, protein-based, and metabolite-based with positive and negative markers in urine for the early diagnosis of prostate cancer. Prostate. 2011;71:700–710. PubMed
Dabir P.D., Ottosen P., Hoyer S., Hamilton-Dutoit S. Comparative analysis of three- and two-antibody cocktails to AMACR and basal cell markers for the immunohistochemical diagnosis of prostate carcinoma. Diagn. Pathol. 2012;7:1–6. PubMed PMC
Cernei N., Zitka O., Skalickova S., Gumulec J., Masarik M., Hrabec R., Adam V., Kizek R. Sarcosine in urine of patients with prostate carcinome (in Czech) Praktický Lékař. 2012;92:444–448.
Fernandez-Serra A., Rubio-Briones J., Garcia-Casado Z., Solsona E., Lopez-Guerrero J.A. Prostate cancer: The revolution of the fusion genes. Actas Urol. Esp. 2011;35:420–428. PubMed
Strittmatter F., Stieber P., Nagel D., Fullhase C., Walther S., Stief C., Waidelich R. Detection of prostate cancer with complexed PSA and complexed/total PSA ratio: Is there any advantage? Eur. J. Med. Res. 2011;16:445–450. PubMed PMC
Filella X., Gimenez N. Evaluation of [−2]proPSA and Prostate Health Index (phi) for the detection of prostate cancer: A systematic review and meta-analysis. Clin. Chem. Lab. Med. 2013;51:729–739. PubMed
Tosoian J.J., Loeb S., Feng Z.Y., Isharwal S., Landis P., Elliot D.J., Veltri R., Epstein J.I., Partin A.W., Carter H.B., et al. Association of [−2]proPSA with biopsy reclassification during active surveillance for prostate cancer. J. Urol. 2012;188:1131–1136. PubMed PMC
Vesprini D., Liu S., Nam R. Predicting high risk disease using serum and DNA biomarkers. Curr. Opin. Urol. 2013;23:252–260. PubMed
Pin E., Fredolini C., Petricoin E.F. The role of proteomics in prostate cancer research: Biomarker discovery and validation. Clin. Biochem. 2013;46:524–538. PubMed
Ryan D., Robards K., Prenzler P.D., Kendall M. Recent and potential developments in the analysis of urine: A review. Anal. Chim. Acta. 2011;684:17–29. PubMed
Wang Y.C., Chen Y.M., Lin Y.J., Liu S.P., Chiang E.P.I. GNMT expression increases hepatic folate contents and folate-dependent methionine synthase-mediated homocysteine remethylation. Mol. Med. 2011;17:486–494. PubMed PMC
Yen C.H., Lin Y.T., Chen H.L., Chen S.Y., Chen Y.M.A. The multi-functional roles of GNMT in toxicology and cancer. Toxicol. Appl. Pharmacol. 2013;266:67–75. PubMed
Soriano A., Castillo R., Christov C., Andres J., Moliner V., Tunon I. Catalysis in glycine N-methyltransferase: Testing the electrostatic stabilization and compression hypothesis. Biochemistry. 2006;45:14917–14925. PubMed
Velichkova P., Himo F. Methyl transfer in glycine N-methyltransferase. A theoretical study. J. Phys. Chem. B. 2005;109:8216–8219. PubMed
Song Y.H., Shiota M., Kuroiwa K., Naito S., Oda Y. The important role of glycine N-methyltransferase in the carcinogenesis and progression of prostate cancer. Mod. Pathol. 2011;24:1272–1280. PubMed
Ianni M., Porcellini E., Carbone I., Potenzoni M., Pieri A.M., Pastizzaro C.D., Benecchi L., Licastro F. Genetic factors regulating inflammation and DNA methylation associated with prostate cancer. Prostate Cancer Prostatic Dis. 2013;16:56–60. PubMed
Huang Y.C., Lee C.M., Chen M., Chung M.Y., Chang Y.H., Huang W.J.S., Ho D.M.T., Pan C.C., Wu T.T., Yang S., et al. Haplotypes, loss of heterozygosity, and expression levels of glycine N-methyltransferase in prostate cancer. Clin. Cancer Res. 2007;13:1412–1420. PubMed
Lee C.M., Shih Y.P., Wu C.H., Chen Y.M.A. Characterization of the 5′ regulatory region of the human Glycine N-methyltransferase gene. Gene. 2009;443:151–157. PubMed
Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999;239:15–27. PubMed
Nardini M., Gnesutta N., Donati G., Gatta R., Forni C., Fossati A., Vonrhein C., Moras D., Romier C., Bolognesi M., et al. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell. 2013;152:132–143. PubMed
Petroni K., Kumimoto R.W., Gnesutta N., Calvenzani V., Fornari M., Tonelli C., Holt B.F., Mantovani R. The promiscuous life of plant nuclear factor Y transcription factors. Plant Cell. 2012;24:4777–4792. PubMed PMC
Dolfini D., Minuzzo M., Pavesi G., Mantovani R. The short isoform of NF-YA belongs to the embryonic stem cell transcription factor circuitry. Stem Cells. 2012;30:2450–2459. PubMed
Calvenzani V., Testoni B., Gusmaroli G., Lorenzo M., Gnesutta N., Petroni K., Mantovani R., Tonelli C. Interactions and CCAAT-binding of arabidopsis thaliana NF-Y subunits. PLoS One. 2012;7:1–11. PubMed PMC
Luka Z., Cerone R., Phillips J.A., Mudd S.H., Wagner C. Mutations in human glycine N-methyltransferase give insights into its role in methionine metabolism. Hum. Genet. 2002;110:68–74. PubMed
Liao Y.J., Liu S.P., Lee C.M., Yen C.H., Chuang P.C., Chen C.Y., Tsai T.F., Huang S.F., Lee Y.H.W., Chen Y.M.A. Characterization of a glycine N-methyltransferase gene knockout mouse model for hepatocellular carcinoma: Implications of the gender disparity in liver cancer susceptibility. Int. J. Cancer. 2009;124:816–826. PubMed
Stabler S., Koyama T., Zhao Z.G., Martinez-Ferrer M., Allen R.H., Luka Z., Loukachevitch L.V., Clark P.E., Wagner C., Bhowmick N.A. Serum methionine metabolites are risk factors for metastatic prostate cancer progression. PLoS One. 2011;6:e22486. PubMed PMC
Dahl M., Bouchelouche P., Kramer-Marek G., Capala J., Nordling J., Bouchelouche K. Sarcosine induces increase in HER2/neu expression in androgen-dependent prostate cancer cells. Mol. Biol. Rep. 2011;38:4237–4243. PubMed PMC
Metallo C.M. Expanding the reach of cancer metabolomics. Cancer Prev. Res. 2012;5:1337–1340. PubMed
Burton C., Gamagedara S., Ma Y.F. A novel enzymatic technique for determination of sarcosine in urine samples. Anal. Methods. 2012;4:141–146.
Montrose D.C., Zhou X.K., Kopelovich L., Yantiss R.K., Karoly E.D., Subbaramaiah K., Dannenberg A.J. Metabolic profiling, a noninvasive approach for the detection of experimental colorectal neoplasia. Cancer Prev. Res. 2012;5:1358–1367. PubMed PMC
Luka Z., Pakhomova S., Loukachevitch L.V., Newcomer M.E., Wagner C. Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate. Bba Proteins Proteomics. 2012;1824:286–291. PubMed PMC
Mitchell A.D., Benevenga N.J. Importance of sarcosine formation in methionine methyl carbon oxidation in rat. J. Nutr. 1976;106:1702–1713. PubMed
Bar-joseph I., Pras E., Reznik-Wolf H., Marek-Yagel D., Abu-Horvitz A., Dushnitzky M., Goldstein N., Rienstein S., Dekel M., Pode-Shakked B., et al. Mutations in the sarcosine dehydrogenase gene in patients with sarcosinemia. Hum. Genet. 2012;131:1805–1810. PubMed
Bergeron F., Otto A., Blache P., Day R., Denoroy L., Brandsch R., Bataille D. Molecular cloning and tissue distribution of rat sarcosine dehydrogenase. Eur. J. Biochem. 1998;257:556–561. PubMed
Trock B.J. Application of metabolomics to prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2011;29:572–581. PubMed PMC
Spratlin J.L., Serkova N.J., Eckhardt S.G. Clinical applications of metabolomics in oncology: A review. Clin. Cancer Res. 2009;15:431–440. PubMed PMC
Kami K., Fujimori T., Sato H., Sato M., Yamamoto H., Ohashi Y., Sugiyama N., Ishihama Y., Onozuka H., Ochiai A., et al. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry. Metabolomics. 2013;9:444–453. PubMed PMC
Cheng L.L., Wu C., Smith M.R., Gonzalez R.G. Non-destructive quantitation of spermine in human prostate tissue samples using HRMAS 1H-NMR spectroscopy at 9.4 T. FEBS Lett. 2001;494:112–116. PubMed
Swanson M.G., Zektzer A.S., Tabatabai Z.L., Simko J., Jarso S., Keshari K.R., Schmitt L., Carroll P.R., Shinohara K., Vigneron D.B., et al. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn. Reson. Med. 2006;55:1257–1264. PubMed
DeFeo E.M., Wu C.L., McDougal W.S., Cheng L.L. A decade in prostate cancer: From NMR to metabolomics. Nat. Rev. Urol. 2011;8:301–311. PubMed
Lucarelli G., Fanelli M., Larocca A.M.V., Germinario C.A., Rutigliano M., Vavallo A., Selvaggi F.P., Bettocchi C., Battaglia M., Ditonno P. Serum sarcosine increases the accuracy of prostate cancer detection in patients with total serum PSA less than 4.0 ng/mL. Prostate. 2012;72:1611–1621. PubMed
Shaughnessy J.D., Barlogie B. Interpreting the molecular biology and clinical behavior of multiple myeloma in the context of global gene expression profiling. Immunol. Rev. 2003;194:140–163. PubMed
Bohm L., Serafin A.M., Fernandez P., van der Watt G., Bouic P.J.D., Harvey J. Plasma sarcosine does not distinguish early and advanced stages of prostate cancer. SAMJ S. Afr. Med. J. 2012;102:677–679. PubMed
Chen J., Zhou L.N., Zhang X.Y., Lu X., Cao R., Xu C.J., Xu G.W. Urinary hydrophilic and hydrophobic metabolic profiling based on liquid chromatography-mass spectrometry methods: Differential metabolite discovery specific to ovarian cancer. Electrophoresis. 2012;33:3361–3369. PubMed
Schuller D.J., Reisch C.R., Moran M.A., Whitman W.B., Lanzilotta W.N. Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism Pelagabacter ubique. Protein Sci. 2012;21:289–298. PubMed PMC
Cernei N., Masarik M., Gumulec J., Zitka O., Babula P., Kizek R. Determination of sarcosine as possible tumour marker of prostate tumours. J. Biochem. Techol. 2010;2:S7–S8.
Jiang Y.Q., Cheng X.L., Wang C.A., Ma Y.F. Quantitative determination of sarcosine and related compounds in urinary samples by liquid chromatography with tandem mass spectrometry. Anal. Chem. 2010;82:9022–9027. PubMed
Cernei N., Zitka O., Ryvolova M., Adam V., Masarik M., Hubalek J., Kizek R. Spectrometric and electrochemical analysis of sarcosine as a potential prostate carcinoma marker. Int. J. Electrochem. Sci. 2012;7:4286–4301.
LeBoucher J., Charret C., CoudrayLucas C., Giboudeau J., Cynober L. Amino acid determination in biological fluids by automated ion-exchange chromatography: Performance of Hitachi L-8500A. Clin. Chem. 1997;43:1421–1428. PubMed
Khan A.P., Rajendiran T.M., Ateeq B., Asangani I.A., Athanikar A.R., Yocum A.K., Mehra R., Siddiqui J., Palapattu G., Wei J.T., et al. The role of sarcosine metabolism in prostate cancer progression. Neoplasia. 2013;15:491–501. PubMed PMC
Jentzmik F., Stephan C., Miller K., Schrader M., Erbersdobler A., Kristiansen G., Lein M., Jung K. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur. Urol. 2010;58:12–18. PubMed
Struys E.A., Heijboer A.C., van Moorselaar J., Jakobs C., Blankenstein M.A. Serum sarcosine is not a marker for prostate cancer. Ann. Clin. Biochem. 2010;47:282–282. PubMed
Wu H., Liu T.T., Ma C.G., Xue R.Y., Deng C.H., Zeng H.Z., Shen X.Z. GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal. Bioanal. Chem. 2011;401:635–646. PubMed
Bianchi F., Dugheri S., Musci M., Bonacchi A., Salvadori E., Arcangeli G., Cupelli V., Lanciotti M., Masieri L., Serni S., et al. Fully automated solid-phase microextraction-fast gas chromatography-mass spectrometry method using a new ionic liquid column for high-throughput analysis of sarcosine and N-ethylglycine in human urine and urinary sediments. Anal. Chim. Acta. 2011;707:197–203. PubMed
Cao D.L., Ye D.W., Zhu Y., Zhang H.L., Wang Y.X., Yao X.D. Efforts to resolve the contradictions in early diagnosis of prostate cancer: A comparison of different algorithms of sarcosine in urine. Prostate Cancer Prostatic Dis. 2011;14:166–172. PubMed