Influence of Long-Distance Bicycle Riding on Serum/Urinary Biomarkers of Prostate Cancer
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26999116
PubMed Central
PMC4813236
DOI
10.3390/ijms17030377
PII: ijms17030377
Knihovny.cz E-resources
- Keywords
- lactate, metabolism, physical exercise, prostate-specific antigen, sarcosine,
- MeSH
- C-Reactive Protein analysis MeSH
- Bicycling * MeSH
- Lactic Acid blood MeSH
- Uric Acid blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Biomarkers, Tumor blood urine MeSH
- Prostatic Neoplasms blood diagnosis MeSH
- Prostate-Specific Antigen blood MeSH
- Reproducibility of Results MeSH
- Sarcosine blood urine MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- C-Reactive Protein MeSH
- Lactic Acid MeSH
- Uric Acid MeSH
- Biomarkers, Tumor MeSH
- Prostate-Specific Antigen MeSH
- Sarcosine MeSH
Herein, we present a study focused on the determination of the influence of long-distance (53 km) bicycle riding on levels of chosen biochemical urinary and serum prostate cancer (PCa) biomarkers total prostate-specific antigen (tPSA), free PSA (fPSA) and sarcosine. Fourteen healthy participants with no evidence of prostate diseases, in the age range from 49-57 years with a median of 52 years, underwent physical exercise (mean race time of 150 ± 20 min, elevation increase of 472 m) and pre- and post-ride blood/urine sampling. It was found that bicycle riding resulted in elevated serum uric acid (p = 0.001, median 271.76 vs. 308.44 µmol/L pre- and post-ride, respectively), lactate (p = 0.01, median 2.98 vs. 4.8 mmol/L) and C-reactive protein (p = 0.01, 0.0-0.01 mg/L). It is noteworthy that our work supports the studies demonstrating an increased PSA after mechanical manipulation of the prostate. The subjects exhibited either significantly higher post-ride tPSA (p = 0.002, median 0.69 vs. 1.1 ng/mL pre- and post-ride, respectively) and fPSA (p = 0.028, median 0.25 vs. 0.35 ng/mL). Contrary to that, sarcosine levels were not significantly affected by physical exercise (p = 0.20, median 1.64 vs. 1.92 µmol/mL for serum sarcosine, and p = 0.15, median 0.02 µmol/mmol of creatinine vs. 0.01 µmol/mmol of creatinine for urinary sarcosine). Taken together, our pilot study provides the first evidence that the potential biomarker of PCa-sarcosine does not have a drawback by means of a bicycle riding-induced false positivity, as was shown in the case of PSA.
See more in PubMed
Oberpenning F., Schmid H.P., Fuchs-Surdel W., Hertle L., Semjonow A. The impact of intraoperative manipulation of the prostate on total and free prostate-specific antigen. Int. J. Biol. Markers. 2002;17:154–160. PubMed
Herrmann M., Scharhag J., Sand-Hill M., Kindermann W., Herrmann W. Long-distance mountain biking does not disturb the measurement of total, free or complexed prostatespecific antigen in healthy men. Clin. Chem. Lab. Med. 2004;42:347–349. doi: 10.1515/CCLM.2004.061. PubMed DOI
Mejak S.L., Bayliss J., Hanks S.D. Long distance bicycle riding causes prostate-specific antigen to increase in men aged 50 years and over. PLoS ONE. 2013;8:377. doi: 10.1371/journal.pone.0056030. PubMed DOI PMC
Oremek G.M., Seiffert U.B. Physical activity releases prostate-specific antigen (PSA) from the prostate gland into blood and increases serum PSA concentrations. Clin. Chem. 1996;42:691–695. PubMed
Kindermann W., Lehmann V., Herrmann M., Loch T. Influencing of the PSA concentration in serum by physical exercise (especially bicycle riding) Urologe. 2011;50:188–196. doi: 10.1007/s00120-010-2489-z. PubMed DOI
Safford H.R., Crawford E.D., Mackenzie S.H., Capriola M. The effect of bicycle riding on serum prostate specific antigen levels. J. Urol. 1996;156:103–105. doi: 10.1016/S0022-5347(01)65954-8. PubMed DOI
Frymann R.J., Nuttall M.C., Carter P.G. Case report: Endurance cycle ride associated with a significant rise in PSA. Int. Urol. Nephrol. 2006;38:161–162. doi: 10.1007/s11255-005-1661-7. PubMed DOI
Luboldt H.J., Peck K.D., Oberpenning F., Schmid H.P., Luboldt W., Semjonow A. Bicycle riding has no important impact on total and free prostate-specific antigen serum levels in older men. Urology. 2003;61:1177–1180. doi: 10.1016/S0090-4295(03)00007-4. PubMed DOI
Saka T., Sofikerim M., Demirtas A., Kulaksizoglu S., Caniklioglu M., Karacagil M. Rigorous bicycling does not increase serum levels of total and free prostate-specific antigen (PSA), the free/total PSA ratio, gonadotropin levels, or uroflowmetric parameters. Urology. 2009;74:1325–1330. doi: 10.1016/j.urology.2009.07.1219. PubMed DOI
Swain R.A., Montalto N., Ross D. The effect of long-distance cycling on the prostate-specific antigen level. Arch. Fam. Med. 1997;6:500–502. doi: 10.1001/archfami.6.5.500. PubMed DOI
Partin A.W., Oesterling J.E. The clinical usefulness of prostate-specific antigen—Update-1994. J. Urol. 1994;152:1358–1368. doi: 10.1016/S0022-5347(01)66639-4. PubMed DOI
Holmstrom B., Johansson M., Bergh A., Stenman U.H., Hallmans G., Stattin P. Prostate specific antigen for early detection of prostate cancer: Longitudinal study. Br. Med. J. 2009;339:1–6. doi: 10.1136/bmj.b3537. PubMed DOI PMC
Schroder F.H., van der Maas P., Beemsterboer P., Kruger A.B., Hoedemaeker R., Rietbergen J., Kranse R. Evaluation of the digital rectal examination as a screening test for prostate cancer. J. Natl. Cancer Inst. 1998;90:1817–1823. doi: 10.1093/jnci/90.23.1817. PubMed DOI
Armstrong A.J., Eisenberger M.A., Halabi S., Oudard S., Nanus D.M., Petrylak D.P., Sartor A.O., Scher H.I. Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur. Urol. 2012;61:549–559. doi: 10.1016/j.eururo.2011.11.009. PubMed DOI PMC
Lucarelli G., Fanelli M., Larocca A.M.V., Germinario C.A., Rutigliano M., Vavallo A., Selvaggi F.P., Bettocchi C., Battaglia M., Ditonno P. Serum sarcosine increases the accuracy of prostate cancer detection in patients with total serum PSA less than 4.0 ng/mL. Prostate. 2012;72:1611–1621. doi: 10.1002/pros.22514. PubMed DOI
Cernei N., Heger Z., Gumulec J., Zitka O., Masarik M., Babula P., Eckschlager T., Stiborova M., Kizek R., Adam V. Sarcosine as a potential prostate cancer biomarker—A review. Int. J. Mol. Sci. 2013;14:13893–13908. doi: 10.3390/ijms140713893. PubMed DOI PMC
Sreekumar A., Poisson L.M., Rajendiran T.M., Khan A.P., Cao Q., Yu J.D., Laxman B., Mehra R., Lonigro R.J., Li Y., et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–914. doi: 10.1038/nature07762. PubMed DOI PMC
Oppliger R.A., Bartok C. Hydration testing of athletes. Sports Med. 2002;32:959–971. doi: 10.2165/00007256-200232150-00001. PubMed DOI
Volpe S.L., Poule K.A., Bland E.G. Estimation of prepractice hydration status of national collegiate athletic association division i athletes. J. Athl. Train. 2009;44:624–629. doi: 10.4085/1062-6050-44.6.624. PubMed DOI PMC
Palatini P. Blood-pressure behavior during physical-activity. Sports Med. 1988;5:353–374. doi: 10.2165/00007256-198805060-00002. PubMed DOI
Bassett D.R. Scientific contributions of A. V. Hill: Exercise physiology pioneer. J. Appl. Physiol. 2002;93:1567–1582. doi: 10.1152/japplphysiol.01246.2001. PubMed DOI
Messonnier L., Denis C., Feasson L., Lacour J.R. The following letters are in response to point: Counterpoint series “lactic acid accumulation is an advantage/disadvangage during muscle activity”. J. Appl. Physiol. 2006;101:1269–1269. PubMed
Daly W., Seegers C.A., Rubin D.A., Dobridge J.D., Hackney A.C. Relationship between stress hormones and testosterone with prolonged endurance exercise. Eur. J. Appl. Physiol. 2005;93:375–380. doi: 10.1007/s00421-004-1223-1. PubMed DOI
Schmid P., Pusch H.H., Wolf W., Pilger E., Pessenhofer H., Schwaberger G., Pristautz H., Purstner P. Serum FSH, LH, and testosterone in humans after physical exercise. Int. J. Sports Med. 1982;3:84–89. doi: 10.1055/s-2008-1026068. PubMed DOI
Arce J.C., Desouza M.J. Exercise and male factor infertility. Sports Med. 1993;15:146–169. doi: 10.2165/00007256-199315030-00002. PubMed DOI
Zmuda J.M., Thompson P.D., Winters S.J. Exercise increases serum testosterone and sex hormone-binding globulin levels in older men. Metab. Clin. Exp. 1996;45:935–939. doi: 10.1016/S0026-0495(96)90258-9. PubMed DOI
Abraham N.G., Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol. Rev. 2008;60:79–127. doi: 10.1124/pr.107.07104. PubMed DOI
Franchini M., Targher G., Lippi G. In: Serum bilirubin levels and cardiovascular disease risk: A Janus Bifrons? In Advances in Clinical Chemistry. Gregory S.M., editor. Volume 50. Elsevier; Amsterdam, The Netherlands: 2010. pp. 47–63. Chapter 3. PubMed
Swift D.L., Johannsen N.M., Earnest C.P., Blair S.N., Church T.S. Effect of different doses of aerobic exercise training on total bilirubin levels. Med. Sci. Sports Exerc. 2012;44:569–574. doi: 10.1249/MSS.0b013e3182357dd4. PubMed DOI PMC
Trape A.A., Jacomini A.M., Muniz J.J., Sertorio J.T.C., Tanus-Santos J.E., do Amaral S.L., Zago A.S. The relationship between training status, blood pressure and uric acid in adults and elderly. BMC Cardiovasc. Disord. 2013;13:1–7. doi: 10.1186/1471-2261-13-44. PubMed DOI PMC
Powers S.K., Jackson M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008;88:1243–1276. doi: 10.1152/physrev.00031.2007. PubMed DOI PMC
Danesh J., Wheeler J.G., Hirschfield G.M., Eda S., Eiriksdottir G., Rumley A., Lowe G.D.O., Pepys M.B., Gudnason V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 2004;350:1387–1397. doi: 10.1056/NEJMoa032804. PubMed DOI
Jeukendrup A.E., Vet-Joop K., Sturk A., Stegen J., Senden J., Saris W.H.M., Wagenmakers A.J.M. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin. Sci. 2000;98:47–55. doi: 10.1042/cs0980047. PubMed DOI
Malm C., Sjodin B., Sjoberg B., Lenkei R., Renstrom P., Lundberg I.E., Ekblom B. Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running. J. Physiol. 2004;556:983–1000. doi: 10.1113/jphysiol.2003.056598. PubMed DOI PMC
Ashizawa N., Fujimura R., Tokuyama K., Suzuki M. A bout of resistance exercise increases urinary calcium independently of osteoclastic activation in men. J. Appl. Physiol. 1997;83:1159–1163. PubMed
Miyagi Y., Higashiyama M., Gochi A., Akaike M., Ishikawa T., Miura T., Saruki N., Bando E., Kimura H., Imamura F., et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS ONE. 2011;6:377. doi: 10.1371/journal.pone.0024143. PubMed DOI PMC
Nakamura H., Jinzu H., Nagao K., Noguchi Y., Shimba N., Miyano H., Watanabe T., Iseki K. Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients. Nutr. Diabetes. 2014;4:1–8. doi: 10.1038/nutd.2014.32. PubMed DOI PMC
Henriksson J. Effect of exercise on amino-acid-concentrations in skeletal-muscle and plasma. J. Exp. Biol. 1991;160:149–165. PubMed
Song Y.H., Shiota M., Kuroiwa K., Naito S., Oda Y. The important role of glycine n-methyltransferase in the carcinogenesis and progression of prostate cancer. Mod. Pathol. 2011;24:1272–1280. doi: 10.1038/modpathol.2011.76. PubMed DOI
Heger Z., Cernei N., Gumulec J., Masarik M., Eckschlager T., Hrabec R., Zitka O., Adam V., Kizek R. Determination of common urine substances as an assay for improving prostate carcinoma diagnostics. Oncol. Rep. 2014;31:1846–1854. doi: 10.3892/or.2014.3054. PubMed DOI
Zitka O., Cernei N., Heger Z., Matousek M., Kopel P., Kynicky J., Masarik M., Kizek R., Adam V. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine. Electrophoresis. 2013;34:2639–2647. doi: 10.1002/elps.201300114. PubMed DOI