Comparison of Dietary Oils with Different Polyunsaturated Fatty Acid n-3 and n-6 Content in the Rat Model of Cutaneous Wound Healing
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
AF-IGA 2019-TP006
Internal Grant Agency of Mendel University in Brno
LQ1601
CEITEC 2020
PubMed
33114430
PubMed Central
PMC7672592
DOI
10.3390/ijms21217911
PII: ijms21217911
Knihovny.cz E-zdroje
- Klíčová slova
- MPO, collagen I/III, hydroxyproline, macrophages, mast cells, matrix-assisted-laser-desorption-ionization-mass-spectrometry-imaging, polyunsaturated fatty acids,
- MeSH
- antigeny CD8 metabolismus MeSH
- dietní tuky nenasycené aplikace a dávkování farmakologie MeSH
- hojení ran účinky léků MeSH
- indoly chemie MeSH
- kolagen typ III metabolismus MeSH
- krysa rodu Rattus MeSH
- kůže účinky léků zranění metabolismus MeSH
- kyseliny mastné omega-6 analýza MeSH
- makrofágy imunologie MeSH
- modely nemocí na zvířatech MeSH
- omega-3 mastné kyseliny analýza MeSH
- palmový olej aplikace a dávkování chemie farmakologie MeSH
- rybí oleje aplikace a dávkování chemie farmakologie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- světlicový olej aplikace a dávkování chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- antigeny CD8 MeSH
- dietní tuky nenasycené MeSH
- indoly MeSH
- kolagen typ III MeSH
- kyseliny mastné omega-6 MeSH
- omega-3 mastné kyseliny MeSH
- palmový olej MeSH
- rybí oleje MeSH
- schizocommunin MeSH Prohlížeč
- světlicový olej MeSH
Dietary supplementation with polyunsaturated fatty acids (PUFA) n-3 can affect cutaneous wound healing; however, recent findings demonstrate the variable extent of their influence on the quality of healing. Here, we compare the effect of several dietary oils, containing different levels of PUFA n-3 and PUFA n-6, on wound healing in the rat model. Rats were fed the feed mixture with 8% palm oil (P), safflower oil (S), fish oil (F) or Schizochytrium microalga extract (Sch) and compared to the animals fed by control feed mixture (C). Dorsal full-thickness cutaneous excisions were performed after 52 days of feeding and skin was left to heal for an additional 12 days. Histopathological analysis of skin wounds was performed, including immune cells immunolabeling and the determination of hydroxyproline amount as well as gene expression analyses of molecules contributing to different steps of the healing. Matrix-assisted-laser-desorption-ionization mass-spectrometry-imaging (MALDI-MSI) was used to determine the amount of collagen α-1(III) chain fragment in healing samples. Treatment by Schizochytrium extract resulted in decrease in the total wound area, in contrast to the safflower oil group where the size of the wound was larger when comparing to control animals. Diet with Schizochytrium extract and safflower oils displayed a tendency to increase the number of new vessels. The number of MPO-positive cells was diminished following any of oil treatment in comparison to the control, but their highest amount was found in animals with a fish oil diet. On the other hand, the number of CD68-positive macrophages was increased, with the most significant enhancement in the fish oil and safflower oil group. Hydroxyproline concentration was the highest in the safflower oil group but it was also enhanced in all other analyzed treatments in comparison to the control. MALDI-MSI signal intensity of a collagen III fragment decreased in the sequence C > S > Sch > P > F treatment. In conclusion, we observed differences in tissue response during healing between dietary oils, with the activation of inflammation observed following the treatment with oil containing high eicosapentaenoic acid (EPA) level (fish oil) and enhanced healing features were induced by the diet with high content of docosahexaenoic acid (DHA, Schizochytrium extract).
Zobrazit více v PubMed
Caetano G.F., Fronza M., Leite M.N., Gomes A., Frade M.A. Comparison of collagen content in skin wounds evaluated by biochemical assay and by computer-aided histomorphometric analysis. Pharm. Biol. 2016;54:2555–2559. doi: 10.3109/13880209.2016.1170861. PubMed DOI
Gerçek A., Yildirim O., Konya D., Bozkurt S.U., Ozgen S., Kiliç T., Sav A., Pamir N., Kılıç T. Effects of Parenteral Fish-Oil Emulsion (Omegaven) on Cutaneous Wound Healing in Rats Treated With Dexamethasone. J. Parenter. Enter. Nutr. 2007;31:161–166. doi: 10.1177/0148607107031003161. PubMed DOI
Gurtner G.C., Werner S., Barrandon Y., Longaker M.T. Wound repair and regeneration. Nat. Cell Biol. 2008;453:314–321. doi: 10.1038/nature07039. PubMed DOI
Schmitz G., Ecker J. The opposing effects of n−3 and n−6 fatty acids. Prog. Lipid Res. 2008;47:147–155. doi: 10.1016/j.plipres.2007.12.004. PubMed DOI
Komprda T. Eicosapentaenoic and docosahexaenoic acids as inflammation-modulating and lipid homeostasis influencing nutraceuticals: A review. J. Funct. Foods. 2012;4:25–38. doi: 10.1016/j.jff.2011.10.008. DOI
Siriwardhana N., Kalupahana N.S., Cekanova M., Lemieux M., Greer B., Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J. Nutr. Biochem. 2013;24:613–623. doi: 10.1016/j.jnutbio.2012.12.013. PubMed DOI
Flock M.R., Rogers C.J., Prabhu K.S., Kris-Etherton P. Immunometabolic role of long-chain omega-3 fatty acids in obesity-induced inflammation. Diabetes/Metab. Res. Rev. 2013;29:431–445. doi: 10.1002/dmrr.2414. PubMed DOI
Oliver E., McGillicuddy F.C., Phillips C.M., Toomey S., Roche H.M. The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chainn-3 PUFA. Proc. Nutr. Soc. 2010;69:232–243. doi: 10.1017/S0029665110000042. PubMed DOI
Serhan C.N., Dalli J., Colas R.A., Winkler J.W., Chiang N. Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids. 2015;1851:397–413. doi: 10.1016/j.bbalip.2014.08.006. PubMed DOI PMC
Serhan C.N., Savill J. Resolution of inflammation: The beginning programs the end. Nat. Immunol. 2005;6:1191–1197. doi: 10.1038/ni1276. PubMed DOI
Arita M., Yoshida M., Hong S., Tjonahen E., Glickman J.N., Petasis N.A., Blumberg R.S., Serhan C.N. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc. Natl. Acad. Sci. USA. 2005;102:7671–7676. doi: 10.1073/pnas.0409271102. PubMed DOI PMC
Cranmer-Byng M.M., Liddle D.M., De Boer A.A., Monk J.M., Robinson L.E. Pro-inflammatory effects of arachidonic acid in a lipopolysaccharide-induced inflammatory microenvironment in 3T3-L1 adipocytes in vitro. Appl. Physiol. Nutr. Metab. 2015;40:142–154. doi: 10.1139/apnm-2014-0022. PubMed DOI
Romacho T., Glosse P., Richter I., Elsen M., Schoemaker M.H., Van Tol E.A., Eckel J. Nutritional ingredients modulate adipokine secretion and inflammation in human primary adipocytes. Nutrients. 2015;7:865–886. doi: 10.3390/nu7020865. PubMed DOI PMC
De Boer A.A., Monk J.M., Robinson L.E. Docosahexaenoic Acid Decreases Pro-Inflammatory Mediators in an In Vitro Murine Adipocyte Macrophage Co-Culture Model. PLoS ONE. 2014;9:e85037. doi: 10.1371/journal.pone.0085037. PubMed DOI PMC
McDaniel J.C., Belury M., Ahijevych K., Blakely W. Omega-3 fatty acids effect on wound healing. Wound Repair Regen. 2008;16:337–345. doi: 10.1111/j.1524-475X.2008.00388.x. PubMed DOI PMC
Komprda T. Effect of n-3 long-chain polyunsaturated fatty acids on wound healing using animal models—A review. Acta Vet. Brno. 2018;87:309–320. doi: 10.2754/avb201887040309. DOI
Otranto M., Msc A.P.D.N., Monte-Alto-Costa A. Effects of supplementation with different edible oils on cutaneous wound healing. Wound Repair Regen. 2010;18:629–636. doi: 10.1111/j.1524-475X.2010.00617.x. PubMed DOI
Bsc A.D.S.R., Bsc L.G.B., Monte-Alto-Costa A., Romana-Souza B. Supplementation with olive oil, but not fish oil, improves cutaneous wound healing in stressed mice. Wound Repair Regen. 2014;22:537–547. doi: 10.1111/wrr.12191. PubMed DOI
Drzymała-Czyż S., Banasiewicz T., Tubacka M., Tarasiuk-Rusek A., Majewski P., Drews M., Walkowiak J. Discrepancy between clinical and histological effects of DHA supplementation in a rat model of pouchitis. Folia Histochem. Cytobiol. 2012;50:125–129. doi: 10.5603/FHC.2012.0018. PubMed DOI
Chen W.-Y., Lin S.-Y., Pan H.-C., Liao S.-L., Chuang Y.-H., Yen Y.-J., Lin S.-Y., Chen C.-J. Beneficial effect of docosahexaenoic acid on cholestatic liver injury in rats. J. Nutr. Biochem. 2012;23:252–264. doi: 10.1016/j.jnutbio.2010.11.022. PubMed DOI
Ekçi B., Karabicak I., Atukeren P., Altinlio E., Tomaoglu K., Tasci I. The effect of omega-3 fatty acid and ascorbic acid on healing of ischemic colon anastomoses. Ann. Ital. Chir. 2012;82:475–479. PubMed
Figueroa J.D., Cordero K., Baldeosingh K., Torrado A.I., Walker R.L., Miranda J.D., De Leon M. Docosahexaenoic Acid Pretreatment Confers Protection and Functional Improvements after Acute Spinal Cord Injury in Adult Rats. J. Neurotrauma. 2012;29:551–566. doi: 10.1089/neu.2011.2141. PubMed DOI PMC
Olson M.V., Liu Y.-C., Dangi B., Zimmer J.P., Salem N., Nauroth J.M. Docosahexaenoic acid reduces inflammation and joint destruction in mice with collagen-induced arthritis. Inflamm. Res. 2013;62:1003–1013. doi: 10.1007/s00011-013-0658-4. PubMed DOI
Abbott S.K., Else P.L., Atkins T.A., Hulbert A. Fatty acid composition of membrane bilayers: Importance of diet polyunsaturated fat balance. Biochim. Biophys. Acta (BBA)-Biomembr. 2012;1818:1309–1317. doi: 10.1016/j.bbamem.2012.01.011. PubMed DOI
Peng Y.-C., Yang F.-L., Subeq Y.-M., Tien C.-C., Chao Y.-F.C., Lee R.-P. Lipid Emulsion Enriched in Omega-3 PUFA Accelerates Wound Healing: A Placebo-Controlled Animal Study. World J. Surg. 2017;42:1714–1720. doi: 10.1007/s00268-017-4404-x. PubMed DOI
Kuda O. Bioactive metabolites of docosahexaenoic acid. Biochimie. 2017;136:12–20. doi: 10.1016/j.biochi.2017.01.002. PubMed DOI
Busuioc C.J., Popescu F.C., Mogoşanu G.D., Lascăr I., Pirici I., Pop O.T., Mogoantă L. Angiogenesis assessment in experimental third degree skin burns: A histological and immunohistochemical study. Rom. J. Morphol. Embryol. 2011;52:887–895. PubMed
Finnson K.W., McLean S., Di Guglielmo G.M., Philip A. Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring. Adv. Wound Care. 2013;2:195–214. doi: 10.1089/wound.2013.0429. PubMed DOI PMC
Rezaii M., Oryan S., Javeri A. Curcumin nanoparticles incorporated collagen-chitosan scaffold promotes cutaneous wound healing through regulation of TGF-β1/Smad7 gene expression. Mater. Sci. Eng. C. 2019;98:347–357. doi: 10.1016/j.msec.2018.12.143. PubMed DOI
Watanabe S., Hiraoka Y., Endo S., Tanimoto Y., Tozawa Y., Watanabe Y. An enzymatic method to estimate the content of L-hydroxyproline. J. Biotechnol. 2015;199:9–16. doi: 10.1016/j.jbiotec.2015.01.026. PubMed DOI
Sasidharan S., Logeswaran S., Latha L.Y. Wound Healing Activity of Elaeis guineensis Leaf Extract Ointment. Int. J. Mol. Sci. 2011;13:336–347. doi: 10.3390/ijms13010336. PubMed DOI PMC
Lei Z.-Y., Chen J.-J., Cao Z.-J., Ao M., Yu L. Efficacy of Aeschynomene indica L. leaves for wound healing and isolation of active constituent. J. Ethnopharmacol. 2019;228:156–163. doi: 10.1016/j.jep.2018.08.008. PubMed DOI
Haukipuro K., Melkkocand J., Risteli L., Kairaluoma M.I., Risteli J. Synthesis of Type I Collagen in Healing Wounds in Humans. Ann. Surg. 1991;213:75–80. doi: 10.1097/00000658-199101000-00013. PubMed DOI PMC
Guran R., Zitka O., Rodrigo M.A.M., Adam V., Kizek R. The maldi imaging for study of the physiological processes in tumors. Chem. Listy. 2016;110:106–111.
Guran R., Vaníčková L., Horak V., Krizkova S., Michalek P., Heger Z., Zitka O., Adam V. MALDI MSI of MeLiM melanoma: Searching for differences in protein profiles. PLoS ONE. 2017;12:e0189305. doi: 10.1371/journal.pone.0189305. PubMed DOI PMC
Lewis E.E.L., Barrett M.R.T., Freeman-Parry L., Bojar R.A., Clench M.R. Examination of the skin barrier repair/wound healing process using a living skin equivalent model and matrix-assisted laser desorption-ionization-mass spectrometry imaging. Int. J. Cosmet. Sci. 2018;40:148–156. doi: 10.1111/ics.12446. PubMed DOI
Komprda T., Sládek Z., Švehlová V., Lacková Z., Guráň R., Do T., Wijacki J., Buchtová M., Neuwirthová J., Gál B., et al. The effect of different fatty acid sources on wound healing in rats assessed by matrix-assisted-laser-desorption-ionization mass-spectroscopy-imaging. Acta Vet. Brno. 2019;88:443–449. doi: 10.2754/avb201988040443. DOI
Pietrowska M., Gawin M., Polanska J., Widlak P. Tissue fixed with formalin and processed without paraffin embedding is suitable for imaging of both peptides and lipids by MALDI-IMS. Proteomics. 2016;16:1670–1677. doi: 10.1002/pmic.201500424. PubMed DOI
Komprda T., Rozíková V., Zamazalová N., Škultéty O., Vícenová M., Trčková M., Faldyna M. Effect of dietary fish oil on fatty acid deposition and expression of cholesterol homeostasis controlling genes in the liver and plasma lipid profile: Comparison of two animal models. J. Anim. Physiol. Anim. Nutr. 2016;101:1093–1102. doi: 10.1111/jpn.12581. PubMed DOI
Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
Rizzo A.E., Beckett L.A., Baier B.S., Isseroff R.R. The linear excisional wound: An improved model for human ex vivo wound epithelialization studies. Ski. Res. Technol. 2011;18:125–132. doi: 10.1111/j.1600-0846.2011.00528.x. PubMed DOI PMC
Maia-Figueiró T.L., Odashiro A.N., De Menezes G.P., Coelho L.R., Breda I., De Souza B.A., Figueiró-Filho E.A. Semi-Quantitative Histological Analysis of the Effect of Intense Pulsed Light (IPL) and Carbon Dioxide (CO2) Intradermic Injection on Fibroblast and Collagen Proliferation in the Skin of Wistar Rats. J. Cosmet. Dermatol. Sci. Appl. 2012;2:164–173. doi: 10.4236/jcdsa.2012.23032. DOI
Heger Z., Polanska H., Rodrigo M.A.M., Guran R., Kulich P., Kopel P., Masarik M., Eckschlager T., Stiborova M., Kizek R., et al. Prostate tumor attenuation in the nu/nu murine model due to anti-sarcosine antibodies in folate-targeted liposomes. Sci. Rep. 2016;6:33379. doi: 10.1038/srep33379. PubMed DOI PMC