Distinguishing Electronic and Vibronic Coherence in 2D Spectra by Their Temperature Dependence
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
24527180
PubMed Central
PMC3917822
DOI
10.1021/jz402468c
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Long-lived oscillations in 2D spectra of chlorophylls are at the heart of an ongoing debate. Their physical origin is either a multipigment effect, such as excitonic coherence, or localized vibrations. We show how relative phase differences of diagonal- and cross-peak oscillations can distinguish between electronic and vibrational (vibronic) effects. While direct discrimination between the two scenarios is obscured when peaks overlap, their sensitivity to temperature provides a stronger argument. We show that vibrational (vibronic) oscillations change relative phase with temperature, while electronic oscillations are only weakly dependent. This highlights that studies of relative phase difference as a function of temperature provide a clear and easily accessible method to distinguish between vibrational and electronic coherences.
See more in PubMed
Van Amerongen H.; Valkunas L.; Van Grondelle R.. Photosynthetic Excitons; World Scientific: Singapore, 2000.
Jonas D. M. Two-Dimensional Femtosecond Spectroscopy. Annu. Rev. Phys. Chem. 2003, 54, 425–463. PubMed
Engel G. S.; Calhoun T. R.; Read E. L.; Ahn T.-K.; Mancal T.; Cheng Y.-C.; Blankenship R. E.; Fleming G. R. Evidence for Wavelike Energy Transfer through Quantum Coherence in Photosynthetic Systems. Nature 2007, 446, 782–786. PubMed
Pachón L. A.; Brumer P. Physical Basis for Long-Lived Electronic Coherence in Photosynthetic Light-Harvesting Systems. J. Phys. Chem. Lett. 2011, 2, 2728–2732.
Christensson N.; Milota F.; Hauer J.; Sperling J.; Bixner O.; Nemeth A.; Kauffmann H. F. High Frequency Vibrational Modulations in Two-Dimensional Electronic Spectra and Their Resemblance to Electronic Coherence Signatures. J. Phys. Chem. B 2011, 115, 5383–5391. PubMed
Cheng Y. C.; Fleming G. R. Coherence Quantum Beats in Two-Dimensional Electronic Spectroscopy. J. Phys. Chem. A 2008, 112, 4254–4260. PubMed
Turner D. B.; Wilk K. E.; Curmi P. M. G.; Scholes G. D. Comparison of Electronic and Vibrational Coherence Measured by Two-Dimensional Electronic Spectroscopy. J. Phys. Chem. Lett. 2011, 2, 1904–1911.
Sharp L. Z.; Egorova D.; Domcke W. Efficient and Accurate Simulations of Two-Dimensional Electronic Photon-Echo Signals: Illustration for a Simple Model of the Fenna–Matthews–Olson Complex. J. Chem. Phys. 2010, 132, 014501. PubMed
Mancal T.; Christensson N.; Lukes V.; Milota F.; Bixner O.; Kauffmann H. F.; Hauer J. System-Dependent Signatures of Electronic and Vibrational Coherences in Electronic Two-Dimensional Spectra. J. Phys. Chem. Lett. 2012, 3, 1497–1502. PubMed
Milota F.; Prokhorenko V. I.; Mancal T.; von Berlepsch H.; Bixner O.; Kauffmann H. F.; Hauer J. Vibronic and Vibrational Coherences in Two-Dimensional Electronic Spectra of Supramolecular J-Aggregates. J. Phys. Chem. A 2013, 117, 6007–6014. PubMed PMC
Chin A. W.; Prior J.; Rosenbach R.; Caycedo-Soler F.; Huelga S. F.; Plenio M. B. The Role of Non-Equilibrium Vibrational Structures in Electronic Coherence and Recoherence in Pigment–Protein Complexes. Nat. Phys. 2013, 9, 113–118.
Sharp L. Z.; Egorova D. Towards Microscopic Assignment of Oscillative Signatures in Two-Dimensional Electronic Photon-Echo Signals of Vibronic Oligomers: A Vibronic Dimer Model. J. Chem. Phys. 2013, 139, 144304. PubMed
Christensson N.; Kauffmann H. F.; Pullerits T.; Mancal T. Origin of Long-Lived Coherences in Light-Harvesting Complexes. J. Phys. Chem. B 2012, 116, 7449–7454. PubMed PMC
Tiwari V.; Peters W. K.; Jonas D. M. Electronic resonance with Anticorrelated Pigment Vibrations Drives Photosynthetic Energy Transfer Outside the Adiabatic Framework. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 1203–1208. PubMed PMC
Landau L. D.; Teller E. Zur Theorie der Shalldispersion (Theory of Sound Dispersion). Phys. Z. Sowjetunion 1936, 10, 34–43.
Šanda F. The Instability in the Long-Time Regime Behaviour of a Kinetic Model. J. Phys. A 2002, 35, 5815–5831.
Butkus V.; Valkunas L.; Abramavicius D. Molecular Vibrations-Induced Quantum Beats in Two-Dimensional Electronic Spectroscopy. J. Chem. Phys. 2012, 137, 044513. PubMed
Mukamel S.; Abramavicius D.; Palmieri B.; Voronine D. V.; Šanda F. Coherent Multidimensional Optical Spectroscopy of Excitons in Molecular Aggregates; Quasiparticle versus Supermolecule Perspectives. Chem. Rev. 2009, 109, 2350–2408. PubMed PMC
Zhang W. M.; Meier T.; Chernyak V.; Mukamel S. Exciton-Migration and Three-Pulse Femtosecond Optical Spectroscopies of Photosynthetic Antenna Complexes. J. Chem. Phys. 1998, 108, 7763–7774.
Butkus V.; Zigmantas D.; Valkunas L.; Abramavicius D. Vibrational vs. Electronic Coherences in 2D Spectrum of Molecular Systems. Chem. Phys. Lett. 2012, 545, 40–43.
Kreisbeck C.; Kramer T.; Aspuru-Guzik A. Disentangling Electronic and Vibronic Coherences in Two-Dimensional Echo Spectra. J. Phys. Chem. B 2013, 117, 9380–9385. PubMed
Yuen-Zhou J.; Krich J. J.; Aspuru-Guzik A. A Witness for Coherent Electronic vs Vibronic-Only Oscillations in Ultrafast Spectroscopy. J. Chem. Phys. 2012, 136, 234501. PubMed
Redfield A. G. On the Theory of Relaxation Processes. IBM J. Res. Dev. 1957, 1, 19–31.
Panitchayangkoon G.; Voronine D. V.; Abramavicius D.; Caram J. R.; Lewis N. H. C.; Mukamel S.; Engel G. S. Direct Evidence of Quantum Transport in Photosynthetic Light-Harvesting Complexes. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 20908–20912. PubMed PMC
Butkus V.; Zigmantas D.; Abramavicius D.; Valkunas L. Distinctive Character of Electronic and Vibrational Coherences in Disordered Molecular Aggregates. Chem. Phys. Lett. 2013, 587, 93–98.
Panitchayangkoon G.; Hayes D.; Fransted K. A.; Caram J. R.; Harel E.; Wen J. Z.; Blankenship R. E.; Engel G. S. Long-Lived Quantum Coherence in Photosynthetic Complexes at Physiological Temperature. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 12766–12770. PubMed PMC
Anharmonic Molecular Motion Drives Resonance Energy Transfer in peri-Arylene Dyads
Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy