Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26463085
PubMed Central
PMC4637928
DOI
10.1021/acs.jpca.5b08909
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Center line slope (CLS) analysis in 2D infrared spectroscopy has been extensively used to extract frequency-frequency correlation functions of vibrational transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure of electronic gap fluctuations. The two domains, infrared and electronic, possess differences: In the infrared, the frequency fluctuations are classical, often slow and Gaussian. In contrast, electronic spectra are subject to fast spectral diffusion and affected by underdamped vibrational wavepackets in addition to Stokes shift. All these effects result in non-Gaussian peak profiles. Here, we extend CLS-analysis beyond Gaussian line shapes and test the developed methodology on a solvated molecule, zinc phthalocyanine. We find that CLS facilitates the interpretation of 2D electronic spectra by reducing their complexity to one dimension. In this way, CLS provides a highly sensitive measure of model parameters describing electronic-vibrational and electronic-solvent interaction.
Zobrazit více v PubMed
Weiner A. M.Ultrafast Optics; Wiley: New York, 2009.
Mukamel S.Principles of Nonlinear Optical Spectroscopy; Oxford University Press: Oxford, U.K., 1995.
Jonas D. M. Two-Dimensional Femtosecond Spectroscopy. Annu. Rev. Phys. Chem. 2003, 54, 425–46310.1146/annurev.physchem.54.011002.103907. PubMed DOI
Mukamel S. Multidimensional Femtosecond Correlation Spectroscopies of Electronic and Vibrational Excitations. Annu. Rev. Phys. Chem. 2000, 51, 691–72910.1146/annurev.physchem.51.1.691. PubMed DOI
Cho M.Two-Dimensional Optical Spectroscopy; CRC Press: Boca Raton, FL, 2009.
Ernst R. R.; Bodenhausen G.; Wokaun A.. Principlesof Nuclear Magnetic Resonance in One and Two Dimensions; Oxford University Press: Oxford, U.K., 1987.
Tanimura Y.; Mukamel S. Two-Dimensional Femtosecond Vibrational Spectroscopy of Liquids. J. Chem. Phys. 1993, 99, 9496–951110.1063/1.465484. DOI
Likforman J. P.; Joffre M.; Thierry-Mieg V. Measurement of Photon Echoes by Use of Femtosecond Fourier-Transform Spectral Interferometry. Opt. Lett. 1997, 22, 1104–110610.1364/OL.22.001104. PubMed DOI
Asplund M. C.; Zanni M. T.; Hochstrasser R. M. Two-Dimensional Infrared Spectroscopy of Peptides by Phase-controlled Femtosecond Vibrational Photon Echoes. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8219–822410.1073/pnas.140227997. PubMed DOI PMC
Hamm P.; Zanni M.. Concepts and Methods of 2D Infrared Spectroscopy; Cambridge University Press: Cambridge, U.K., 2011.
Brixner T.; Mančal T.; Stiopkin I. V.; Fleming G. R. Phase-Stabilized Two-Dimensional Electronic Spectroscopy. J. Chem. Phys. 2004, 121, 4221–423610.1063/1.1776112. PubMed DOI
Tseng C.; Matsika S.; Weinacht T. C. Two-Dimensional Ultrafast Fourier Transform Spectroscopy in the Deep Ultraviolet. Opt. Express 2009, 17, 18788–1879310.1364/OE.17.018788. PubMed DOI
Selig U.; Schleussner C. F.; Foerster M.; Langhojer F.; Nuernberger F.; Brixner T. Coherent Two-Dimensional Ultraviolet Spectroscopy in Fully Noncollinear Geometry. Opt. Lett. 2010, 35, 4178–418010.1364/OL.35.004178. PubMed DOI
Krebs N.; Pugliesi I.; Hauer J.; Riedle E. Two-Dimensional Fourier Transform Spectroscopy in the Ultraviolet with Sub-20 fs Pump Pulses and 250–720 nm Supercontinuum Probe. New J. Phys. 2013, 15, 085016.10.1088/1367-2630/15/8/085016. DOI
Teo S. M.; Ofori-Okai B. K.; Werley C. A.; Nelson K. A. Single-Shot THz Detection Techniques Optimized for Multidimensional THz Spectroscopy. Rev. Sci. Instrum. 2015, 86, 051301.10.1063/1.4921389. PubMed DOI
Lewis N. H. C.; Dong H.; Oliver T. A. A.; Fleming G. R. Measuring Correlated Electronic and Vibrational Spectral Dynamics Using Lineshapes in Two-Dimensional Electronic-Vibrational spectroscopy. J. Chem. Phys. 2015, 142, 174202.10.1063/1.4919686. PubMed DOI
Khalil M.; Demirdöven N.; Tokmakoff A. Coherent 2D IR Spectroscopy: Molecular Structure and Dynamics in Solution. J. Phys. Chem. A 2003, 107, 5258–527910.1021/jp0219247. DOI
Krummel A. T.; Zanni M. T. DNA Vibrational Coupling Revealed with Two-Dimensional Infrared Spectroscopy: Insight into Why Vibrational Spectroscopy Is Sensitive to DNA Structure. J. Phys. Chem. B 2006, 110, 13991–1400010.1021/jp062597w. PubMed DOI
Jansen T. L. C.; Knoester J. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy. Acc. Chem. Res. 2009, 42, 1405–141110.1021/ar900025a. PubMed DOI
Zheng J.; Kwak K.; Asbury J.; Chen X.; Piletic I. R.; Fayer M. D. Ultrafast Solute-Solvent Complex Chemical Exchange Observed in Real Time: Multidimensional Vibrational Echo Correlation Spectroscopy. Science 2005, 309, 1338–1343. PubMed
Šanda F.; Mukamel S. Stochastic Simulation of Chemical Exchange in Two Dimensional Infrared Spectroscopy. J. Chem. Phys. 2006, 125, 014507.10.1063/1.2205367. PubMed DOI
Brixner T.; Stenger J.; Vaswani H. M.; Cho M.; Blankenship R. E.; Fleming G. R. Two-Dimensional Spectroscopy of Electronic Couplings in Photosynthesis. Nature 2005, 434, 625–62810.1038/nature03429. PubMed DOI
Perlík V.; Seibt J.; Cranston L. J.; Cogdell R.; Lincoln C. N.; Savolainen J.; Šanda F.; Mančal T.; Hauer J. Vibronic Coupling Explains the Ultrafast Carotenoid-to-Bacteriochlorophyll Energy Transfer in Natural and Artificial Light Harvesters. J. Chem. Phys. 2015, 142, 212434.10.1063/1.4919548. PubMed DOI
Milota F.; Prokhorenko V. I.; Mančal T.; von Berlepsch H.; Bixner O.; Kauffmann H. F.; Hauer J. Vibronic and Vibrational Coherences in Two-Dimensional Electronic Spectra of Supramolecular J-Aggregates. J. Phys. Chem. A 2013, 117, 6007–601410.1021/jp3119605. PubMed DOI PMC
Šanda F.; Mukamel S. Probing Anomalous Relaxation by Coherent Multidimensional Optical Spectroscopy. Phys. Rev. Lett. 2007, 98, 080603.10.1103/PhysRevLett.98.080603. PubMed DOI
Schmidt J. R.; Roberts S. T.; Loparo J. J.; Tokmakoff A.; Fayer M. D.; Skinner J. L. Are Water Simulation Models Consistent with Steady-State and Ultrafast Vibrational Spectroscopy Experiments?. Chem. Phys. 2007, 341, 143–15710.1016/j.chemphys.2007.06.043. DOI
Okomura K.; Tokmakoff A.; Tanimura Y. Two-Dimensional Line-Shape Analysis of Photon Echo Signal. Chem. Phys. Lett. 1999, 314, 488–49510.1016/S0009-2614(99)01173-2. DOI
Roberts T. S.; Loparo J. J.; Tokmakoff A. Characterization of Spectral Diffusion from Two-Dimensional Line Shapes. J. Chem. Phys. 2006, 125, 084502.10.1063/1.2232271. PubMed DOI
Kwak K.; Park S.; Finkelstein I. J.; Fayer M. D. Frequency-Frequency Correlation Functions and Apodizations in 2D-IR Vibrational Echo Spectroscopy, a New Approach. J. Chem. Phys. 2007, 127, 124503.10.1063/1.2772269. PubMed DOI
Lazonder K.; Pshenichnikov M. S.; Wiersma D. A.. Two-Dimensional Optical Correlation Spectroscopy Applied to Liquid/Glass Dynamics. UltrafastPhenomena XV; Springer: Berlin, 2007; pp 356–358.
Kwac K.; Cho M. Two-Color Pump-Probe Spectroscopies of Two- and Three-Level Systems: 2-Dimensional Line Shapes and Solvation Dynamics. J. Phys. Chem. A 2003, 107, 5903–591210.1021/jp034727w. DOI
Donsker M. D. Justification and Extension of Doob’s Heuristic Approach to the Kolmogorov- Smirnov Theorems. Ann. Math. Stat. 1952, 23, 277–28110.1214/aoms/1177729445. DOI
Mančal T.; Christensson N.; Lukeš V.; Milota F.; Bixner O.; Kauffmann H. F.; Hauer J. System-Dependent Signatures of Electronic and Vibrational Coherences in Electronic Two-Dimensional Spectra. J. Phys. Chem. Lett. 2012, 3, 1497–150210.1021/jz300362k. PubMed DOI
Kwak K.; Rosenfeld D. E.; Fayer M. D. Taking apart the Two-dimensional Infrared Vibrational Echo Spectra: More Informationand Elimination of Distortions. J. Chem. Phys. 2008, 128, 204505.10.1063/1.2927906. PubMed DOI
Khalil M.; Demirdöven N.; Tokmakoff A. Obtaining Absorptive Line Shapes in Two-Dimensional Infrared Vibrational Correlation Spectra. Phys. Rev. Lett. 2003, 90, 047401.10.1103/PhysRevLett.90.047401. PubMed DOI
van Kampen N. G.Stochastic processes in Physics and Chemistry; North Holland: Amsterdam, 1992.
Chernyak V.; Šanda F.; Mukamel S. Coherence and Correlations in Multitime Quantum Measurements of Stochastic Quantum Trajectories. Phys. Rev. E 2006, 73, 036119.10.1103/PhysRevE.73.036119. PubMed DOI
Asbury J. B.; Steinel T.; Stromberg C.; Corcelli S. A.; Lawrence C. P.; Skinner J. L.; Fayer M. D.Water Dynamics: Vibrational Echo Correlation Spectroscopy and Comparison to Molecular Dynamics Simulations. J. Phys. Chem. A 2004, 108, 1107–111910.1021/jp036266k. DOI
Leggett A.; Chakravarty S.; Dorsey A.; Fisher M.; Garg A.; Zwerger W. Dynamics of the Dissipative Two-state System. Rev. Mod. Phys. 1987, 59, 1–8510.1103/RevModPhys.59.1. DOI
Franck J.; Dymond E. G. Elementary Processes of Photochemical Reactions. Trans. Faraday Soc. 1926, 21, 536–54210.1039/tf9262100536. DOI
Condon E. A. Theory of Intensity Distribution in Band Systems. Phys. Rev. 1926, 28, 1182–120110.1103/PhysRev.28.1182. DOI
Fidler A. F.; Engel G. S. Nonlinear Spectroscopic Theory of Displaced Harmonic Oscillators with Differing Curvatures: A Correlation Function Approach. J. Phys. Chem. A 2013, 117, 9444–945310.1021/jp311713x. PubMed DOI
Wang M. C.; Uhlenbeck G. E. On the Theory of the Brownian Motion II. Rev. Mod. Phys. 1945, 17, 323–34210.1103/RevModPhys.17.323. DOI
Šanda F.; Mukamel S. Anomalous Lineshapes and Aging Effects in Two-Dimensional Correlation Spectroscopy. J. Chem. Phys. 2007, 127, 154107.10.1063/1.2793786. PubMed DOI
Nemeth A.; Milota F.; Mančal T.; Lukeš V.; Kauffmann H. F.; Sperling J. Vibronic Modulation of Lineshapes in Two-Dimensional Electronic Spectra. Chem. Phys. Lett. 2008, 459, 94–9910.1016/j.cplett.2008.05.057. DOI
Christensson N.; Milota F.; Hauer J.; Sperling J.; Bixner O.; Nemeth A.; Kauffmann H. F. High Frequency Vibrational Modulations in Two-Dimensional Electronic Spectra and Their Resemblance to Electronic Coherence Signatures. J. Phys. Chem. B 2011, 115, 5383–539110.1021/jp109442b. PubMed DOI
Camargo F. V. A.; Anderson H. L.; Meech S. R.; Heisler I. A. Full Characterization of Vibrational Coherence in a Porphyrin Chromophore by Two-Dimensional Electronic Spectroscopy. J. Phys. Chem. A 2015, 119, 95–10110.1021/jp511881a. PubMed DOI
de Boeij W. P.; Pshenichnikov M. S.; Wiersma D. A. Ultrafast Solvation Dynamics Explored by Femtosecond Photon Echo Spectroscopies. Annu. Rev. Phys. Chem. 1998, 49, 99–12310.1146/annurev.physchem.49.1.99. PubMed DOI
Joo T.; Jia Y.; Yu J.-Y.; Lang M. J.; Fleming G. R. Third Order Nonlinear Time Domain Probes of Solvation Dynamics. J. Chem. Phys. 1996, 104, 6089–610810.1063/1.471276. DOI
Perlík V.; Lincoln C.; Šanda F.; Hauer J. Distinguishing Electronic and Vibronic Coherence in 2D Spectra by Their Temperature Dependence. J. Phys. Chem. Lett. 2014, 5, 404–40710.1021/jz402468c. PubMed DOI PMC
Roy S.; Pshenichnikov M. S.; Jansen T. L. C. Analysis of 2D CS Spectra for Systems with Non-Gaussian Dynamics. J. Phys. Chem. B 2011, 115, 5431–544010.1021/jp109742p. PubMed DOI
Kubo R. Stochastic Liouville Equations. J. Math. Phys. 1963, 4, 174–18310.1063/1.1703941. DOI
Šanda F.; Mukamel S. Stochastic Liouville Equations for Coherent Multidimensional Spectroscopy of Excitons. J. Phys. Chem. B 2008, 112, 14212–1422010.1021/jp801457c. PubMed DOI PMC
Šanda F. Strong Field Line Shapes and Photon Statistics from a Single Molecule under Anomalous Noise. Phys. Rev. E 2009, 80, 041132.10.1103/PhysRevE.80.041132. PubMed DOI
Zusman D. Outer-sphere Electron Transfer in Polar Solvents. Chem. Phys. 1980, 49, 295–30410.1016/0301-0104(80)85267-0. DOI
Tanimura Y. Stochastic Liouville, Langevin, Fokker-Planck, and Master Equation Approaches to Quantum Dissipative Systems. J. Phys. Soc. Jpn. 2006, 75, 082001.10.1143/JPSJ.75.082001. DOI
Abramavicius D.; Palmieri B.; Voronine D. V.; Šanda F.; Mukamel S. Coherent Multidimensional Optical Spectroscopy of Excitons in Molecular Aggregates; Quasiparticle versus Supermolecule Perspectives. Chem. Rev. 2009, 109, 2350–240810.1021/cr800268n. PubMed DOI PMC
Risken H.The Fokker-Planck equation; Springer: Berlin, 1989.
Mazo R. M.Brownian Motion. Fluctuations, Dynamics and Applications; Oxford University Press: Oxford, U.K., 2002.
Nemykin V. N.; Hadt R. G.; Belosludov R. V.; Mizuseki H.; Kawazoe Y. Influence of Molecular Geometry, Exchange-Correlation Functional, and Solvent Effects in the Modeling of Vertical Excitation Energies in Phthalocyanines Using Time-Dependent Density Functional Theory (TDDFT) and Polarized Continuum Model TDDFT Methods: Can Modern Computational Chemistry Methods Explain Experimental Controversies?. J. Phys. Chem. A 2007, 111, 12901–1291310.1021/jp0759731. PubMed DOI
Gierschner J.; Mack H. G.; Luer L.; Oelkrug D. Fluorescence and Absorption Spectra of Oligophenylenevinylenes: Vibronic Coupling, Band Shapes, and Solvatochromism. J. Chem. Phys. 2002, 116, 8596–860910.1063/1.1469612. DOI
Piel J.; Riedle E.; Gundlach L.; Ernstorfer R.; Eichberger R. Sub- 20 fs Visible Pulses with 750 nJ Energy from a 100 kHz Noncollinear Optical Parametric Amplifier. Opt. Lett. 2006, 31, 1289–129110.1364/OL.31.001289. PubMed DOI
Cowan M. L.; Ogilvie J. P.; Miller R. J. D. Two-Dimensional Spectroscopy Using Diffractive Optics Based Phased-Locked Photon Echoes. Chem. Phys. Lett. 2004, 386, 184–18910.1016/j.cplett.2004.01.027. DOI
Christensson N.; Milota F.; Nemeth A.; Sperling J.; Kauffmann H. F.; Pullerits T.; Hauer J. Two-Dimensional Electronic Spectroscopy of beta-Carotene. J. Phys. Chem. B 2009, 113, 16409–1641910.1021/jp906604j. PubMed DOI
Tauber M.; Mathies R. A.; Chen X.; Bradforth S. E. Flowing Liquid Sample Jet for Resonance Raman and Ultrafast Optical Spectroscopy. Rev. Sci. Instrum. 2003, 74, 4958–496010.1063/1.1614874. DOI
Savolainen J.; van der Linden D.; Dijkhuizen N.; Herek J. L. Characterizing the Functional Dynamics of Zinc Phthalocyanine from Femtoseconds to Nanoseconds. J. Photochem. Photobiol., A 2008, 196, 99–10510.1016/j.jphotochem.2007.11.018. DOI
Kakade S.; Ghosh R.; Palit D. K. Excited State Dynamics of Zinc-Phthalocyanine Nanoaggregates in Strong Hydrogen Bonding Solvents. J. Phys. Chem. C 2012, 116, 15155–1516610.1021/jp304369r. DOI