Center Line Slope Analysis in Two-Dimensional Electronic Spectroscopy

. 2015 Nov 05 ; 119 (44) : 10893-909. [epub] 20151023

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26463085

Center line slope (CLS) analysis in 2D infrared spectroscopy has been extensively used to extract frequency-frequency correlation functions of vibrational transitions. We apply this concept to 2D electronic spectroscopy, where CLS is a measure of electronic gap fluctuations. The two domains, infrared and electronic, possess differences: In the infrared, the frequency fluctuations are classical, often slow and Gaussian. In contrast, electronic spectra are subject to fast spectral diffusion and affected by underdamped vibrational wavepackets in addition to Stokes shift. All these effects result in non-Gaussian peak profiles. Here, we extend CLS-analysis beyond Gaussian line shapes and test the developed methodology on a solvated molecule, zinc phthalocyanine. We find that CLS facilitates the interpretation of 2D electronic spectra by reducing their complexity to one dimension. In this way, CLS provides a highly sensitive measure of model parameters describing electronic-vibrational and electronic-solvent interaction.

Zobrazit více v PubMed

Weiner A. M.Ultrafast Optics; Wiley: New York, 2009.

Mukamel S.Principles of Nonlinear Optical Spectroscopy; Oxford University Press: Oxford, U.K., 1995.

Jonas D. M. Two-Dimensional Femtosecond Spectroscopy. Annu. Rev. Phys. Chem. 2003, 54, 425–46310.1146/annurev.physchem.54.011002.103907. PubMed DOI

Mukamel S. Multidimensional Femtosecond Correlation Spectroscopies of Electronic and Vibrational Excitations. Annu. Rev. Phys. Chem. 2000, 51, 691–72910.1146/annurev.physchem.51.1.691. PubMed DOI

Cho M.Two-Dimensional Optical Spectroscopy; CRC Press: Boca Raton, FL, 2009.

Ernst R. R.; Bodenhausen G.; Wokaun A.. Principlesof Nuclear Magnetic Resonance in One and Two Dimensions; Oxford University Press: Oxford, U.K., 1987.

Tanimura Y.; Mukamel S. Two-Dimensional Femtosecond Vibrational Spectroscopy of Liquids. J. Chem. Phys. 1993, 99, 9496–951110.1063/1.465484. DOI

Likforman J. P.; Joffre M.; Thierry-Mieg V. Measurement of Photon Echoes by Use of Femtosecond Fourier-Transform Spectral Interferometry. Opt. Lett. 1997, 22, 1104–110610.1364/OL.22.001104. PubMed DOI

Asplund M. C.; Zanni M. T.; Hochstrasser R. M. Two-Dimensional Infrared Spectroscopy of Peptides by Phase-controlled Femtosecond Vibrational Photon Echoes. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8219–822410.1073/pnas.140227997. PubMed DOI PMC

Hamm P.; Zanni M.. Concepts and Methods of 2D Infrared Spectroscopy; Cambridge University Press: Cambridge, U.K., 2011.

Brixner T.; Mančal T.; Stiopkin I. V.; Fleming G. R. Phase-Stabilized Two-Dimensional Electronic Spectroscopy. J. Chem. Phys. 2004, 121, 4221–423610.1063/1.1776112. PubMed DOI

Tseng C.; Matsika S.; Weinacht T. C. Two-Dimensional Ultrafast Fourier Transform Spectroscopy in the Deep Ultraviolet. Opt. Express 2009, 17, 18788–1879310.1364/OE.17.018788. PubMed DOI

Selig U.; Schleussner C. F.; Foerster M.; Langhojer F.; Nuernberger F.; Brixner T. Coherent Two-Dimensional Ultraviolet Spectroscopy in Fully Noncollinear Geometry. Opt. Lett. 2010, 35, 4178–418010.1364/OL.35.004178. PubMed DOI

Krebs N.; Pugliesi I.; Hauer J.; Riedle E. Two-Dimensional Fourier Transform Spectroscopy in the Ultraviolet with Sub-20 fs Pump Pulses and 250–720 nm Supercontinuum Probe. New J. Phys. 2013, 15, 085016.10.1088/1367-2630/15/8/085016. DOI

Teo S. M.; Ofori-Okai B. K.; Werley C. A.; Nelson K. A. Single-Shot THz Detection Techniques Optimized for Multidimensional THz Spectroscopy. Rev. Sci. Instrum. 2015, 86, 051301.10.1063/1.4921389. PubMed DOI

Lewis N. H. C.; Dong H.; Oliver T. A. A.; Fleming G. R. Measuring Correlated Electronic and Vibrational Spectral Dynamics Using Lineshapes in Two-Dimensional Electronic-Vibrational spectroscopy. J. Chem. Phys. 2015, 142, 174202.10.1063/1.4919686. PubMed DOI

Khalil M.; Demirdöven N.; Tokmakoff A. Coherent 2D IR Spectroscopy: Molecular Structure and Dynamics in Solution. J. Phys. Chem. A 2003, 107, 5258–527910.1021/jp0219247. DOI

Krummel A. T.; Zanni M. T. DNA Vibrational Coupling Revealed with Two-Dimensional Infrared Spectroscopy: Insight into Why Vibrational Spectroscopy Is Sensitive to DNA Structure. J. Phys. Chem. B 2006, 110, 13991–1400010.1021/jp062597w. PubMed DOI

Jansen T. L. C.; Knoester J. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy. Acc. Chem. Res. 2009, 42, 1405–141110.1021/ar900025a. PubMed DOI

Zheng J.; Kwak K.; Asbury J.; Chen X.; Piletic I. R.; Fayer M. D. Ultrafast Solute-Solvent Complex Chemical Exchange Observed in Real Time: Multidimensional Vibrational Echo Correlation Spectroscopy. Science 2005, 309, 1338–1343. PubMed

Šanda F.; Mukamel S. Stochastic Simulation of Chemical Exchange in Two Dimensional Infrared Spectroscopy. J. Chem. Phys. 2006, 125, 014507.10.1063/1.2205367. PubMed DOI

Brixner T.; Stenger J.; Vaswani H. M.; Cho M.; Blankenship R. E.; Fleming G. R. Two-Dimensional Spectroscopy of Electronic Couplings in Photosynthesis. Nature 2005, 434, 625–62810.1038/nature03429. PubMed DOI

Perlík V.; Seibt J.; Cranston L. J.; Cogdell R.; Lincoln C. N.; Savolainen J.; Šanda F.; Mančal T.; Hauer J. Vibronic Coupling Explains the Ultrafast Carotenoid-to-Bacteriochlorophyll Energy Transfer in Natural and Artificial Light Harvesters. J. Chem. Phys. 2015, 142, 212434.10.1063/1.4919548. PubMed DOI

Milota F.; Prokhorenko V. I.; Mančal T.; von Berlepsch H.; Bixner O.; Kauffmann H. F.; Hauer J. Vibronic and Vibrational Coherences in Two-Dimensional Electronic Spectra of Supramolecular J-Aggregates. J. Phys. Chem. A 2013, 117, 6007–601410.1021/jp3119605. PubMed DOI PMC

Šanda F.; Mukamel S. Probing Anomalous Relaxation by Coherent Multidimensional Optical Spectroscopy. Phys. Rev. Lett. 2007, 98, 080603.10.1103/PhysRevLett.98.080603. PubMed DOI

Schmidt J. R.; Roberts S. T.; Loparo J. J.; Tokmakoff A.; Fayer M. D.; Skinner J. L. Are Water Simulation Models Consistent with Steady-State and Ultrafast Vibrational Spectroscopy Experiments?. Chem. Phys. 2007, 341, 143–15710.1016/j.chemphys.2007.06.043. DOI

Okomura K.; Tokmakoff A.; Tanimura Y. Two-Dimensional Line-Shape Analysis of Photon Echo Signal. Chem. Phys. Lett. 1999, 314, 488–49510.1016/S0009-2614(99)01173-2. DOI

Roberts T. S.; Loparo J. J.; Tokmakoff A. Characterization of Spectral Diffusion from Two-Dimensional Line Shapes. J. Chem. Phys. 2006, 125, 084502.10.1063/1.2232271. PubMed DOI

Kwak K.; Park S.; Finkelstein I. J.; Fayer M. D. Frequency-Frequency Correlation Functions and Apodizations in 2D-IR Vibrational Echo Spectroscopy, a New Approach. J. Chem. Phys. 2007, 127, 124503.10.1063/1.2772269. PubMed DOI

Lazonder K.; Pshenichnikov M. S.; Wiersma D. A.. Two-Dimensional Optical Correlation Spectroscopy Applied to Liquid/Glass Dynamics. UltrafastPhenomena XV; Springer: Berlin, 2007; pp 356–358.

Kwac K.; Cho M. Two-Color Pump-Probe Spectroscopies of Two- and Three-Level Systems: 2-Dimensional Line Shapes and Solvation Dynamics. J. Phys. Chem. A 2003, 107, 5903–591210.1021/jp034727w. DOI

Donsker M. D. Justification and Extension of Doob’s Heuristic Approach to the Kolmogorov- Smirnov Theorems. Ann. Math. Stat. 1952, 23, 277–28110.1214/aoms/1177729445. DOI

Mančal T.; Christensson N.; Lukeš V.; Milota F.; Bixner O.; Kauffmann H. F.; Hauer J. System-Dependent Signatures of Electronic and Vibrational Coherences in Electronic Two-Dimensional Spectra. J. Phys. Chem. Lett. 2012, 3, 1497–150210.1021/jz300362k. PubMed DOI

Kwak K.; Rosenfeld D. E.; Fayer M. D. Taking apart the Two-dimensional Infrared Vibrational Echo Spectra: More Informationand Elimination of Distortions. J. Chem. Phys. 2008, 128, 204505.10.1063/1.2927906. PubMed DOI

Khalil M.; Demirdöven N.; Tokmakoff A. Obtaining Absorptive Line Shapes in Two-Dimensional Infrared Vibrational Correlation Spectra. Phys. Rev. Lett. 2003, 90, 047401.10.1103/PhysRevLett.90.047401. PubMed DOI

van Kampen N. G.Stochastic processes in Physics and Chemistry; North Holland: Amsterdam, 1992.

Chernyak V.; Šanda F.; Mukamel S. Coherence and Correlations in Multitime Quantum Measurements of Stochastic Quantum Trajectories. Phys. Rev. E 2006, 73, 036119.10.1103/PhysRevE.73.036119. PubMed DOI

Asbury J. B.; Steinel T.; Stromberg C.; Corcelli S. A.; Lawrence C. P.; Skinner J. L.; Fayer M. D.Water Dynamics: Vibrational Echo Correlation Spectroscopy and Comparison to Molecular Dynamics Simulations. J. Phys. Chem. A 2004, 108, 1107–111910.1021/jp036266k. DOI

Leggett A.; Chakravarty S.; Dorsey A.; Fisher M.; Garg A.; Zwerger W. Dynamics of the Dissipative Two-state System. Rev. Mod. Phys. 1987, 59, 1–8510.1103/RevModPhys.59.1. DOI

Franck J.; Dymond E. G. Elementary Processes of Photochemical Reactions. Trans. Faraday Soc. 1926, 21, 536–54210.1039/tf9262100536. DOI

Condon E. A. Theory of Intensity Distribution in Band Systems. Phys. Rev. 1926, 28, 1182–120110.1103/PhysRev.28.1182. DOI

Fidler A. F.; Engel G. S. Nonlinear Spectroscopic Theory of Displaced Harmonic Oscillators with Differing Curvatures: A Correlation Function Approach. J. Phys. Chem. A 2013, 117, 9444–945310.1021/jp311713x. PubMed DOI

Wang M. C.; Uhlenbeck G. E. On the Theory of the Brownian Motion II. Rev. Mod. Phys. 1945, 17, 323–34210.1103/RevModPhys.17.323. DOI

Šanda F.; Mukamel S. Anomalous Lineshapes and Aging Effects in Two-Dimensional Correlation Spectroscopy. J. Chem. Phys. 2007, 127, 154107.10.1063/1.2793786. PubMed DOI

Nemeth A.; Milota F.; Mančal T.; Lukeš V.; Kauffmann H. F.; Sperling J. Vibronic Modulation of Lineshapes in Two-Dimensional Electronic Spectra. Chem. Phys. Lett. 2008, 459, 94–9910.1016/j.cplett.2008.05.057. DOI

Christensson N.; Milota F.; Hauer J.; Sperling J.; Bixner O.; Nemeth A.; Kauffmann H. F. High Frequency Vibrational Modulations in Two-Dimensional Electronic Spectra and Their Resemblance to Electronic Coherence Signatures. J. Phys. Chem. B 2011, 115, 5383–539110.1021/jp109442b. PubMed DOI

Camargo F. V. A.; Anderson H. L.; Meech S. R.; Heisler I. A. Full Characterization of Vibrational Coherence in a Porphyrin Chromophore by Two-Dimensional Electronic Spectroscopy. J. Phys. Chem. A 2015, 119, 95–10110.1021/jp511881a. PubMed DOI

de Boeij W. P.; Pshenichnikov M. S.; Wiersma D. A. Ultrafast Solvation Dynamics Explored by Femtosecond Photon Echo Spectroscopies. Annu. Rev. Phys. Chem. 1998, 49, 99–12310.1146/annurev.physchem.49.1.99. PubMed DOI

Joo T.; Jia Y.; Yu J.-Y.; Lang M. J.; Fleming G. R. Third Order Nonlinear Time Domain Probes of Solvation Dynamics. J. Chem. Phys. 1996, 104, 6089–610810.1063/1.471276. DOI

Perlík V.; Lincoln C.; Šanda F.; Hauer J. Distinguishing Electronic and Vibronic Coherence in 2D Spectra by Their Temperature Dependence. J. Phys. Chem. Lett. 2014, 5, 404–40710.1021/jz402468c. PubMed DOI PMC

Roy S.; Pshenichnikov M. S.; Jansen T. L. C. Analysis of 2D CS Spectra for Systems with Non-Gaussian Dynamics. J. Phys. Chem. B 2011, 115, 5431–544010.1021/jp109742p. PubMed DOI

Kubo R. Stochastic Liouville Equations. J. Math. Phys. 1963, 4, 174–18310.1063/1.1703941. DOI

Šanda F.; Mukamel S. Stochastic Liouville Equations for Coherent Multidimensional Spectroscopy of Excitons. J. Phys. Chem. B 2008, 112, 14212–1422010.1021/jp801457c. PubMed DOI PMC

Šanda F. Strong Field Line Shapes and Photon Statistics from a Single Molecule under Anomalous Noise. Phys. Rev. E 2009, 80, 041132.10.1103/PhysRevE.80.041132. PubMed DOI

Zusman D. Outer-sphere Electron Transfer in Polar Solvents. Chem. Phys. 1980, 49, 295–30410.1016/0301-0104(80)85267-0. DOI

Tanimura Y. Stochastic Liouville, Langevin, Fokker-Planck, and Master Equation Approaches to Quantum Dissipative Systems. J. Phys. Soc. Jpn. 2006, 75, 082001.10.1143/JPSJ.75.082001. DOI

Abramavicius D.; Palmieri B.; Voronine D. V.; Šanda F.; Mukamel S. Coherent Multidimensional Optical Spectroscopy of Excitons in Molecular Aggregates; Quasiparticle versus Supermolecule Perspectives. Chem. Rev. 2009, 109, 2350–240810.1021/cr800268n. PubMed DOI PMC

Risken H.The Fokker-Planck equation; Springer: Berlin, 1989.

Mazo R. M.Brownian Motion. Fluctuations, Dynamics and Applications; Oxford University Press: Oxford, U.K., 2002.

Nemykin V. N.; Hadt R. G.; Belosludov R. V.; Mizuseki H.; Kawazoe Y. Influence of Molecular Geometry, Exchange-Correlation Functional, and Solvent Effects in the Modeling of Vertical Excitation Energies in Phthalocyanines Using Time-Dependent Density Functional Theory (TDDFT) and Polarized Continuum Model TDDFT Methods: Can Modern Computational Chemistry Methods Explain Experimental Controversies?. J. Phys. Chem. A 2007, 111, 12901–1291310.1021/jp0759731. PubMed DOI

Gierschner J.; Mack H. G.; Luer L.; Oelkrug D. Fluorescence and Absorption Spectra of Oligophenylenevinylenes: Vibronic Coupling, Band Shapes, and Solvatochromism. J. Chem. Phys. 2002, 116, 8596–860910.1063/1.1469612. DOI

Piel J.; Riedle E.; Gundlach L.; Ernstorfer R.; Eichberger R. Sub- 20 fs Visible Pulses with 750 nJ Energy from a 100 kHz Noncollinear Optical Parametric Amplifier. Opt. Lett. 2006, 31, 1289–129110.1364/OL.31.001289. PubMed DOI

Cowan M. L.; Ogilvie J. P.; Miller R. J. D. Two-Dimensional Spectroscopy Using Diffractive Optics Based Phased-Locked Photon Echoes. Chem. Phys. Lett. 2004, 386, 184–18910.1016/j.cplett.2004.01.027. DOI

Christensson N.; Milota F.; Nemeth A.; Sperling J.; Kauffmann H. F.; Pullerits T.; Hauer J. Two-Dimensional Electronic Spectroscopy of beta-Carotene. J. Phys. Chem. B 2009, 113, 16409–1641910.1021/jp906604j. PubMed DOI

Tauber M.; Mathies R. A.; Chen X.; Bradforth S. E. Flowing Liquid Sample Jet for Resonance Raman and Ultrafast Optical Spectroscopy. Rev. Sci. Instrum. 2003, 74, 4958–496010.1063/1.1614874. DOI

Savolainen J.; van der Linden D.; Dijkhuizen N.; Herek J. L. Characterizing the Functional Dynamics of Zinc Phthalocyanine from Femtoseconds to Nanoseconds. J. Photochem. Photobiol., A 2008, 196, 99–10510.1016/j.jphotochem.2007.11.018. DOI

Kakade S.; Ghosh R.; Palit D. K. Excited State Dynamics of Zinc-Phthalocyanine Nanoaggregates in Strong Hydrogen Bonding Solvents. J. Phys. Chem. C 2012, 116, 15155–1516610.1021/jp304369r. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...