Anharmonic Molecular Motion Drives Resonance Energy Transfer in peri-Arylene Dyads
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33330367
PubMed Central
PMC7732524
DOI
10.3389/fchem.2020.579166
Knihovny.cz E-zdroje
- Klíčová slova
- Förster transport, MD/QC, perylene dyads, ultrafast energy transfer, vibronic transport,
- Publikační typ
- časopisecké články MeSH
Spectral and dynamical properties of molecular donor-acceptor systems strongly depend on the steric arrangement of the constituents with exciton coupling J as a key control parameter. In the present work we study two peri-arylene based dyads with orthogonal and parallel transition dipoles for donor and acceptor moieties, respectively. We show that the anharmonic multi-well character of the orthogonal dyad's intramolecular potential explains findings from both stationary and time-resolved absorption experiments. While for a parallel dyad, standard quantum chemical estimates of J at 0 K are in good agreement with experimental observations, J becomes vanishingly small for the orthogonal dyad, in contrast to its ultrafast experimental transfer times. This discrepancy is not resolved even by accounting for harmonic fluctuations along normal coordinates. We resolve this problem by supplementing quantum chemical approaches with dynamical sampling of fluctuating geometries. In contrast to the moderate Gaussian fluctuations of J for the parallel dyad, fluctuations for the orthogonal dyad are found to follow non-Gaussian statistics leading to significantly higher effective J in good agreement with experimental observations. In effort to apply a unified framework for treating the dynamics of optical coherence and excitonic populations of both dyads, we employ a vibronic approach treating electronic and selected vibrational degrees on an equal footing. This vibronic model is used to model absorption and fluorescence spectra as well as donor-acceptor transport dynamics and covers the more traditional categories of Förster and Redfield transport as limiting cases.
Department of Chemistry Ludwig Maximilians Universität München Munich Germany
Institute of Physics Faculty of Mathematics and Physics Charles University Prague Czechia
Zobrazit více v PubMed
Amadei A., Chillemi G., Ceruso M. A., Grottesi A., Di Nola A. (2000). Molecular dynamics simulations with constrained roto-translational motions: theoretical basis and statistical mechanical consistency. J. Chem. Phys. 112, 9–23. 10.1063/1.480557 DOI
Ambrosino F., Califano S. (1965). The vibrational spectrum of perylene. Spectrochim. Acta 21, 1401–1409. 10.1016/0371-1951(65)80050-9 DOI
Anda A., De Vico L., Hansen T., Abramavicius D. (2016). Absorption and fluorescence lineshape theory for polynomial potentials. J. Chem. Theory Comput. 12, 5979–5989. 10.1021/acs.jctc.6b00997 PubMed DOI
Angulo G., Grampp G., Rosspeintner A. (2006). Recalling the appropriate representation of electronic spectra. Spectrochim. Acta Part A 65, 727–731. 10.1016/j.saa.2006.01.007 PubMed DOI
Atkins P., Friedman R. (2011). Molecular Quantum Mechanics. Oxford: OUP Oxford.
Bayly C. I., Cieplak P., Cornell W., Kollman P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280. 10.1021/j100142a004 DOI
Bo F., Gao B., Duan W., Li H., Liu H., Bai Q. (2013). Assembly-disassembly driven “off-on” fluorescent perylene bisimide probes for detecting and tracking of proteins in living cells. RSC Adv. 3, 17007–17010. 10.1039/c3ra42284d DOI
Butkus V., Valkunas L., Abramavicius D. (2014). Vibronic phenomena and exciton-vibrational interference in two-dimensional spectra of molecular aggregates. J. Chem. Phys. 140:034306. 10.1063/1.4861466 PubMed DOI
Caldeira A. O., Leggett A. J. (1983). Path integral approach to quantum Brownian motion. Phys. A 121, 587–616. 10.1016/0378-4371(83)90013-4 DOI
Case D. A, Babin V, Berryman J. T, Betz R. M, Cai Q, Cerutti D. S. (2014). AMBER 14. San Francisco, CA: University of California.
Chernyak V., Šanda F., Mukamel S. (2006). Coherence and correlations in multitime quantum measurements of stochastic quantum trajectories. Phys. Rev. E 73:036119. 10.1103/PhysRevE.73.036119 PubMed DOI
de França B. M., Bello Forero J. S., Garden S. J., Ribeiro E. S., da S.Souza R., Teixeira R. S., et al. (2018). Green fluorescence pyrene-based dye as a new π-extended system: synthesis, photophysical and theoretical studies. Dyes Pigments 148, 444–451. 10.1016/j.dyepig.2017.09.003 DOI
Didraga C., Pugžys A., Hania P. R., von Berlepsch H., Duppen K., Knoester J. (2004). Structure, spectroscopy, and microscopic model of tubular carbocyanine dye aggregates. J. Phys. Chem. B 108, 14976–14985. 10.1021/jp048288s DOI
Donsker M. D. (1951). An invariance principle for certain probability limit theorems. Mem. Am. Math. Soc. 6, 1-12.
Förster T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 437, 55–75. 10.1002/andp.19484370105 DOI
Frisch M. J. (2009). Gaussian 09, Revision E.01. Wallingford, CT: Gaussian, Inc.
Fron E., Schweitzer G., Osswald P., Würthner F., Marsal P., Beljonne D., et al. (2008). Photophysical study of bay substituted perylenediimides. Photochem. Photobiol. Sci. 7, 1509–1521. 10.1039/b813737d DOI
Fujihashi Y., Kimura A. (2013). Improved variational master equation theory for the excitation energy transfer. J. Phys. Soc. Jpn. 83:014801 10.7566/JPSJ.83.014801 PubMed DOI
Galestian Pour A., Lincoln C. N., Perlík V., Šanda F., Hauer J. (2017). Anharmonic vibrational effects in linear and two-dimensional electronic spectra. Phys. Chem. Chem. Phys. 19, 24752–24760. 10.1039/C7CP05189A PubMed DOI
Garvin R. L. (1960). The collection of light from scintillation counters. Rev. Sci. Instr. 31, 1010–1011. 10.1063/1.1717105 DOI
Herrmann A., Müllen K. (2006). From industrial colorants to single photon sources and biolabels: the fascination and function of rylene dyes. Chem. Lett. 35, 978–985. 10.1246/cl.2006.978 DOI
Hestand N. J., Spano F. C. (2018). Expanded theory of H- and J- molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 118, 7069–7163. 10.1021/acs.chemrev.7b00581 PubMed DOI
Hofmann C. C., Lindner S. M., Ruppert M., Hirsch A., Haque S. A., Thelakkat M., et al. . (2010). Mutual interplay of light harvesting and triplet sensitizing in a perylene bisimide antenna- fullerene dyad. J. Phys. Chem. B 114, 9148–9156. 10.1021/jp1035585 PubMed DOI
Holcombe T. W., Norton J. E., Rivnay J., Woo C. H., Goris L., Piliego C., et al. . (2011). Steric control of the donor/acceptor interface: implications in organic photovoltaic charge generation. J. Am. Chem. Soc. 133, 12106–12114. 10.1021/ja203235z PubMed DOI
Hsu C.-P., Fleming G. R., Head-Gordon M., Head-Gordon T. (2001). Excitation energy transfer in condensed media. J. Chem. Phys. 114, 3065–3072. 10.1063/1.1338531 DOI
Huang C., Barlow S., Marder S. R. (2011). Perylene-3,4,9,10-tetracarboxylic acid diimides: synthesis, physical properties, and use in organic electronics. J. Organ. Chem. 76, 2386–2407. 10.1021/jo2001963 PubMed DOI
Kalinin S., Speckbacher M., Langhals H., Johansson L. B.-Å. (2001). A new and versatile fluorescence standard for quantum yield determination. Phys. Chem. Chem. Phys. 3, 172–174. 10.1039/b007671f DOI
Krueger B. P., Scholes G. D., Fleming G. R. (1998). Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B 102, 5378–5386. 10.1021/jp9811171 DOI
Lang E., Würthner F., Köhler J. (2005). Photophysical properties of a tetraphenoxy-substituted perylene bisimide derivative characterized by single-molecule spectroscopy. ChemPhysChem 6, 935–941. 10.1002/cphc.200400555 PubMed DOI
Langhals H. (2005). Control of the interactions in multichromophores: novel concepts. Perylene bisimides as components for larger functional units. Helv. Chim. Acta 88, 1309–1343. 10.1002/hlca.200590107 DOI
Langhals H. (2013). “Chromophores for picoscale optical computers,” in Fundamentals of Picoscience, ed Sattler K. (CRC Press: Taylor & Francis; ), 705–727. 10.1201/b15523-47 DOI
Langhals H. (2019). Primary Methods of Generating Solar Power by Using the Targeted Modification of Fluorescent Systems. Habilitation. Freiburg: Albert-Ludwigs-Universitat Freiburg.
Langhals H., Esterbauer A. J., Walter A., Riedle E., Pugliesi I. (2010). Förster resonant energy transfer in orthogonally arranged chromophores. J. Am. Chem. Soc. 132, 16777–16782. 10.1021/ja101544x PubMed DOI
Langhals H., Gold J. (1996). Tangentially coupled π systems and their through-space interaction - trichromophoric perylene dyes. J. Prakt. Chem. 338, 654–659. 10.1002/prac.199633801124 DOI
Langhals H., Gold J. (1997). Chiral bifluorophoric perylene dyes with unusually high CD effects - a simple model for the photosynthesis reaction center. Liebigs Ann. 1151–1153. 10.1002/jlac.199719970615 DOI
Langhals H., Karolin J., Johansson L. B.-Å. (1998). Spectroscopic properties of new and convenient standards for measuring fluorescence quantum yields. J. Chem. Soc., Faraday Trans. 94, 2919–2922. 10.1039/a804973d DOI
Langhals H., Poxleitner S., Krotz O., Pust T., Walter A. (2008). FRET in orthogonally arranged chromophores. Eur. J. Org. Chem. 4559–4562. 10.1002/ejoc.200800451 PubMed DOI
Langhals H., Saulich S. (2002). Bichromophoric perylene derivatives: energy transfer from non fluorescent chromophores. Chem. Eur. J. 8, 5630–5643. 10.1002/1521-3765(20021216)8:24<5630::AID-CHEM5630>3.0.CO;2-Z PubMed DOI
Langhals H., Walter A. (2020). FRET in dyads with orthogonal chromophores and minimal spectral overlap. J. Phys. Chem. A 124, 1554–1560. 10.1021/acs.jpca.9b11225 PubMed DOI
Lilliefors H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62, 399–402. 10.1080/01621459.1967.10482916 DOI
Lincoln C. N., Hayden J., Galestian Pour A., Perlík V., Šanda F., Hauer J. (2016). A quantitative study of coherent vibrational dynamics probed by heterodyned transient grating spectroscopy. Vib. Spectrosc. 85, 167–174. 10.1016/j.vibspec.2016.04.018 DOI
Löhmannsröben H., Langhals H. (1989). Laser performance of perylenebis (dicarboximide) dyes with long secondary alkyl chains. Appl. Phys. B 48, 449–452. 10.1007/BF00694678 DOI
Mais S., Tittel J., Basché T., Bräuchle C., Göhde W., Fuchs H., et al. (1997). Terrylenediimide: a novel fluorophore for single-molecule spectroscopy and microscopy from 1.4 K to room temperature. J. Phys. Chem. A 101, 8435–8440. 10.1021/jp9719063 DOI
McWeeny R. (1960). Some recent advances in density matrix theory. Rev. Mod. Phys. 32, 335–369. 10.1103/RevModPhys.32.335 DOI
Megerle U., Pugliesi I., Schriever C., Sailer C., Riedle E. (2009). Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground. Appl. Phys. B 96, 215–231. 10.1007/s00340-009-3610-0 DOI
Mohamed N. A., Bradshaw R. T., Essex J. W. (2016). Evaluation of solvation free energies for small molecules with the AMOEBA polarizable force field. J. Comput. Chem. 37, 2749–2758. 10.1002/jcc.24500 PubMed DOI PMC
Nalbach P., Pugliesi I., Langhals H., Thorwart M. (2012). Noise-induced Förster resonant energy transfer between orthogonal dipoles in photoexcited molecules. Phys. Rev. Lett. 108:218302. 10.1103/PhysRevLett.108.218302 PubMed DOI
Nottoli M., Jurinovich S., Cupellini L., Gardiner A. T., Cogdell R., Mennucci B. (2018). The role of charge-transfer states in the spectral tuning of antenna complexes of purple bacteria. Photosynth. Res. 137, 215–226. 10.1007/s11120-018-0492-1 PubMed DOI
Olbrich C., Kleinekathöfer U. (2010). Time-dependent atomistic view on the electronic relaxation in light-harvesting system II. J. Phys. Chem. B 114, 12427–12437. 10.1021/jp106542v PubMed DOI
Olbrich C., Strümpfer J., Schulten K., Kleinekathöfer U. (2011). Theory and simulation of the environmental effects on FMO electronic transitions. J. Phys. Chem. Lett. 2, 1771–1776. 10.1021/jz2007676 PubMed DOI PMC
Osswald P., Würthner F. (2007). Effects of bay substituents on the racemization barriers of perylene bisimides: resolution of atropo-enantiomers. J. Am. Chem. Soc. 129, 14319–14326. 10.1021/ja074508e PubMed DOI
Parr R. G., Yang W. (1989). Density Functional Theory of Atoms and Molecules. New York, NY: Oxford University Press.
Perlík V., Lincoln C. N., Šanda F., Hauer J. (2014). Distinguishing electronic and vibronic coherence in 2D spectra by their temperature dependence. J. Phys. Chem. Lett. 5, 404–407. 10.1021/jz402468c PubMed DOI PMC
Perlík V., Šanda F. (2017). Vibrational relaxation beyond the linear damping limit in two-dimensional optical spectra of molecular aggregates. J. Chem. Phys. 147:084104. 10.1063/1.4999680 PubMed DOI
Polyutov S., Kühn O., Pullerits T. (2012). Exciton-vibrational coupling in molecular aggregates: electronic versus vibronic dimer. Chem. Phys. 394, 21–28. 10.1016/j.chemphys.2011.12.006 DOI
Qian G., Yang Y., Wang Z., Yang C., Yang Z., Wang M. (2003). Photostability of perylene orange, perylene red and pyrromethene 567 laser dyes in various precursors derived gel glasses. Chem. Phys. Lett. 368, 555–560. 10.1016/S0009-2614(02)01906-1 DOI
Rancova O., Abramavicius D. (2014). Static and dynamic disorder in bacterial light-harvesting complex LH2: a 2DES simulation study. J. Phys. Chem. B 118, 7533–7540. 10.1021/jp5043156 PubMed DOI
Redfield A. G. (1957). On the theory of relaxation processes. IBM J. Res. Dev. 1, 19–31. 10.1147/rd.11.0019 DOI
Renger T., Dankl M., Klinger A., Schlücker T., Langhals H., Müh F. (2018). Structure-based theory of fluctuation-induced energy transfer in a molecular dyad. J. Phys. Chem. Lett. 9, 5940–5947. 10.1021/acs.jpclett.8b02403 PubMed DOI
Renger T., Müh F. (2012). Theory of excitonic couplings in dielectric media. Foundation of Poisson-TrEsp method and application to photosystem I trimers. Photosynth. Res. 111, 47–52. 10.1007/s11120-011-9685-6 PubMed DOI
Šanda F., Mukamel S. (2006). Cooperative effects in photon statistics of molecular dimers with spectral diffusion. J. Chem. Phys. 124:124103. 10.1063/1.2174001 PubMed DOI
Šanda F., Mukamel S. (2008). Stochastic Liouville equations for coherent multidimensional spectroscopy of excitons. J. Phys. Chem. B 112, 14212–14220. 10.1021/jp801457c PubMed DOI PMC
Šanda F., Mukamel S. (2011). Novel coherent two dimensional optical spectroscopy probes of chirality exchange and fluctuations in molecules. J. Chem. Phys. 135:194201. 10.1063/1.3658277 PubMed DOI PMC
Šanda F., Perlík V., Mukamel S. (2010). Exciton coherence length fluctuations in chromophore aggregates probed by multidimensional optical spectroscopy. J. Chem. Phys. 133:014102. 10.1063/1.3442415 PubMed DOI PMC
Seybold G., Wagenblast G. (1989). New perylene and violanthrone dyestuffs for fluorescent collectors. Dyes Pigm. 11, 303–317. 10.1016/0143-7208(89)85048-X DOI
Tanimura Y. (2006). Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn. 75:082001 10.1143/JPSJ.75.082001 DOI
Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A. (2004). Development and testing of a general AMBER force field. J. Comput. Chem. 25, 1157–1174. 10.1002/jcc.20035 PubMed DOI
Weiss M. S. (1987). Modification of the Kolmogorov-Smirnov statistics for use with correlated data. J. Am Stat. Assoc. 73, 872–875. 10.1080/01621459.1978.10480116 DOI
Würthner F., Thalacker C., Diele S., Tschierske C. (2001). Fluorescent J-type aggregates and thermotropic columnar mesophases of perylene bisimide dyes. Chem. Eur. J. 7, 2245–2253. 10.1002/1521-3765(20010518)7:10<2245::AID-CHEM2245>3.0.CO;2-W PubMed DOI
Yang H., Luo G., Karnchanaphanurach P., Louie T.-M., Rech I., Cova S., et al. . (2003). Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266. 10.1126/science.1086911 PubMed DOI
Zimanyi E. N., Silbey R. J. (2012). Theoretical description of quantum effects in multi-chromophoric aggregates. Philos. Trans. R. Soc. A 370, 3620–3637. 10.1098/rsta.2011.0204 PubMed DOI