Exciton coherence length fluctuations in chromophore aggregates probed by multidimensional optical spectroscopy
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 GM059230
NIGMS NIH HHS - United States
GM59230
NIGMS NIH HHS - United States
PubMed
20614954
PubMed Central
PMC2909306
DOI
10.1063/1.3442415
Knihovny.cz E-zdroje
- MeSH
- barva MeSH
- elektrony * MeSH
- Markovovy řetězce MeSH
- optické jevy * MeSH
- spektrální analýza * MeSH
- stochastické procesy MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The coherent third order optical response of molecular aggregates with fluctuating frequencies, couplings, and transition dipole moments is studied. We derived stochastic nonlinear exciton equations (SNEEs) by combining the quasiparticle picture of excitons with the path integral over stochastic bath paths described by the stochastic Liouville equations. Coherent two-dimensional (2D) spectra are calculated for a tetramer model system whose transition dipole orientations undergo two-state stochastic jumps on an arbitrary timescale. Correspondence between domains of ordered dipoles, which determine the exciton coherence length and the absorption peaks, is established. Signatures of domain coherence length fluctuations are observed in the cross peak dynamics of the 2D spectra in specific pulse polarization configurations.
Zobrazit více v PubMed
Mukamel S., Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
Abramavicius D., Palmieri B., Voronine D. V., Šanda F., and Mukamel S., Chem. Rev. (Washington, D.C.) CHREAY 109, 2350 (2009).10.1021/cr800268n PubMed DOI PMC
Cho M., Two-Dimensional Optical Spectroscopy (CRC, Boca Raton, 2009).10.1201/9781420084306 DOI
May V. and Kühn O., Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction (Wiley-VCH, Weinheim, 2000).
McRobbie P. L., Hanna G., Shi Q., and Geva E., Acc. Chem. Res. ACHRE4 42, 1299 (2009).10.1021/ar800280s PubMed DOI
Cho M., Chem. Rev. (Washington, D.C.) CHREAY 108, 1331 (2008).10.1021/cr078377b PubMed DOI
Redfield A. G., Adv. Magn. Reson. ADMGAX 1, 1 (1965).
Chernyak V. and Mukamel S., J. Chem. Phys. JCPSA6 105, 4565 (1996).10.1063/1.472302 DOI
Kubo R., J. Math. Phys. JMAPAQ 4, 174 (1963).10.1063/1.1703941 DOI
Gamliel D. and Levanon H., Stochastic Processes in Magnetic Resonance (World Scientific, Singapore, 1995).
Tanimura Y., J. Phys. Soc. Jpn. JUPSAU 75, 082001 (2006).10.1143/JPSJ.75.082001 DOI
Garg A., Onuchic J. N., and Ambegaokar V., J. Chem. Phys. JCPSA6 83, 4491 (1985).10.1063/1.449017 DOI
Ishizaki A. and Tanimura Y., J. Chem. Phys. JCPSA6 125, 084501 (2006).10.1063/1.2244558 PubMed DOI
Ishizaki A. and Fleming G. R., Proc. Natl. Acad. Sci. U.S.A. PNASA6 106, 17255 (2009).10.1073/pnas.0908989106 PubMed DOI PMC
Jansen T. C. and Knoester J., Acc. Chem. Res. ACHRE4 42, 1405 (2009).10.1021/ar900025a PubMed DOI
Falvo C., Palmieri B., and Mukamel S., J. Chem. Phys. JCPSA6 130, 184501 (2009).10.1063/1.3120771 PubMed DOI PMC
Paarmann A., Hayashi T., Mukamel S., and Miller R. J. D., J. Chem. Phys. JCPSA6 128, 191103 (2008).10.1063/1.2919050 PubMed DOI PMC
Seehusen J., Schwarzer D., Lindner J., and Vöhringer P., Phys. Chem. Chem. Phys. PPCPFQ 11, 8484 (2009).10.1039/b903466h PubMed DOI
Zheng J., Kwak K., Asbury J., Chen X., Piletic I. R., and Fayer M. D., Science SCIEAS 309, 1338 (2005).10.1126/science.1116213 PubMed DOI
Šanda F. and Mukamel S., J. Chem. Phys. JCPSA6 125, 014507 (2006).10.1063/1.2205367 PubMed DOI
Fayer M. D., Moilanen D. E., Wong D., Rosenfeld D. E., Fenn E. E., and Park S., Acc. Chem. Res. ACHRE4 42, 1210 (2009).10.1021/ar900043h PubMed DOI PMC
Ernst R. R., Bodenhausen G., and Wokaun A., Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, New York, 1987).
Šanda F. and Mukamel S., Phys. Rev. Lett. PRLTAO 98, 080603 (2007).10.1103/PhysRevLett.98.080603 PubMed DOI
Šanda F. and Mukamel S., J. Phys. Chem. B JPCBFK 112, 14212 (2008).10.1021/jp801457c PubMed DOI PMC
Jansen T. C., Zhuang W., and Mukamel S., J. Chem. Phys. JCPSA6 121, 10577 (2004).10.1063/1.1807824 PubMed DOI
Mukamel S., in Molecular Nonlinear Optics, edited by Zyss J. (Academic, New York, 1994), pp. 1–46.
Chernyak V., Zhang W. M., and Mukamel S., J. Chem. Phys. JCPSA6 109, 9587 (1998).10.1063/1.477621 DOI
Kofinger J., Hummer G., and Dellago C., Proc. Natl. Acad. Sci. U.S.A. PNASA6 105, 13218 (2008).10.1073/pnas.0801448105 PubMed DOI PMC
Laage D., Stirnemann G., and Hynes J. T., J. Phys. Chem. B JPCBFK 113, 2428 (2009).10.1021/jp809521t PubMed DOI
Laage D. and Hynes J. T., Science SCIEAS 311, 832 (2006).10.1126/science.1122154 PubMed DOI
Rey R., Møller K., and Hynes J. T., J. Phys. Chem. A JPCAFH 106, 11993 (2002).10.1021/jp026419o DOI
Janusonis J., Valkunas L., Rutkauskas D., and van Grondelle R., Biophys. J. BIOJAU 94, 1348 (2008).10.1529/biophysj.107.108431 PubMed DOI PMC
Valkunas L., Janusonis J., Rutkauskas D., and van Grondelle R., J. Lumin. JLUMA8 127, 269 (2007).10.1016/j.jlumin.2007.02.032 DOI
van Kampen N. G., Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992).
Šanda F. and Mukamel S., J. Chem. Phys. JCPSA6 124, 124103 (2006).10.1063/1.2174001 PubMed DOI
Davydov A. S., Theory of Molecular Excitons (McGraw-Hill, New York, 1962).
Silinsh E. A. and Čápek V., Organic Molecular Crystals: Interaction, Localization and Transport Phenomena (AIP, New York, 1994).
van Amerongen H., Valkunas L., and van Grondelle R., Photosyntetic Excitons (World Scientific, Singapore, 2000).10.1142/9789812813664 DOI
Combescot M., Betbeder-Matibet O., and Dubin F., Phys. Rep. PRPLCM 463, 215 (2008).10.1016/j.physrep.2007.11.003 DOI
Kubo R., in Fluctuation, Relaxation and Resonance in Magnetic Systems, edited by ter Haar D. (Oliver and Boyd, Edinburgh, 1962), p. 23.
Anderson P. W., J. Phys. Soc. Jpn. JUPSAU 9, 316 (1954).10.1143/JPSJ.9.316 DOI
Zanni M. T., Ge N. H., Kim Y. S., and Hochstrasser R. M., Proc. Natl. Acad. Sci. U.S.A. PNASA6 98, 11265 (2001).10.1073/pnas.201412998 PubMed DOI PMC
Woutersen S. and Hamm P., J. Phys. Chem. B JPCBFK 104, 11316 (2000).10.1021/jp001546a DOI
Kubarych K. J., Milne C. J., Lin S., Astinov V., and Miller R. J. D., J. Chem. Phys. JCPSA6 116, 2016 (2002).10.1063/1.1429961 DOI
Andrews D. L. and Thirunamachandran T., J. Chem. Phys. JCPSA6 67, 5026 (1977).10.1063/1.434725 DOI
Fick E. and Sauermann G., The Quantum Statistics of Dynamic Processes (Springer, Berlin, 1990).
Anharmonic Molecular Motion Drives Resonance Energy Transfer in peri-Arylene Dyads